
Article 16 INTEGERS 11A (2011)

Proceedings of Integers Conference 2009

COINCIDENCES OF CATALAN AND Q-CATALAN NUMBERS

Florian Luca
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Abstract

Let Cn and Cn(q) be the nth Catalan number and the nth q-Catalan number,
respectively. In this paper, we show that the Diophantine equation Cn = Cm(q)
has only finitely many integer solutions (m,n, q) with m > 1, n > 1, q > 1.
Moreover, they are all effectively computable.

– To Professor Carl Pomerance on his 65th birthday

1. Introduction

For a positive integer n, let

Cn =
1

n + 1

�
2n
n

�

be the nth Catalan number. For a positive integer q > 1 we put [k]q = qk−1 +
qk−2 + · · ·+ 1 = (qk − 1)/(q − 1), [n]q! =

�
1≤k≤n[k]q and

�
n

k

�

q

=
[n]q

[k]q[n− k]q
.

The nth q-Catalan number is

Cn(q) =
1

[n + 1]q

�
2n
n

�

q

.
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There are many papers in the literature treating Diophantine equations involving
binomial coefficients. For example, all the solutions of the Diophantine equation

�
n

k

�
=

�
m

l

�
with n ≥ 2k ≥ 4, m ≥ 2l ≥ 4 and (m,k) �= (n, l), (1)

are still not known, although partial results on it appear in [1] and [8]. On the
other hand, in the recent paper [6] it was shown that the analogous q-Diophantine
equation

�
n

k

�

q

=
�
m

l

�

q

with n ≥ 2k ≥ 4, m ≥ 2l ≥ 4 and (n, k) �= (m, l), (2)

has no positive integer solutions (m,k, n, l, q) with q > 1. In this paper, we look at
whether there could be common terms in the sequences of Catalan and q-Catalan
numbers. Our theorem is the following.

Theorem 1. The Diophantine equation

Cn = Cm(q) (3)

has only finitely many positive integer solutions (m,n, q) with m > 1, n > 1, q > 1.

Observe that C1 = C1(q) = 1, which is why we imposed the restrictions that
m > 1 and n > 1 in the statement of Theorem 1. Observe also that 5 = C3 = C2(2).
While we cannot compute all the finitely many solutions of the Diophantine equation
(3), we will show in the third section of the paper that there are no other solutions
to equation (3) with q = 2. Some remarks concerning the effectiveness of the proof
of Theorem 1 appear in the last section of the paper. Our method uses results from
analytic number theory and the specific tools that we use will be revealed when
needed. Throughout the paper, we use the Landau symbols O and o as well as the
Vinogradov symbols �, �, � with their usual meanings. Constants implied by
them are absolute.

2. The Proof of Theorem 1

Assume that (m,n, q) is a solution to equation (3) with large n. We shall first show
that m is bounded, and later that n is also bounded. We assume therefore for the
first part that m is large.

We start with asymptotic estimates of both sides of (3). On the one hand, by
Stirling’s formula to approximate the factorial, we know that

Cn =
22n

π1/2n3/2

�
1 + O

�
1
n

��
. (4)
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On the other hand, we have

Cm(q) =
�

m+2≤k≤2m

(qk − 1)




�

2≤j≤m

(qj − 1)




−1

= qM
�

m+2≤k≤2m

�
1− 1

qk

�


�

2≤j≤m

�
1− 1

qj

�


−1

= qMη(q)
�

m+2≤k≤m

�
1− 1

qk

� �

m+1≤j

�
1− 1

qj

�
, (5)

where

M =
�

m+2≤k≤2m

k −
�

2≤j≤m

j = m2 −m, and η(q) =
�

j≥2

�
1− 1

qj

�−1

.

It is clear that 1 ≤ η(q) = O(1) uniformly for q ≥ 2. Furthermore, since

1− 1
qk

= exp
�

O

�
1
qk

��
,

we get that

�

m+2≤k≤m

�
1− 1

qk

� �

m+1≤j

�
1− 1

qj

�
= exp



O




�

m≤j

1
qj









= exp
�

O

�
1

qm

��

= 1 + O

�
1

qm

�
.

We thus get that

Cm(q) = qm2−mη(q)
�

1 + O

�
1

qm

��
. (6)

Comparing (4) and (6) we deduce that

22n

π1/2n3/2

�
1 + O

�
1
n

��
= qm2−mη(q)

�
1 + O

�
1

qm

��
,

and taking logarithms, we obtain that

2n log 2− 1.5 log n = (m2 −m) log q + O(1),

which implies that
n � m2 log q. (7)
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Next, we use the arithmetic properties of the Catalan number and q-Catalan num-
ber, respectively. For a positive integer s > 1 let P (s) be the largest prime factor
of s. For a real number x > 1 write

P(x) := {x < p ≤ 2x : P (p− 1) > p2/3}. (8)

A result of Fouvry [4] asserts that #P(x) � x/ log x provided that x � 1. Assume
now that n is sufficiently large. Then all primes p ∈ (n, 2n) divide Cn with at most
one exception, and this exception occurs only when n + 1 is prime. Thus, putting
Q := {p ∈ P(n) : p | Cn}, we have that

�

p∈Q
log p ≥ (log n)#Q ≥ (log n)(#P(n)− 1) � n (n � 1). (9)

Let p ∈ Q. Since p | Cm(q), it follows that p | qk−1 for some k ∈ [m+2, 2m]. Let tp
be the multiplicative order of q modulo p. Then tp | k, therefore tp ≤ 2m. However,
tp also divides p− 1. If P (p− 1) | tp, then n2/3 < p2/3 ≤ P (p− 1) ≤ tp ≤ k ≤ 2m,
therefore

m2 log q ≥ m2 log 2 � n4/3.

Comparing the above inequality with (7), we get n � n4/3, therefore n � 1, which
is what we wanted to prove. Thus, assuming that n is sufficiently large, we conclude
that tp is coprime to P (p− 1), therefore tp | (p− 1)/P (p− 1)) < p1/3 � n1/3 and
this inequality holds for all primes p ∈ Q. We now split Q in two subsets as follows:

R := {p ∈ Q : tp ≤ m/ log m}, and S := Q\R.

Observe that �

p∈R
p |

�

k≤m/ log m

(qk − 1),

therefore
�

p∈R
log p ≤

�

k≤m/ log m

log(qk − 1) ≤ (log q)
�

k≤m/ log m

k � m2 log q

(log m)2
� n

(log m)2
.

(10)
Assume now that S �= ∅. Then for p ∈ S, we have m/ log m ≤ tp � n1/3, therefore
m � n1/3 log n. For large n, the above inequality implies that m ≤ n1/2. Observe
now that primes p ∈ S have the property that p ≤ 2n and p has a divisor tp in
the interval [m/ log m,m], where m ≤ n1/2. Let H(x, y, z,P−1) be the counting
function of the number of primes p ≤ x such that p− 1 has a divisor in the interval
[y, z]. A result from [2] says that uniformly for 2y ≤ z ≤ y2 and 3 ≤ y ≤ x1/2, we
have the estimate

H(x, y, z,P−1) �
x

log x
uδ(log(2/u))−3/2,
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where
y1+u = z and δ = 1− 1 + log log 2

log 2
= 0.086071 . . . .

For m ≥ e2 and large n, setting x := 2n, y = m/ log m and z = m, all the
hypotheses needed to apply the result from [2] are fulfilled. Since

u =
log z

log y
− 1 =

log m

log m− log log m
− 1 =

log log m

log m− log log m
,

we deduce that
#S �

�
n

log n

�
1

(log m)δ(log log m)3/2+δ
.

Hence, �

p∈S
log p ≤ (log(2n))#S � n

(log m)δ(log log m)3/2+δ
. (11)

Hence, from inequalities (9), (10) and (11), we get that

n �
�

p∈Q
log p ≤

�

p∈R
log p +

�

p∈S
log p � n

�
1

(log m)2
+

1
(log m)δ(log log m)3/2+δ

�
,

which implies that
(log m)δ(log log m)3/2+δ � 1,

yielding that m � 1. Thus, m is bounded, as promised.

Assume now that m ≥ 2 is fixed. Then Cm(q) is a polynomial of degree m2 −m
in the variable q. Observe that all roots of Cm(q) are roots of unity of degree at
most 2m. Furthermore, it is easy to see that Cm(1) = Cm and Cm(−1) =

� m
�m/2�

�
.

In particular, Cm(q) has no real roots. Using the fact that

qk − 1 =
�

d|k

Φd(q),

where Φd(X) ∈ Z[X] is the dth cyclotomic polynomial, we get that

Cm(q) =
�

3≤k≤2m

Φk(q)ak ,

with some integer multiplicities ak ≥ 0. Now it is well-known that a prime number p
dividing Φk(q) for some positive integer q has the property that either p | k, or p ≡ 1
(mod k). Take now P = 4

�
3≤r≤2m r, where in the above product r ranges over

primes. By known results on the distribution of primes in arithmetic progressions,
for large n, the interval (n, 2n) contains ≥ n/(2φ(P ) log n) primes p ≡ −1 (mod P ).
In particular, if n > 2m is sufficiently large, there exist at least two such primes.
At least one of them call it p divides Cn, therefore it also divides Cm(q). Thus,

p | Φl(q)
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for some 3 ≤ l ≤ 2m, and p > 2m; therefore, p ≡ 1 (mod l). Since l ≥ 3, it follows
that either 4 | l, or l is divisible by some odd prime. Thus, either p ≡ 1 (mod 4), or
p ≡ 1 (mod r) for some odd prime r ≤ 2m, which is false because p ≡ −1 (mod P ).
Hence, n is also bounded. The proof of Theorem 1 is therefore complete.

3. The Case q = 2

For q = 2, the only solution is (n,m) = (3, 2), which can be proved in the following
way. Observe first that the number Cm(2) is odd. Hence, Cn is odd, and therefore
n = 2k − 1 for some positive integer k. It was shown in Lemma 1 in [7] that in this
case

Cn =
2N

2δ/2π1/2
(1 + ζn) , where

1
2k+2

< ζn <
1

2k+1
,

where N := n− �3k/2� and δ ∈ {0, 1} is such that k ≡ δ (mod 2). In particular, if
k ≥ 10, then the first four binary significant digits of Cn are the same as the first
four binary significant digits either of

1√
π

= 0.1001000001 . . . , or of
1√
2π

= 0.01100110001 . . . ,

respectively, according to whether k is even or odd. Hence, the first four significant
binary digits of Cn are either 1001 or 1100. On the other hand, let us make estimate
(5) explicit. Suppose that m ≥ 10. Then using the fact that 1+x < ex < 1+x+x2

and 1 + x > e2x for x ∈ (−1/2, 0), we have

�

m+2≤k≤m

�
1− 1

2k

� �

m+1≤j

�
1− 1

2j

�
< exp



−
�

m+2≤k≤2m

1
2j
−

�

m+1≤j

1
2j





= exp
�
− 1

2m
− 1

2m+1
+

1
22m

�

< 1− 1
2m

− 1
2m+1

+
1

22m
+

9
22m+2

< 1− 1
2m

,

while
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�

m+2≤k≤m

�
1− 1

2k

� �

m+1≤j

�
1− 1

2j

�
> exp



−2
�

m+2≤k≤2m

1
2j
− 2

�

m+1≤j

1
2j





> exp
�
− 1

2m−1
− 1

2m
+

1
22m−1

�

> 1− 1
2m−1

− 1
2m

> 1− 1
2m−2

.

Thus,

Cm(2) = 2Mη(2)(1− ζm), where
1

2m
< ζm <

1
2m−2

,

for m ≥ 10. Now since the binary expansion of η(2) is

1.0101001000000000110 . . .

it follows that for m ≥ 10 the first four binary significant digits of Cm(2) are 1010.
Thus, we have just showed that if Cn = Cm(2), then n = 2k−1 with min{m,k} < 10.
An immediate calculation reveals no other solutions to Cn = Cm(2).

4. Remarks

It would be interesting to find all the solutions of the Diophantine equation (3) or at
least an effective upper bound for max{m,n, q} when these three positive integers
are such that equation (3) holds. A close analysis of our arguments shows that in
order to do so we need effective versions of the result of Fouvry from [4] regarding
a lower bound of the same order of magnitude as π(x) on the cardinality of the
set P(x) appearing in (8), as well as an effective version of the result of Ford and
Shparlinski from [2] concerning an upper bound for the count of primes p ≤ x with
p − 1 having a divisor in [y, z]. While the result from [2] is effective, the proof of
the result of Fouvry from [4] uses the Bombieri–Vinogradov theorem and as such
is ineffective. However, our argument goes through provided that for some α > 0
there exists β > 0 and xα such that if we put

Pα(x) := {x < p ≤ 2x : P (p− 1) > x1/2+α},

then the inequality

#Pα(x) > βπ(x) holds for all x > xα.
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In the recent preprint [3], Fouvry gives an effective version of the Bombieri-Vinogradov
theorem and as an application he shows that the above inequality holds with
α = 1/10 and some effectively computable constants β and xα. An effective variant
of the Bombieri-Vinogradov theorem also appears in the recent preprint [5]. Hence,
all solutions of equation (3) are effectively computable. In order to write down a
bound on the largest solution however, one will need to compute the appropriate
effective constants from the corresponding results from [2] and [3] which might not
be an easy task. Perhaps an easier research problem is to find the complete list of
solutions to the equation (3) under the ERH.
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