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Abstract

Let Ω be the set of odd positive integers and let S : Ω→ Ω be the Syracuse function.

It is proved that, for every permutation σ of (1, 2, 3), the set of triples of the

form (m,S(m), S2(m)) with permutation pattern σ has positive density, and these

densities are computed. However, there exist permutations τ of (1, 2, 3, 4) such that

no quadruple (m,S(m), S2(m), S3(m)) has permutation pattern τ . This implies the

nonexistence of certain permutation patterns of n-tuples (m,S(m), . . . , Sn−1(m))

for all n ≥ 4.

1. Permutation Patterns

Let Ω be the set of odd positive integers. The Syracuse function is the arithmetic

function S : Ω→ Ω defined by

S(m) =
3m+ 1

2e

where e is the largest integer such that 2e divides 3m + 1. Equivalently, S(m) is

the odd part, that is, the largest odd divisor, of the even integer 3m+ 1. Note that

S(m) = 1 if and only if m =
∑k
i=0 4i = (4k+1 − 1)/3 for some nonnegative integer

k. The notorious Collatz conjecture asserts that for every positive integer m there

exists an integer r such that Sr(m) = 1 (Lagarias [3], Tao [9], Wikipedia [11]). By

supercomputer calculation, Barina [2] has verified the conjecture for all m < 268.

An arithmetic function is any function whose domain is a nonempty subset Ω of

the set positive integers. Let S : Ω→ Ω be an arithmetic function and, for j ∈ N,

let Sj : Ω → Ω be the jth iterate of S. Let V = (vi)
n
i=1 be a finite sequence of

positive integers. We say that an integer m in Ω has increasing-decreasing pattern

V with respect to S if

m < S(m) < S2(m) < · · · < Sv1(m)
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Sv1(m) > Sv1+1(m) > · · · > Sv1+v2(m)

Sv1+v2(m) < Sv1+v2+1(m) < · · · < Sv1+v2+v3(m)

and, in general, if i is odd, then

Sv1+···+vi−1(m) < Sv1+···+vi−1+1(m) < · · · < Sv1+···+vi−1+vi(m) (1)

and if i is even, then

Sv1+···+vi−1(m) > Sv1+···+vi−1+1(m) > · · · > Sv1+···+vi−1+vi(m). (2)

The arithmetic function S is wildly increasing-decreasing if, for every finite sequence

V of positive integers, there exists an integer m ∈ Ω such that m has increasing-

decreasing pattern V with respect to S.

Nathanson [4] proved that the Syracuse function is wildly increasing-decreasing.

In this paper we consider more subtle variations in successive iterates of the Syracuse

function.

Let Σn be the group of permutations of {1, 2, 3, . . . , n}. Let X = (x1, x2, . . . , xn)

be an n-tuple of distinct real numbers. We rearrange the coordinates of X to obtain

an n-tuple (y1, y2, . . . , yn) such that

y1 < y2 < · · · < yn.

There is a unique permutation σ ∈ Σn such that

(x1, x2, . . . , xn) = (yσ(1), yσ(2), . . . , yσ(n)).

We call σ the permutation pattern of the n-tuple X and denote it by (σ(1), σ(2), . . . ,

σ(n)). In standard form, this is the permutation
(

1 2 ··· n
σ(a) σ(2) ··· σ(n)

)
.

For example, if

X = (x1, x2, x3, x4) = (7, 13, 18, 11)

then

7 < 11 < 13 < 18.

We obtain

(y1, y2, y3, y4) = (7, 11, 13, 18).

and

(x1, x2, x3, x4) = (y1, y3, y4, y2).

The permutation pattern of the quadruple (7, 13, 18, 11) is σ = (1, 3, 4, 2).

It is an open problem to determine, for every positive integer n, the possible

permutation patterns of the initial segments
(
m,S(m), S2(m), . . . , Sn−1(m)

)
of the

iterated Syracuse function for integers m ∈ Ω such that Si(m) 6= Sj(m) for 0 ≤
i < j ≤ n− 1. For every permutation σ ∈ Σn, let Γσ(M) count the number of odd
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positive integers m ≤M such that the n-tuple
(
m,S(m), S2(m), . . . , Sn−1(m)

)
has

distinct coordinates and has permutation pattern σ. The permutation density of

σ ∈ Σn is

dn(σ) = lim
M→∞

Γσ(M)

M/2

(if the limit exists).

In this paper we prove that every permutation σ ∈ Σ3 occurs with positive

density. We also prove that there are permutations τ ∈ Σ4 such that τ not only has

zero permutation density, but there exists no positive integer m with permutation

pattern τ . If no n-tuple
(
m,S(m), S2(m), . . . , Sn−1(m)

)
has permutation pattern

(a1, . . . , an) ∈ Σn, then no (n+1)-tuple
(
m,S(m), S2(m), . . . , Sn−1(m), Sn(m)

)
has

permutation pattern (a1, . . . , an, n+ 1) ∈ Σn+1. It follows that, for all n ≥ 4, there

exist permutations τ in Σn such that no n-tuple
(
m,S(m), S2(m), . . . , Sn−1(m)

)
has permutation pattern τ .

Theorem 1. The following table gives the density of permutation patterns of triples(
m,S(m), S2(m)

)
.

permutation pattern σ ∈ Σ3 permutation density d3(σ)
(1, 2, 3) 1/4
(1, 3, 2) 1/8
(2, 1, 3) 1/8
(2, 3, 1) 1/8
(3, 1, 2) 1/8
(3, 2, 1) 1/4

The proof of this result will follow immediately from Theorems 3 and 4 below.

Note: In the study of the Collatz conjecture, instead of the Syracuse function,

investigators often use the Collatz functions

C(m) =

{
3m+ 1 if m is odd
m
2 if m is even

and

C1(m) =

{
3m+1

2 if m is odd
m
2 if m is even.

The equivalent Collatz conjectures state that for every odd integer m there exist

positive integers n and n1 such that Cn(m) = 1 and Cn1
1 (m) = 1. Simons and de

Weger [8] and Simons [5, 6, 7] have studied a different kind of increasing-decreasing

behavior for the Collatz function. Albert, Gudmundsson, and Ulfarsson [1] consid-

ered permutations generated by the iterated function C(m).
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2. Permutation Patterns for Pairs

We begin with a simple but important calculation of permutation densities for pairs.

Theorem 2. Let m ∈ Ω. If m ≡ 3 (mod 4), then (m,S(m)) has permutation

pattern (1, 2). If m ≡ 1 (mod 4) and m > 1, then (m,S(m)) has permutation

pattern (2, 1).

congruence class of m permutation pattern σ ∈ Σ2 permutation density d3(σ)
3 (mod 4) (1, 2) 1/2
1 (mod 4) (2, 1) 1/2

Proof. If m = 3 + 4x for some nonnegative integer x, then 3m+ 1 = 10 + 12x and

S(m) =
10 + 12x

2
= 5 + 6x > 3 + 4x = m.

Thus, (m,S(m)) has permutation pattern (1, 2).

If m = 1 + 4x for some positive integer x, then 3m+ 1 = 4 + 12x and there is an

integer e ≥ 2 such that

S(m) =
4 + 12x

2e
=

1 + 3x

2e−2
≤ 1 + 3x < 1 + 4x = m

and (m,S(m)) has permutation pattern (2, 1). This completes the proof.

Corollary 1. Let A be the set of odd positive integers m for which the permutation

pattern of the triple (m,S(m), S2(m)) is

(1, 2, 3), (1, 3, 2), or (2, 3, 1).

Let B be the set of odd positive integers m for which the permutation pattern of the

triple (m,S(m), S2(m)) is

(2, 1, 3), (3, 1, 2), or (3, 2, 1).

The set A has density 1/2 and the set B has density 1/2.

Proof. The pair (m,S(m)) has permutation pattern (1, 2) if and only if the triple

(m,S(m), S2(m)) has permutation pattern (1, 2, 3), (1, 3, 2), or (2, 3, 1). Simi-

larly, the pair (m,S(m)) has permutation pattern (2, 1) if and only if the triple

(m,S(m), S2(m)) has permutation pattern (2, 1, 3), (3, 1, 2), or (3, 2, 1). This com-

pletes the proof.
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3. Permutation Patterns for Triples for m 6≡ 5 (mod 8)

The calculation of permutation densities for triples
(
m,S(m), S2(m)

)
is divided into

two cases. In the first case we consider odd positive integers m 6≡ 5 (mod 8) and in

the second case we consider odd positive integers m ≡ 5 (mod 8).

Theorem 3. Every odd positive integer m such that m 6≡ 5 (mod 8) belongs to

exactly one of the five congruence classes in the table below. Each congruence class

uniquely determines the permutation pattern of the triple (m,S(m), S2(m)) for all

integers m > 1 in the congruence class.

congruence class of m permutation pattern σ ∈ Σ3 permutation density d3(σ)
7 (mod 8) (1, 2, 3) 1/4
9 (mod 16) (2, 1, 3) 1/8
11 (mod 16) (1, 3, 2) 1/8
3 (mod 16) (2, 3, 1) 1/8
1 (mod 16) (3, 2, 1) 1/8

Proof. The following diagram shows the five congruence classes (in black boxes) that

partition the integers m 6≡ 5 (mod 8) and the “missing” congruence class 5 (mod 8)

(in the red box).

1 (mod 2)

1 (mod 4) 3 (mod 4)

5 (mod 8) 1 (mod 8) 3 (mod 8) 7 (mod 8)

1 (mod 16) 9 (mod 16) 3 (mod 16) 11 (mod 16)
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If m ≡ 7 (mod 8), then for some nonnegative integer x we have

m = 7 + 8x

S(m) =
22 + 24x

2
= 11 + 12x

S2(m) =
34 + 36x

2
= 17 + 18x

and
7 + 8x < 11 + 12x < 17 + 18x.

Therefore, (m,S(m), S2(m)) has permutation pattern (1, 2, 3).

If m ≡ 9 (mod 16), then for some nonnegative integer x we have

m = 9 + 16x

S(m) =
28 + 48x

4
= 7 + 12x

S2(m) =
22 + 36x

2
= 11 + 18x

and
7 + 12x < 9 + 16x < 11 + 18x.

Therefore, (m,S(m), S2(m)) has permutation pattern (2, 1, 3).

If m ≡ 11 (mod 16), then for some nonnegative integer x we have

m = 11 + 16x

S(m) =
34 + 48x

2
= 17 + 24x

S2(m) =
52 + 72x

4
= 13 + 18x

and
11 + 16x < 13 + 18x < 17 + 24x.

Therefore, (m,S(m), S2(m)) has permutation pattern (1, 3, 2).

If m ≡ 3 (mod 16), then for some positive integer x and nonnegative integer e
we have

m = 3 + 16x

S(m) =
10 + 48x

2
= 5 + 24x

S2(m) =
16 + 72x

8
=

2 + 9x

2e
.

and
2 + 9x

2e
≤ 2 + 9x < 3 + 16x < 5 + 24x.
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Therefore, (m,S(m), S2(m)) has permutation pattern (2, 3, 1).

If m > 1 and m ≡ 1 (mod 16), then for some positive integer x and nonnegative
integer e we have

m = 1 + 16x

S(m) =
4 + 48x

4
= 1 + 12x

S2(m) =
4 + 36x

4
=

1 + 9x

2e
.

and
1 + 9x

2e
≤ 1 + 9x < 1 + 12x < 1 + 16x.

Therefore, (m,S(m), S2(m)) has permutation pattern (3, 2, 1). This completes the
proof.

4. Permutation Patterns for Triples for m ≡ 5 (mod 8)

We shall prove that half of the odd positive integers congruent to 5 (mod 8) have the

3-term permutation pattern (3, 2, 1) and half have the 3-term permutation pattern

(3, 1, 2).

In the following proofs, e denotes a nonnegative integer.

Lemma 1. Let k ≥ 1. If m is a positive integer and

m ≡
k∑
i=0

4i + 2 · 4k (mod 2 · 4k+1)

then m ≡ 5 (mod 8) and the permutation pattern of (m,S(m), S2(m)) is (3, 2, 1).

Proof. For some nonnegative integer x we have

m =
4k+1 − 1

3
+ 2 · 4k + 2 · 4k+1x ≥ 13 + 32x

and

3m+ 1 = 4k+1 + 3 · 2 · 4k + 3 · 2 · 4k+1x.

It follows that

S(m) =
3m+ 1

2 · 4k
= 5 + 12x < 13 + 32x ≤ m.

We have

3S(m) + 1 = 16 + 36x = 4(4 + 9x)

and so

S2(m) =
4 + 9x

2e
≤ 4 + 9x < 5 + 12x = S(m).
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Therefore,

S2(m) < S(m) < m

and the permutation pattern of (m,S(m), S2(m)) is (3, 2, 1). This completes the

proof.

Lemma 2. Let k ≥ 1. If m is a positive integer and

m ≡
k∑
i=0

4i (mod 4k+2)

then m ≡ 5 (mod 8) and either m =
∑k
i=0 4i and S(m) = S2(m) = 1 or the

permutation pattern of (m,S(m), S2(m)) is (3, 2, 1).

Proof. For some nonnegative integer x we have

m =
4k+1 − 1

3
+ 4k+2x ≥ 5 + 64x

and

3m+ 1 = 4k+1 + 3 · 4k+2x.

If x = 0, then 3m+ 1 = 4k+1 and S(m) = S2(m) = 1.

If x ≥ 1, then

S(m) =
3m+ 1

4k+1
= 1 + 12x < 5 + 64x ≤ m

and

S2(m) =
1 + 9x

2e
≤ 1 + 9x < 1 + 12x = S(m).

Therefore,

S2(m) < S(m) < m

and the permutation pattern of (m,S(m), S2(m)) is (3, 2, 1). This completes the

proof.

Lemma 3. Let k ≥ 1. If m is a positive integer and

m ≡
k+1∑
i=0

4i + 2 · 4k (mod 2 · 4k+1)

then m ≡ 5 (mod 8) and the permutation pattern of (m,S(m), S2(m)) is (3, 1, 2).
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Proof. For some nonnegative integer x we have

m =
4k+2 − 1

3
+ 2 · 4k + 2 · 4k+1x

≥ 29 + 32x

and

3m+ 1 = 4k+2 + 3 · 2 · 4k + 3 · 2 · 4k+1x.

Therefore,

S(m) =
3m+ 1

2 · 4k
= 11 + 12x

and

S2(m) = 17 + 18x.

We have

S(m) = 11 + 12x < S2(m) = 17 + 18x < 29 + 32x ≤ m

and the permutation pattern of (m,S(m), S2(m)) is (3, 1, 2). This completes the

proof.

Lemma 4. Let k ≥ 1. If m is a positive integer and

m ≡
k+1∑
i=0

4i + 4k+1 (mod 4k+2)

then m ≡ 5 (mod 8) and the permutation pattern of (m,S(m), S2(m)) is (3, 1, 2).

Proof. For some nonnegative integer x we have

m =
4k+2 − 1

3
+ 4k+1 + 4k+2x

≥ 37 + 64x

and

3m+ 1 = 4k+2 + 3 · 4k+1 + 3 · 4k+2x

It follows that

S(m) =
3m+ 1

4k+1
= 7 + 12x

and

S2(m) = 11 + 18x.

Therefore,

S(m) = 7 + 12 < S2(m) = 11 + 18x < 37 + 64x ≤ m

and the permutation pattern of (m,S(m), S2(m)) is (3, 1, 2). This completes the

proof.
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Notation. Let F (M) be a positive function of M . We denote by o(F (M)) a

function G(M) such that limM→∞
G(M)
F (M) = 0. Thus, o(1) denotes a function G(M)

such that limM→∞G(M) = 0. Note that −o(1) = o(1) and o(1) + o(1) = o(1).

Also, o(X(M)) = X(M)o(1).

The counting function of a set A of positive integers is

A(M) =
∑
a∈A
a≤M

1.

A subset A of a set X of positive integers has density α with respect to X if the

limit

lim
M→∞

A(M)

X(M)

exists and equals α. Equivalently, A has density α with respect to X, denoted

dX(A) = α, if

A(M) = αX(M) + o(X(M)).

If dX(A) = 0, then A(M) = o(X(M)).

Lemma 5. Let X be a set of positive integers, let W be a subset of X with density

dX(W ) = ω > 0, and let

W = R0 ∪R1 ∪ · · · ∪Rt
be a partition of W . Let α1, . . . , αt be positive real numbers such that

∑t
i=1 αi = ω.

If dX(R0) = 0 and if, for all ε with

0 < ε < min(α1, . . . , αt)

there is a subset Ri,ε of Ri such that dX(Ri,ε) = αi − ε, then dX(Rj) = αj for all

j ∈ {1, . . . , t}.

Proof. Let M ≥ 1. Because the sets R0, R1, . . . , Rt partition the set W , we have

the counting function equation

W (M) = R0(M) +R1(M) + · · ·+Rt(M).

The density condition dX(R0) = 0 implies

R0(M) = o(X(M)).

Let 0 < ε < min(α1, . . . , αt). For all i ∈ {1, . . . , t}, the subset condition Ri,ε ⊆ Ri
implies

0 ≤ Ri,ε(M) ≤ Ri(M).

The density condition

dX(Ri,ε) = lim
M→∞

Ri,ε(M)

X(M)
= αi − ε
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implies

Ri,ε(M) = (αi − ε+ o(1))X(M).

Also, dX(W ) = ω > 0 implies

W (M) = (ω + o(1))X(M).

For all j ∈ {1, . . . , t}, we have

(αj − ε+ o(1))X(M) = Rj,ε(M)

≤ Rj(M)

= W (M)−
t∑
i=0
i 6=j

Ri(M)

≤W (M)−R0(M)−
t∑
i=1
i 6=j

Ri,ε(M)

= (ω + o(1))X(M)− o(1)X(M)−
t∑
i=1
i 6=j

((αi − ε+ o(1))X(M))

= ωX(M)−
t∑
i=1
i 6=j

(αi − ε)X(M) + o(1)X(M)

= X(M)

ω − t∑
i=1
i 6=j

αi + (t− 1)ε+ o(1)


= X(M) (αj + (t− 1)ε+ o(1)) .

Therefore,

αj − ε+ o(1) ≤ Rj(M)

X(M)
≤ αj + (t− 1)ε+ o(1)

for all ε > 0 and so

αj + o(1) ≤ Rj(M)

X(M)
≤ αj + o(1).

Thus,

dX(Rj) = lim
M→∞

Rj(X(M))

X(M)
= αj

for all j ∈ {1, . . . , t}. This completes the proof.

Theorem 4. Let m be a positive integer such that m ≡ 5 (mod 8). If m =
∑k
i=0 4i

for some k ≥ 1, then
(
m,S(m), S2(m)

)
= (m, 1, 1). If m 6=

∑k
i=0 4i for some k ≥ 1,

then the triple
(
m,S(m), S2(m)

)
has permutation pattern (3, 2, 1) or (3, 1, 2). In the

congruence class m ≡ 5 (mod 8), the permutation densities are as follows:
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permutation pattern σ ∈ Σ3 permutation density d3(σ)
(3, 2, 1) 1/8
(3, 1, 2) 1/8

Proof. For every positive integer k, let

rk =

k∑
i=0

4i =
4k+1 − 1

3

and let

R0 = {rk : k = 1, 2, 3 . . .} = {5, 21, 85, 341, 1365, . . .}.

The set R0 has density zero. We have S(m) = 1 if and only if m = 1 or m ∈ R0.

If m ∈ R0, then m ≡ 5 (mod 8).

Let

R1 =
{
m ≡ 5 (mod 8) :

(
m,S(m), S2(m)

)
has permutation pattern (3, 1, 2)

}
and

R2 =
{
m ≡ 5 (mod 8) :

(
m,S(m), S2(m)

)
has permutation pattern (3, 2, 1)

}
.

The sets R0,R1, and R2 are pairwise disjoint.

Let

5 (mod 8) \
(
R0 ∪ rk+1 (mod 2 · 4k+1)

)
(5 (mod 8) \ R0) \

(
rk+1 (mod 2 · 4k+1)

)
denote the set of positive integers m /∈ R0 such that m ≡ 5 (mod 8) but m 6≡
rk+1 (mod 2 · 4k+1). We shall prove by induction on k that this set is partitioned

into two sets, one with permutation pattern (3, 2, 1) and the other with permutation

pattern (3, 1, 2), and that each of these sets has permutation density

1

8

(
1− 1

4k

)
.

We begin with the cases k = 1 and k = 2.

Here is a picture of a partition of the congruence class 5 (mod 8) into disjoint

unions of congruence classes:
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5 (mod 8) (3, 2, 1) (3, 1, 2)

5 (mod 16) 13 (mod 16)

21 (mod 32) 5 (mod 32) 13 (mod 32) 29 (mod 32)

21 (mod 64) 53 (mod 64) 5 (mod 64) 37 (mod 64)

85 (mod 128) 21 (mod 128) 53 (mod 128) 117 (mod 128)

21 (mod 256) 149 (mod 256)

The congruence class 5 (mod 8) = r1 (mod 8) is the disjoint union of the following
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five congruence classes (in the blue boxes):

13 (mod 32)

5 (mod 64)

29 (mod 32)

37 (mod 64)

21 (mod 32) = r2 (mod 32).

Applying Lemmas 1 and 2 with k = 1, we see that every positive integer (ex-
cept integers m ∈ R0) in the congruence classes 13 (mod 32) and 5 (mod 64) has
permutation pattern (3, 2, 1). Applying Lemmas 3 and 4 with k = 1, we see that
every positive integer in the congruence classes 29 (mod 32) and 37 (mod 64) has
permutation pattern (3, 1, 2). Thus, the set of positive integers m /∈ R0 in

5 (mod 8) \ 21 (mod 32) = 5 (mod 8) \ r2 (mod 2 · 42)

is partitioned into two sets, one with permutation pattern (3, 2, 1) and the other
with permutation pattern (3, 1, 2). Each of these sets has density

5∑
i=4

1

2i
=

1

8

(
1− 1

4

)
.

The congruence class 21 mod 32 = r2 (mod 32) is the disjoint union of the fol-
lowing five congruence classes (in the green boxes):

53 (mod 128)

21 (mod 256)

117 (mod 128)

149 (mod 256)

85 (mod 128) = r3 (mod 128).

Applying Lemmas 1 and 2 with k = 2, we see that every positive integer m /∈ R0

in the congruence classes 53 (mod 128) and 21 (mod 256) has permutation pattern
(3, 2, 1). Applying Lemmas 3 and 4 with k = 2, we see that every positive integer in
the congruence classes 117 (mod 128) and 149 (mod 256) has permutation pattern
(3, 1, 2). Thus, the set of positive integers m /∈ R0 in

21 (mod 32) \ 85 (mod 128) = r2 (mod 2 · 42) \ r3 (mod 2 · 43)

is partitioned into two sets, one with permutation pattern (3, 2, 1) and the other
with permutation pattern (3, 1, 2). Each of these sets has density

7∑
i=6

1

2i
=

1

8

(
1

4
− 1

42

)
.
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It follows that the set of positive integers m /∈ R0 in

5 (mod 8) \ 85 (mod 128) = 5 (mod 8) \ r3 (mod 2 · 43)

is partitioned into two sets, one with permutation pattern (3, 2, 1) and the other
with permutation pattern (3, 1, 2). Each of these sets has density

1

8

(
1− 1

42

)
.

Let k ≥ 3 and assume that the set of positive integers m /∈ R0 in

5 (mod 8) \ rk (mod 2 · 4k)

is partitioned into two sets, one with permutation pattern (3, 2, 1) and the other
with permutation pattern (3, 1, 2), and that each of these sets has density

1

8

(
1− 1

4k−1

)
.

The following diagram displays the partition of the “red” congruence class rk (mod 2 · 4k)
into three “blue” congruence classes modulo 2 · 4k+1 and two “blue” congruence
classes modulo 4k+2.

k∑
i=0

4
i
(mod 2 · 4

k
)

∑k
i=0 4i + 2 · 4k (mod 4k+1)

∑k
i=0 4i (mod 4k+1)

k∑
i=0

4
i
+ 2 · 4

k
(mod 2 · 4

k+1
)

k+1∑
i=0

4
i
+ 2 · 4

k
(mod 2 · 4

k+1
)

k+1∑
i=0

4
i
(mod 2 · 4

k+1
)

∑k
i=0 4i (mod 2 · 4k+1)

k∑
i=0

4
i
(mod 4

k+2
)

k+1∑
i=0

4
i
+ 4

k+1
(mod 4

k+2
)
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The congruence class rk (mod 2 · 4k) is the disjoint union of the following five
congruence classes:

k∑
i=0

4i + 2 · 4k (mod 2 · 4k+1)

k∑
i=0

4i (mod 4k+2)

k+1∑
i=0

4i + 2 · 4k (mod 2 · 4k+1)

k+1∑
i=0

4i + 4k+1 (mod 4k+2)

k+1∑
i=0

4i (mod 2 · 4k+1).

Applying Lemmas 1 and 2, we see that every positive integer in the congruence
classes

∑k
i=0 4i+2 ·4k (mod 2 · 4k+1) and

∑k
i=0 4i (mod 4k+2) has permutation pat-

tern (3, 2, 1). Applying Lemmas 3 and 4, we see that every positive integer in the

congruence classes
∑k+1
i=0 4i + 2 · 4k (mod 2 · 4k+1) and

∑k+1
i=0 4i + 4k+1 (mod 4k+2)

has permutation pattern (3, 1, 2). Thus, the positive integers in the set

rk (mod 2 · 4k) \ rk+1 (mod 2 · 4k+1)

are partitioned into two sets, one with permutation pattern (3, 2, 1) and the other
with permutation pattern (3, 1, 2). Each of these sets has density

1

4k+1
+

2

4k+2
=

1

8

(
1

4k−1
− 1

4k

)
.

Thus, the positive integers in

5 (mod 8) \ rk+1 (mod 2 · 4k+1)

=
(
5 (mod 8) \ rk (mod 2 · 4k)

)⋃(
rk (mod 2 · 4k) \ rk+1 (mod 2 · 4k+1)

)
are partitioned into two sets, one with permutation pattern (3, 2, 1) and the other
with permutation pattern (3, 1, 2). Each of these sets has density

1

8

(
1− 1

4k−1

)
+

1

8

(
1

4k−1
− 1

4k

)
=

1

8

(
1− 1

4k

)
.

This completes the induction.
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For every ε > 0 there is an integer k such that 1/(8 · 4k) < ε and so both sets
R1 and R2 contain subsets of density greater than 1/8− ε. The set R0 has density
0 and the congruence class 5 (mod 8) has density 1/4 with respect to Ω. Applying
Lemma 5 with X = Ω, W = {m > 1 : m ≡ 5 (mod 8)}, t = 2, and α1 = α2 = 1/8
to the partition 5 (mod 8) = R0 ∪R1 ∪R2, we see that R1 has density 1/8 and R2

has density 1/8. This completes the proof.

5. Some Impossible Permutation Patterns for Quadruples

By Theorem 1, every triple permutation pattern is the permutation pattern of

triples
(
m,S(m), S2(m)

)
of the iterated Syracuse function for a set of integers m

of positive density. The story for quadruple permutation patterns is different. In

this section we prove that there are quadruple permutation patterns that never oc-

cur as permutation patterns of quadruples
(
m,S(m), S2(m), S3(m)

)
of the iterated

Syracuse function.

Theorem 5. Consider quadruples(
m,S(m), S2(m), S3(m)

)
such that Si(m) 6= Sj(m) for i 6= j and the triple

(
m,S(m), S2(m)

)
has permutation

pattern (1, 2, 3), that is,

m < S(m) < S2(m).

For these quadruples there are four possible quadruple permutation patterns:

(1, 2, 3, 4), (1, 2, 4, 3), (2, 3, 4, 1), (1, 3, 4, 2).

The density of each of these permutation patterns is as follows:

permutation pattern σ ∈ Σ4 permutation density d4(σ)
(1, 2, 3, 4) 1/8
(1, 2, 4, 3) 1/16
(2, 3, 4, 1) 1/16
(1, 3, 4, 2) 0

Moreover, the permutation pattern (1, 3, 4, 2) never occurs.

Note that 1/4 = 1/8 + 1/16 + 1/16 is the Syracuse function permutation pattern

density of the triple (1, 2, 3).

Proof. By Theorems 3 and 4, we have m < S(m) < S2(m) if and only if

m ≡ 7 (mod 8).
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Then m = 7 + 8x for some nonnegative integer x and

m = 7 + 8x < S(m) = 11 + 12x < S2(m) = 17 + 18x.

It follows that

S3(m) =
26 + 27x

2e

for some nonnegative integer e.

The congruence class 7 (mod 8) is the disjoint union of the congruence classes

15 (mod 16), 7 (mod 32), and 23 (mod 32).

7 (mod 8)

15 (mod 16) 7 (mod 16)

7 (mod 32) 23 (mod 32)

If m ≡ 15 (mod 16), then the integers x and 26 + 27x are odd and so e = 0. We
have

m < S(m) < S2(m) = 17 + 18x < 26 + 27x = S3(x)

and so the quadruple (m,S(m), S2(m), S3(m)) has permutation pattern (1, 2, 3, 4).

If m ≡ 7 (mod 32), then x = 4y and e = 1. We obtain

S3(m) =
26 + 27x

2
= 13 + 54y = 13 +

(
27

2

)
x.

The inequality

7 + 8x < 11 + 12x < 13 +

(
27

2

)
x < 17 + 18x

implies
m < S(m) < S3(m) < S2(m).

The quadruple (m,S(m), S2(m), S3(m)) has permutation pattern (1, 2, 4, 3).
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If m ≡ 23 (mod 32), then x = 2 + 4y and e ≥ 2.

S3(m) =
26 + 27x

2e
=

80 + 27 · 4y
2e

=
20 + 27y

2e−2

≤ 20 + 27y = 20 + 27

(
x− 2

4

)
=

13

2
+

(
27

4

)
x < 7 + 8x = m.

The quadruple (m,S(m), S2(m), S3(m)) has permutation pattern (2, 3, 4, 1).

We see that the permutation pattern (1, 3, 4, 2) never occurs, and that the per-
mutation patterns (1, 2, 3, 4), (1, 2, 4, 3), and (2, 3, 4, 1) have permutation densities
1/8, 1/16, and 1/16, respectively. This completes the proof.

Theorem 6. Consider quadruples(
m,S(m), S2(m), S3(m)

)
such that Si(m) 6= Sj(m) for i 6= j and the triple

(
m,S(m), S2(m)

)
has permutation

pattern (1, 3, 2), that is,

m < S2(m) < S(m).

For these quadruples there are four possible quadruple permutation patterns:

(1, 3, 2, 4), (2, 4, 3, 1), (1, 4, 2, 3), (1, 4, 3, 2).

The density of each of these permutation patterns is as follows:

permutation pattern σ ∈ Σ4 permutation density d4(σ)
(1, 3, 2, 4) 1/16
(2, 4, 3, 1) 1/16
(1, 4, 2, 3) 0
(1, 4, 3, 2) 0

Moreover, the permutation patterns (1, 4, 3, 2) and (1, 4, 2, 3) never occur.

Note that 1/8 = 1/16+1/16 is the Syracuse function permutation pattern density

of the triple (1, 3, 2).

Proof. By Theorems 3 and 4, we have m < S2(m) < S(m) if and only if

m ≡ 11 (mod 16).

Then m = 11 + 16x for some nonnegative integer x and

m = 11 + 16x < S2(m) = 13 + 18x < S(m) = 17 + 24x.
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It follows that

S3(m) =
20 + 27x

2e

for some nonnegative integer e.

The congruence class 11 (mod 16) is the disjoint union of the congruence classes

11 (mod 32) and 27 (mod 32).

11 (mod 16)

11 (mod 32) 27 (mod 32)

If m ≡ 27 (mod 32), then x and 20 + 27x are odd and so e = 0. We have

S(m) = 17 + 24x < 20 + 27x = S3(m)

and the quadruple (m,S(m), S2(m), S3(m)) has permutation pattern (1, 3, 2, 4).

If m ≡ 11 (mod 32), then x is even and e ≥ 1. We obtain

S3(m) =
20 + 27x

2e
≤ 10 +

(
27

2

)
x < 11 + 16x = m.

The quadruple (m,S(m), S2(m), S3(m)) has permutation pattern (2, 4, 3, 1).

We see that the permutation patterns (1, 4, 3, 2) and (1, 4, 2, 3) never occur and that
each of the permutation patterns (1, 3, 2, 4) and (2, 4, 3, 1) has density 1/16. This completes
the proof.

Theorem 7. Consider quadruples(
m,S(m), S2(m), S3(m)

)
such that Si(m) 6= Sj(m) for i 6= j and the triple

(
m,S(m), S2(m)

)
has permutation

pattern (2, 1, 3), that is,

S(m) < m < S2(m).

For these quadruples there are four possible quadruple permutation patterns:

(2, 1, 3, 4), (2, 1, 4, 3), (3, 1, 4, 2), (3, 2, 4, 1).

The density of each of these permutation patterns is as follows:

permutation pattern σ ∈ Σ4 permutation density d4(σ)
(2, 1, 3, 4) 1/16
(3, 1, 4, 2) 1/32
(3, 2, 4, 1) 1/32
(2, 1, 4, 3)) 0
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Moreover, the permutation pattern (2, 1, 4, 3) never occurs.

Note that 1/8 = 1/16+1/32+1/32 is the Syracuse function permutation pattern

density of the triple (2, 1, 3).

Proof. By Theorems 3 and 4, we have S(m) < m < S2(m) if and only if

m ≡ 9 (mod 16).

Then m = 9 + 16x for some nonnegative integer x and

S(m) = 7 + 12x < m = 9 + 16x < S2(m) = 11 + 18x.

It follows that

S3(m) =
17 + 27x

2e

for some nonnegative integer e.

The congruence class 9 (mod 16) is the disjoint union of the congruence classes

9 (mod 32), 25 (mod 64), and 57 (mod 64).

9 (mod 16)

9 (mod 32) 25 (mod 32)

25 (mod 64) 57 (mod 64)

If m ≡ 9 (mod 32), then x is even, 17 + 27x is odd, and so e = 0. We have

S2(m) = 11 + 18x < S3(m) = 17 + 27x

and the quadruple (m,S(m), S2(m), S3(m)) has permutation pattern (2, 1, 3, 4).

If m ≡ 57 (mod 64), then x = 3 + 4y and e = 1. We obtain

S3(m) =
17 + 27(3 + 4y)

2
= 49 + 54y

= 49 + 54

(
x− 3

4

)
=

17

2
+

(
27

2

)
x.



INTEGERS: 24A (2024) 22

The inequality

7 + 12x <
17

2
+

(
27

2

)
x < 9 + 16x

implies
S(m) < S3(m) < m < S2(m).

The quadruple (m,S(m), S2(m), S3(m)) has permutation pattern (3, 1, 4, 2).

If m ≡ 25 (mod 64), then x = 1 + 4y and e ≥ 2. We obtain

S3(m) =
17 + 27(1 + 4y)

2e
=

11 + 27y

2e−2

≤ 11 + 27y = 11 + 27

(
x− 1

4

)
=

17

4
+

(
27

4

)
x

< 7 + 12x = S(m).

The quadruple (m,S(m), S2(m), S3(m)) has permutation pattern (3, 2, 4, 1).

We see that the permutation pattern (2, 1, 4, 3) never occurs, and that the per-
mutation patterns (2, 1, 3, 4), (3, 1, 4, 2), and (3, 2, 4, 1) have densities 1/16, 1/32,
and 1/32, respectively. This completes the proof.

6. Dropping Time

An odd integer m > 1 has dropping time D(m) = k if k is the smallest positive

integer such that Sk(m) < m, and dropping time D(m) = ∞ if Sk(m) > m

for all positive integers k. The Collatz conjecture is equivalent to the statement

that D(m) < ∞ for all odd integers m > 1. We have D(m) > k if and only if

Si(m) 6= 1 for all i ∈ {1, 2, . . . , k} and the permutation pattern of the (k + 1)-

tuple
(
m,S(m), S2(m), . . . , Sk(m)

)
is not of the form (1, a2, a3, . . . , ak+1), where

(a2, a3, . . . , ak+1) is any permutation of (2, 3, . . . , k + 1).

Theorem 8. Let Nk(x) count the number of odd integers m ≤ x such that D(m) ≤
k. Then

N1 = lim
x→∞

N1(x)

x/2
=

1

2

N2 = lim
x→∞

N2(x)

x/2
=

5

8

N3 = lim
x→∞

N3(x)

x/2
=

3

4

Proof. Permutation pattern densities give explicit values for Nk(x) for k = 1, 2, and

3. An odd integer m > 1 has dropping time D(m) = 1 if and only if S(m) < m



INTEGERS: 24A (2024) 23

if and only if the pair (m,S(m)) has permutation pattern (2, 1), and so N1 is the

density of the permutation pattern (2, 1). We have N1 = 1/2 by Theorem 2.

The odd integer m > 1 has dropping time D(m) ≤ 2 if and only if the per-

mutation pattern of the triple (m,S(m), S2(m)) is not (1, 2, 3) or (1, 3, 2). By

Theorem 1, the permutation pattern (1, 2, 3) has density 1/4 and the permutation

pattern (1, 3, 2) has density 1/8. Therefore, N2 = 1− 1/4− 1/8 = 5/8.

The odd integer m > 1 has dropping time D(m) ≤ 3 if and only if the quadruple

(m,S(m), S2(m), S3(m)) has permutation pattern not equal to (1, a2, a3, a4), where

(a2, a3, a4) is any of the six permutations of 2, 3, and 4. By Theorems 5 and 6, the

sum of the densities of these six permutation patterns is 1/4 and so N3 = 1−1/4 =

3/4.

The dropping time function is the Syracuse function analogue of the stopping

time function of Riho Terras [10]. It would be of interest to prove (similar to results

of Terras) that the limit

Nk = lim
x→∞

Nk(x)

x/2

exists for all positive integers k and that

lim
k→∞

Nk = 1.
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