PERMUTATION PATTERNS OF THE ITERATED SYRACUSE FUNCTION

Melvyn B. Nathanson
Department of Mathematics, Lehman College (CUNY), Bronx, New York
melvyn.nathanson@lehman. cuny.edu

Received: 8/1/23, Accepted: 11/2/23, Published: 5/27/24

Abstract

Let Ω be the set of odd positive integers and let $S: \Omega \rightarrow \Omega$ be the Syracuse function. It is proved that, for every permutation σ of $(1,2,3)$, the set of triples of the form $\left(m, S(m), S^{2}(m)\right)$ with permutation pattern σ has positive density, and these densities are computed. However, there exist permutations τ of $(1,2,3,4)$ such that no quadruple ($m, S(m), S^{2}(m), S^{3}(m)$) has permutation pattern τ. This implies the nonexistence of certain permutation patterns of n-tuples $\left(m, S(m), \ldots, S^{n-1}(m)\right)$ for all $n \geq 4$.

1. Permutation Patterns

Let Ω be the set of odd positive integers. The Syracuse function is the arithmetic function $S: \Omega \rightarrow \Omega$ defined by

$$
S(m)=\frac{3 m+1}{2^{e}}
$$

where e is the largest integer such that 2^{e} divides $3 m+1$. Equivalently, $S(m)$ is the odd part, that is, the largest odd divisor, of the even integer $3 m+1$. Note that $S(m)=1$ if and only if $m=\sum_{i=0}^{k} 4^{i}=\left(4^{k+1}-1\right) / 3$ for some nonnegative integer k. The notorious Collatz conjecture asserts that for every positive integer m there exists an integer r such that $S^{r}(m)=1$ (Lagarias [3], Tao [9], Wikipedia [11]). By supercomputer calculation, Barina [2] has verified the conjecture for all $m<2^{68}$.

An arithmetic function is any function whose domain is a nonempty subset Ω of the set positive integers. Let $S: \Omega \rightarrow \Omega$ be an arithmetic function and, for $j \in \mathbf{N}$, let $S^{j}: \Omega \rightarrow \Omega$ be the j th iterate of S. Let $V=\left(v_{i}\right)_{i=1}^{n}$ be a finite sequence of positive integers. We say that an integer m in Ω has increasing-decreasing pattern V with respect to S if

$$
m<S(m)<S^{2}(m)<\cdots<S^{v_{1}}(m)
$$

$$
\begin{gathered}
S^{v_{1}}(m)>S^{v_{1}+1}(m)>\cdots>S^{v_{1}+v_{2}}(m) \\
S^{v_{1}+v_{2}}(m)<S^{v_{1}+v_{2}+1}(m)<\cdots<S^{v_{1}+v_{2}+v_{3}}(m)
\end{gathered}
$$

and, in general, if i is odd, then

$$
\begin{equation*}
S^{v_{1}+\cdots+v_{i-1}}(m)<S^{v_{1}+\cdots+v_{i-1}+1}(m)<\cdots<S^{v_{1}+\cdots+v_{i-1}+v_{i}}(m) \tag{1}
\end{equation*}
$$

and if i is even, then

$$
\begin{equation*}
S^{v_{1}+\cdots+v_{i-1}}(m)>S^{v_{1}+\cdots+v_{i-1}+1}(m)>\cdots>S^{v_{1}+\cdots+v_{i-1}+v_{i}}(m) \tag{2}
\end{equation*}
$$

The arithmetic function S is wildly increasing-decreasing if, for every finite sequence V of positive integers, there exists an integer $m \in \Omega$ such that m has increasingdecreasing pattern V with respect to S.

Nathanson [4] proved that the Syracuse function is wildly increasing-decreasing. In this paper we consider more subtle variations in successive iterates of the Syracuse function.

Let Σ_{n} be the group of permutations of $\{1,2,3, \ldots, n\}$. Let $X=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be an n-tuple of distinct real numbers. We rearrange the coordinates of X to obtain an n-tuple $\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ such that

$$
y_{1}<y_{2}<\cdots<y_{n}
$$

There is a unique permutation $\sigma \in \Sigma_{n}$ such that

$$
\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left(y_{\sigma(1)}, y_{\sigma(2)}, \ldots, y_{\sigma(n)}\right)
$$

We call σ the permutation pattern of the n-tuple X and denote it by $(\sigma(1), \sigma(2), \ldots$, $\sigma(n))$. In standard form, this is the permutation $\left(\begin{array}{cccc}1 & 2 & \cdots & n \\ \sigma(a) & \sigma(2) & \cdots & \sigma(n)\end{array}\right)$.

For example, if

$$
X=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=(7,13,18,11)
$$

then

$$
7<11<13<18
$$

We obtain

$$
\left(y_{1}, y_{2}, y_{3}, y_{4}\right)=(7,11,13,18)
$$

and

$$
\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(y_{1}, y_{3}, y_{4}, y_{2}\right)
$$

The permutation pattern of the quadruple $(7,13,18,11)$ is $\sigma=(1,3,4,2)$.
It is an open problem to determine, for every positive integer n, the possible permutation patterns of the initial segments $\left(m, S(m), S^{2}(m), \ldots, S^{n-1}(m)\right)$ of the iterated Syracuse function for integers $m \in \Omega$ such that $S^{i}(m) \neq S^{j}(m)$ for $0 \leq$ $i<j \leq n-1$. For every permutation $\sigma \in \Sigma_{n}$, let $\Gamma_{\sigma}(M)$ count the number of odd
positive integers $m \leq M$ such that the n-tuple $\left(m, S(m), S^{2}(m), \ldots, S^{n-1}(m)\right)$ has distinct coordinates and has permutation pattern σ. The permutation density of $\sigma \in \Sigma_{n}$ is

$$
d_{n}(\sigma)=\lim _{M \rightarrow \infty} \frac{\Gamma_{\sigma}(M)}{M / 2}
$$

(if the limit exists).
In this paper we prove that every permutation $\sigma \in \Sigma_{3}$ occurs with positive density. We also prove that there are permutations $\tau \in \Sigma_{4}$ such that τ not only has zero permutation density, but there exists no positive integer m with permutation pattern τ. If no n-tuple $\left(m, S(m), S^{2}(m), \ldots, S^{n-1}(m)\right)$ has permutation pattern $\left(a_{1}, \ldots, a_{n}\right) \in \Sigma_{n}$, then no $(n+1)$-tuple $\left(m, S(m), S^{2}(m), \ldots, S^{n-1}(m), S^{n}(m)\right)$ has permutation pattern $\left(a_{1}, \ldots, a_{n}, n+1\right) \in \Sigma_{n+1}$. It follows that, for all $n \geq 4$, there exist permutations τ in Σ_{n} such that no n-tuple $\left(m, S(m), S^{2}(m), \ldots, S^{n-1}(m)\right)$ has permutation pattern τ.

Theorem 1. The following table gives the density of permutation patterns of triples $\left(m, S(m), S^{2}(m)\right)$.

permutation pattern $\sigma \in \Sigma_{3}$	permutation density $d_{3}(\sigma)$
$(1,2,3)$	$1 / 4$
$(1,3,2)$	$1 / 8$
$(2,1,3)$	$1 / 8$
$(2,3,1)$	$1 / 8$
$(3,1,2)$	$1 / 8$
$(3,2,1)$	$1 / 4$

The proof of this result will follow immediately from Theorems 3 and 4 below.
Note: In the study of the Collatz conjecture, instead of the Syracuse function, investigators often use the Collatz functions

$$
C(m)= \begin{cases}3 m+1 & \text { if } m \text { is odd } \\ \frac{m}{2} & \text { if } m \text { is even }\end{cases}
$$

and

$$
C_{1}(m)= \begin{cases}\frac{3 m+1}{2} & \text { if } m \text { is odd } \\ \frac{m}{2} & \text { if } m \text { is even }\end{cases}
$$

The equivalent Collatz conjectures state that for every odd integer m there exist positive integers n and n_{1} such that $C^{n}(m)=1$ and $C_{1}^{n_{1}}(m)=1$. Simons and de Weger [8] and Simons [5, 6, 7] have studied a different kind of increasing-decreasing behavior for the Collatz function. Albert, Gudmundsson, and Ulfarsson [1] considered permutations generated by the iterated function $C(m)$.

2. Permutation Patterns for Pairs

We begin with a simple but important calculation of permutation densities for pairs.
Theorem 2. Let $m \in \Omega$. If $m \equiv 3(\bmod 4)$, then $(m, S(m))$ has permutation pattern $(1,2)$. If $m \equiv 1(\bmod 4)$ and $m>1$, then $(m, S(m))$ has permutation pattern (2,1).

congruence class of m	permutation pattern $\sigma \in \Sigma_{2}$	permutation density $d_{3}(\sigma)$
$3(\bmod 4)$	$(1,2)$	$1 / 2$
$1(\bmod 4)$	$(2,1)$	$1 / 2$

Proof. If $m=3+4 x$ for some nonnegative integer x, then $3 m+1=10+12 x$ and

$$
S(m)=\frac{10+12 x}{2}=5+6 x>3+4 x=m .
$$

Thus, $(m, S(m))$ has permutation pattern (1,2).
If $m=1+4 x$ for some positive integer x, then $3 m+1=4+12 x$ and there is an integer $e \geq 2$ such that

$$
S(m)=\frac{4+12 x}{2^{e}}=\frac{1+3 x}{2^{e-2}} \leq 1+3 x<1+4 x=m
$$

and ($m, S(m)$) has permutation pattern $(2,1)$. This completes the proof.
Corollary 1. Let A be the set of odd positive integers m for which the permutation pattern of the triple ($m, S(m), S^{2}(m)$) is

$$
(1,2,3), \quad(1,3,2), \quad \text { or } \quad(2,3,1) .
$$

Let B be the set of odd positive integers m for which the permutation pattern of the triple ($m, S(m), S^{2}(m)$) is

$$
(2,1,3), \quad(3,1,2), \quad \text { or } \quad(3,2,1) .
$$

The set A has density $1 / 2$ and the set B has density $1 / 2$.
Proof. The pair ($m, S(m)$) has permutation pattern $(1,2)$ if and only if the triple ($m, S(m), S^{2}(m)$) has permutation pattern $(1,2,3),(1,3,2)$, or $(2,3,1)$. Similarly, the pair $(m, S(m)$) has permutation pattern $(2,1)$ if and only if the triple ($m, S(m), S^{2}(m)$) has permutation pattern $(2,1,3),(3,1,2)$, or $(3,2,1)$. This completes the proof.

3. Permutation Patterns for Triples for $m \not \equiv 5(\bmod 8)$

The calculation of permutation densities for triples $\left(m, S(m), S^{2}(m)\right)$ is divided into two cases. In the first case we consider odd positive integers $m \not \equiv 5(\bmod 8)$ and in the second case we consider odd positive integers $m \equiv 5(\bmod 8)$.

Theorem 3. Every odd positive integer m such that $m \not \equiv 5(\bmod 8)$ belongs to exactly one of the five congruence classes in the table below. Each congruence class uniquely determines the permutation pattern of the triple $\left(m, S(m), S^{2}(m)\right)$ for all integers $m>1$ in the congruence class.

congruence class of m	permutation pattern $\sigma \in \Sigma_{3}$	permutation density $d_{3}(\sigma)$
$7(\bmod 8)$	$(1,2,3)$	$1 / 4$
$9(\bmod 16)$	$(2,1,3)$	$1 / 8$
$11(\bmod 16)$	$(1,3,2)$	$1 / 8$
$3(\bmod 16)$	$(2,3,1)$	$1 / 8$
$1(\bmod 16)$	$(3,2,1)$	$1 / 8$

Proof. The following diagram shows the five congruence classes (in black boxes) that partition the integers $m \not \equiv 5(\bmod 8)$ and the "missing" congruence class $5(\bmod 8)$ (in the red box).

If $m \equiv 7(\bmod 8)$, then for some nonnegative integer x we have

$$
\begin{aligned}
m & =7+8 x \\
S(m) & =\frac{22+24 x}{2}=11+12 x \\
S^{2}(m) & =\frac{34+36 x}{2}=17+18 x
\end{aligned}
$$

and

$$
7+8 x<11+12 x<17+18 x
$$

Therefore, $\left(m, S(m), S^{2}(m)\right)$ has permutation pattern $(1,2,3)$.
If $m \equiv 9(\bmod 16)$, then for some nonnegative integer x we have

$$
\begin{aligned}
m & =9+16 x \\
S(m) & =\frac{28+48 x}{4}=7+12 x \\
S^{2}(m) & =\frac{22+36 x}{2}=11+18 x
\end{aligned}
$$

and

$$
7+12 x<9+16 x<11+18 x
$$

Therefore, $\left(m, S(m), S^{2}(m)\right)$ has permutation pattern $(2,1,3)$.
If $m \equiv 11(\bmod 16)$, then for some nonnegative integer x we have

$$
\begin{aligned}
m & =11+16 x \\
S(m) & =\frac{34+48 x}{2}=17+24 x \\
S^{2}(m) & =\frac{52+72 x}{4}=13+18 x
\end{aligned}
$$

and

$$
11+16 x<13+18 x<17+24 x
$$

Therefore, $\left(m, S(m), S^{2}(m)\right)$ has permutation pattern $(1,3,2)$.
If $m \equiv 3(\bmod 16)$, then for some positive integer x and nonnegative integer e we have

$$
\begin{aligned}
m & =3+16 x \\
S(m) & =\frac{10+48 x}{2}=5+24 x \\
S^{2}(m) & =\frac{16+72 x}{8}=\frac{2+9 x}{2^{e}}
\end{aligned}
$$

and

$$
\frac{2+9 x}{2^{e}} \leq 2+9 x<3+16 x<5+24 x
$$

Therefore, $\left(m, S(m), S^{2}(m)\right)$ has permutation pattern $(2,3,1)$.
If $m>1$ and $m \equiv 1(\bmod 16)$, then for some positive integer x and nonnegative integer e we have

$$
\begin{aligned}
m & =1+16 x \\
S(m) & =\frac{4+48 x}{4}=1+12 x \\
S^{2}(m) & =\frac{4+36 x}{4}=\frac{1+9 x}{2^{e}}
\end{aligned}
$$

and

$$
\frac{1+9 x}{2^{e}} \leq 1+9 x<1+12 x<1+16 x
$$

Therefore, $\left(m, S(m), S^{2}(m)\right)$ has permutation pattern $(3,2,1)$. This completes the proof.

4. Permutation Patterns for Triples for $m \equiv 5(\bmod 8)$

We shall prove that half of the odd positive integers congruent to $5(\bmod 8)$ have the 3 -term permutation pattern $(3,2,1)$ and half have the 3 -term permutation pattern $(3,1,2)$.

In the following proofs, e denotes a nonnegative integer.
Lemma 1. Let $k \geq 1$. If m is a positive integer and

$$
m \equiv \sum_{i=0}^{k} 4^{i}+2 \cdot 4^{k}\left(\bmod 2 \cdot 4^{\mathrm{k}+1}\right)
$$

then $m \equiv 5(\bmod 8)$ and the permutation pattern of $\left(m, S(m), S^{2}(m)\right)$ is $(3,2,1)$.
Proof. For some nonnegative integer x we have

$$
m=\frac{4^{k+1}-1}{3}+2 \cdot 4^{k}+2 \cdot 4^{k+1} x \geq 13+32 x
$$

and

$$
3 m+1=4^{k+1}+3 \cdot 2 \cdot 4^{k}+3 \cdot 2 \cdot 4^{k+1} x
$$

It follows that

$$
S(m)=\frac{3 m+1}{2 \cdot 4^{k}}=5+12 x<13+32 x \leq m
$$

We have

$$
3 S(m)+1=16+36 x=4(4+9 x)
$$

and so

$$
S^{2}(m)=\frac{4+9 x}{2^{e}} \leq 4+9 x<5+12 x=S(m)
$$

Therefore,

$$
S^{2}(m)<S(m)<m
$$

and the permutation pattern of $\left(m, S(m), S^{2}(m)\right)$ is $(3,2,1)$. This completes the proof.

Lemma 2. Let $k \geq 1$. If m is a positive integer and

$$
m \equiv \sum_{i=0}^{k} 4^{i}\left(\bmod 4^{\mathrm{k}+2}\right)
$$

then $m \equiv 5(\bmod 8)$ and either $m=\sum_{i=0}^{k} 4^{i}$ and $S(m)=S^{2}(m)=1$ or the permutation pattern of $\left(m, S(m), S^{2}(m)\right)$ is $(3,2,1)$.

Proof. For some nonnegative integer x we have

$$
m=\frac{4^{k+1}-1}{3}+4^{k+2} x \geq 5+64 x
$$

and

$$
3 m+1=4^{k+1}+3 \cdot 4^{k+2} x
$$

If $x=0$, then $3 m+1=4^{k+1}$ and $S(m)=S^{2}(m)=1$.
If $x \geq 1$, then

$$
S(m)=\frac{3 m+1}{4^{k+1}}=1+12 x<5+64 x \leq m
$$

and

$$
S^{2}(m)=\frac{1+9 x}{2^{e}} \leq 1+9 x<1+12 x=S(m)
$$

Therefore,

$$
S^{2}(m)<S(m)<m
$$

and the permutation pattern of $\left(m, S(m), S^{2}(m)\right)$ is $(3,2,1)$. This completes the proof.

Lemma 3. Let $k \geq 1$. If m is a positive integer and

$$
m \equiv \sum_{i=0}^{k+1} 4^{i}+2 \cdot 4^{k}\left(\bmod 2 \cdot 4^{\mathrm{k}+1}\right)
$$

then $m \equiv 5(\bmod 8)$ and the permutation pattern of $\left(m, S(m), S^{2}(m)\right)$ is $(3,1,2)$.

Proof. For some nonnegative integer x we have

$$
\begin{aligned}
m & =\frac{4^{k+2}-1}{3}+2 \cdot 4^{k}+2 \cdot 4^{k+1} x \\
& \geq 29+32 x
\end{aligned}
$$

and

$$
3 m+1=4^{k+2}+3 \cdot 2 \cdot 4^{k}+3 \cdot 2 \cdot 4^{k+1} x
$$

Therefore,

$$
S(m)=\frac{3 m+1}{2 \cdot 4^{k}}=11+12 x
$$

and

$$
S^{2}(m)=17+18 x
$$

We have

$$
S(m)=11+12 x<S^{2}(m)=17+18 x<29+32 x \leq m
$$

and the permutation pattern of $\left(m, S(m), S^{2}(m)\right)$ is $(3,1,2)$. This completes the proof.

Lemma 4. Let $k \geq 1$. If m is a positive integer and

$$
m \equiv \sum_{i=0}^{k+1} 4^{i}+4^{k+1}\left(\bmod 4^{\mathrm{k}+2}\right)
$$

then $m \equiv 5(\bmod 8)$ and the permutation pattern of $\left(m, S(m), S^{2}(m)\right)$ is $(3,1,2)$.
Proof. For some nonnegative integer x we have

$$
\begin{aligned}
m & =\frac{4^{k+2}-1}{3}+4^{k+1}+4^{k+2} x \\
& \geq 37+64 x
\end{aligned}
$$

and

$$
3 m+1=4^{k+2}+3 \cdot 4^{k+1}+3 \cdot 4^{k+2} x
$$

It follows that

$$
S(m)=\frac{3 m+1}{4^{k+1}}=7+12 x
$$

and

$$
S^{2}(m)=11+18 x
$$

Therefore,

$$
S(m)=7+12<S^{2}(m)=11+18 x<37+64 x \leq m
$$

and the permutation pattern of $\left(m, S(m), S^{2}(m)\right)$ is $(3,1,2)$. This completes the proof.

Notation. Let $F(M)$ be a positive function of M. We denote by $o(F(M)$) a function $G(M)$ such that $\lim _{M \rightarrow \infty} \frac{G(M)}{F(M)}=0$. Thus, $o(1)$ denotes a function $G(M)$ such that $\lim _{M \rightarrow \infty} G(M)=0$. Note that $-o(1)=o(1)$ and $o(1)+o(1)=o(1)$. Also, $o(X(M))=X(M) o(1)$.

The counting function of a set A of positive integers is

$$
A(M)=\sum_{\substack{a \in A \\ a \leq M}} 1
$$

A subset A of a set X of positive integers has density α with respect to X if the limit

$$
\lim _{M \rightarrow \infty} \frac{A(M)}{X(M)}
$$

exists and equals α. Equivalently, A has density α with respect to X, denoted $d_{X}(A)=\alpha$, if

$$
A(M)=\alpha X(M)+o(X(M))
$$

If $d_{X}(A)=0$, then $A(M)=o(X(M))$.
Lemma 5. Let X be a set of positive integers, let W be a subset of X with density $d_{X}(W)=\omega>0$, and let

$$
W=R_{0} \cup R_{1} \cup \cdots \cup R_{t}
$$

be a partition of W. Let $\alpha_{1}, \ldots, \alpha_{t}$ be positive real numbers such that $\sum_{i=1}^{t} \alpha_{i}=\omega$. If $d_{X}\left(R_{0}\right)=0$ and if, for all ε with

$$
0<\varepsilon<\min \left(\alpha_{1}, \ldots, \alpha_{t}\right)
$$

there is a subset $R_{i, \varepsilon}$ of R_{i} such that $d_{X}\left(R_{i, \varepsilon}\right)=\alpha_{i}-\varepsilon$, then $d_{X}\left(R_{j}\right)=\alpha_{j}$ for all $j \in\{1, \ldots, t\}$.
Proof. Let $M \geq 1$. Because the sets $R_{0}, R_{1}, \ldots, R_{t}$ partition the set W, we have the counting function equation

$$
W(M)=R_{0}(M)+R_{1}(M)+\cdots+R_{t}(M)
$$

The density condition $d_{X}\left(R_{0}\right)=0$ implies

$$
R_{0}(M)=o(X(M))
$$

Let $0<\varepsilon<\min \left(\alpha_{1}, \ldots, \alpha_{t}\right)$. For all $i \in\{1, \ldots, t\}$, the subset condition $R_{i, \varepsilon} \subseteq R_{i}$ implies

$$
0 \leq R_{i, \varepsilon}(M) \leq R_{i}(M)
$$

The density condition

$$
d_{X}\left(R_{i, \varepsilon}\right)=\lim _{M \rightarrow \infty} \frac{R_{i, \varepsilon}(M)}{X(M)}=\alpha_{i}-\varepsilon
$$

implies

$$
R_{i, \varepsilon}(M)=\left(\alpha_{i}-\varepsilon+o(1)\right) X(M)
$$

Also, $d_{X}(W)=\omega>0$ implies

$$
W(M)=(\omega+o(1)) X(M)
$$

For all $j \in\{1, \ldots, t\}$, we have

$$
\begin{aligned}
\left(\alpha_{j}-\varepsilon+o(1)\right) X(M) & =R_{j, \varepsilon}(M) \\
& \leq R_{j}(M) \\
& =W(M)-\sum_{\substack{i=0 \\
i \neq j}}^{t} R_{i}(M) \\
& \leq W(M)-R_{0}(M)-\sum_{\substack{i=1 \\
i \neq j}}^{t} R_{i, \varepsilon}(M) \\
& =(\omega+o(1)) X(M)-o(1) X(M)-\sum_{\substack{i=1 \\
i \neq j}}^{t}\left(\left(\alpha_{i}-\varepsilon+o(1)\right) X(M)\right) \\
& =\omega X(M)-\sum_{\substack{i=1 \\
i \neq j}}^{t}\left(\alpha_{i}-\varepsilon\right) X(M)+o(1) X(M) \\
& =X(M)\left(\omega-\sum_{\substack{i=1 \\
i \neq j}}^{t} \alpha_{i}+(t-1) \varepsilon+o(1)\right) \\
& =X(M)\left(\alpha_{j}+(t-1) \varepsilon+o(1)\right)
\end{aligned}
$$

Therefore,

$$
\alpha_{j}-\varepsilon+o(1) \leq \frac{R_{j}(M)}{X(M)} \leq \alpha_{j}+(t-1) \varepsilon+o(1)
$$

for all $\varepsilon>0$ and so

$$
\alpha_{j}+o(1) \leq \frac{R_{j}(M)}{X(M)} \leq \alpha_{j}+o(1)
$$

Thus,

$$
d_{X}\left(R_{j}\right)=\lim _{M \rightarrow \infty} \frac{R_{j}(X(M))}{X(M)}=\alpha_{j}
$$

for all $j \in\{1, \ldots, t\}$. This completes the proof.
Theorem 4. Let m be a positive integer such that $m \equiv 5(\bmod 8)$. If $m=\sum_{i=0}^{k} 4^{i}$ for some $k \geq 1$, then $\left(m, S(m), S^{2}(m)\right)=(m, 1,1)$. If $m \neq \sum_{i=0}^{k} 4^{i}$ for some $k \geq 1$, then the triple $\left(m, S(m), S^{2}(m)\right)$ has permutation pattern $(3,2,1)$ or $(3,1,2)$. In the congruence class $m \equiv 5(\bmod 8)$, the permutation densities are as follows:

permutation pattern $\sigma \in \Sigma_{3}$	permutation density $d_{3}(\sigma)$
$(3,2,1)$	$1 / 8$
$(3,1,2)$	$1 / 8$

Proof. For every positive integer k, let

$$
r_{k}=\sum_{i=0}^{k} 4^{i}=\frac{4^{k+1}-1}{3}
$$

and let

$$
\mathcal{R}_{0}=\left\{r_{k}: k=1,2,3 \ldots\right\}=\{5,21,85,341,1365, \ldots\}
$$

The set \mathcal{R}_{0} has density zero. We have $S(m)=1$ if and only if $m=1$ or $m \in \mathcal{R}_{0}$. If $m \in \mathcal{R}_{0}$, then $m \equiv 5(\bmod 8)$.

Let

$$
\mathcal{R}_{1}=\left\{m \equiv 5(\bmod 8):\left(m, S(m), S^{2}(m)\right) \text { has permutation pattern }(3,1,2)\right\}
$$

and
$\mathcal{R}_{2}=\left\{m \equiv 5(\bmod 8):\left(m, S(m), S^{2}(m)\right)\right.$ has permutation pattern $\left.(3,2,1)\right\}$.
The sets $\mathcal{R}_{0}, \mathcal{R}_{1}$, and \mathcal{R}_{2} are pairwise disjoint.
Let

$$
\begin{gathered}
5(\bmod 8) \backslash\left(\mathcal{R}_{0} \cup r_{k+1}\left(\bmod 2 \cdot 4^{\mathrm{k}+1}\right)\right) \\
\left(5(\bmod 8) \backslash \mathcal{R}_{0}\right) \backslash\left(r_{k+1}\left(\bmod 2 \cdot 4^{\mathrm{k}+1}\right)\right)
\end{gathered}
$$

denote the set of positive integers $m \notin \mathcal{R}_{0}$ such that $m \equiv 5(\bmod 8)$ but $m \not \equiv$ $r_{k+1}\left(\bmod 2 \cdot 4^{\mathrm{k}+1}\right)$. We shall prove by induction on k that this set is partitioned into two sets, one with permutation pattern $(3,2,1)$ and the other with permutation pattern $(3,1,2)$, and that each of these sets has permutation density

$$
\frac{1}{8}\left(1-\frac{1}{4^{k}}\right)
$$

We begin with the cases $k=1$ and $k=2$.
Here is a picture of a partition of the congruence class $5(\bmod 8)$ into disjoint unions of congruence classes:

The congruence class $5(\bmod 8)=r_{1}(\bmod 8)$ is the disjoint union of the following
five congruence classes (in the blue boxes):

$$
\begin{aligned}
& 13(\bmod 32) \\
& 5(\bmod 64) \\
& 29(\bmod 32) \\
& 37(\bmod 64) \\
& 21(\bmod 32)=r_{2}(\bmod 32) .
\end{aligned}
$$

Applying Lemmas 1 and 2 with $k=1$, we see that every positive integer (except integers $\left.m \in \mathcal{R}_{0}\right)$ in the congruence classes $13(\bmod 32)$ and $5(\bmod 64)$ has permutation pattern $(3,2,1)$. Applying Lemmas 3 and 4 with $k=1$, we see that every positive integer in the congruence classes $29(\bmod 32)$ and $37(\bmod 64)$ has permutation pattern $(3,1,2)$. Thus, the set of positive integers $m \notin \mathcal{R}_{0}$ in

$$
5(\bmod 8) \backslash 21(\bmod 32)=5(\bmod 8) \backslash r_{2}\left(\bmod 2 \cdot 4^{2}\right)
$$

is partitioned into two sets, one with permutation pattern $(3,2,1)$ and the other with permutation pattern $(3,1,2)$. Each of these sets has density

$$
\sum_{i=4}^{5} \frac{1}{2^{i}}=\frac{1}{8}\left(1-\frac{1}{4}\right)
$$

The congruence class $21 \bmod 32=r_{2}(\bmod 32)$ is the disjoint union of the following five congruence classes (in the green boxes):

$$
\begin{array}{r}
53(\bmod 128) \\
21(\bmod 256) \\
117(\bmod 128) \\
149(\bmod 256) \\
85(\bmod 128)=r_{3}(\bmod 128)
\end{array}
$$

Applying Lemmas 1 and 2 with $k=2$, we see that every positive integer $m \notin \mathcal{R}_{0}$ in the congruence classes $53(\bmod 128)$ and $21(\bmod 256)$ has permutation pattern $(3,2,1)$. Applying Lemmas 3 and 4 with $k=2$, we see that every positive integer in the congruence classes $117(\bmod 128)$ and $149(\bmod 256)$ has permutation pattern $(3,1,2)$. Thus, the set of positive integers $m \notin \mathcal{R}_{0}$ in

$$
21(\bmod 32) \backslash 85(\bmod 128)=r_{2}\left(\bmod 2 \cdot 4^{2}\right) \backslash r_{3}\left(\bmod 2 \cdot 4^{3}\right)
$$

is partitioned into two sets, one with permutation pattern $(3,2,1)$ and the other with permutation pattern $(3,1,2)$. Each of these sets has density

$$
\sum_{i=6}^{7} \frac{1}{2^{i}}=\frac{1}{8}\left(\frac{1}{4}-\frac{1}{4^{2}}\right)
$$

It follows that the set of positive integers $m \notin \mathcal{R}_{0}$ in

$$
5(\bmod 8) \backslash 85(\bmod 128)=5(\bmod 8) \backslash r_{3}\left(\bmod 2 \cdot 4^{3}\right)
$$

is partitioned into two sets, one with permutation pattern $(3,2,1)$ and the other with permutation pattern $(3,1,2)$. Each of these sets has density

$$
\frac{1}{8}\left(1-\frac{1}{4^{2}}\right)
$$

Let $k \geq 3$ and assume that the set of positive integers $m \notin \mathcal{R}_{0}$ in

$$
5(\bmod 8) \backslash r_{k}\left(\bmod 2 \cdot 4^{\mathrm{k}}\right)
$$

is partitioned into two sets, one with permutation pattern $(3,2,1)$ and the other with permutation pattern $(3,1,2)$, and that each of these sets has density

$$
\frac{1}{8}\left(1-\frac{1}{4^{k-1}}\right)
$$

The following diagram displays the partition of the "red" congruence class $r_{k}\left(\bmod 2 \cdot 4^{\mathrm{k}}\right)$ into three "blue" congruence classes modulo $2 \cdot 4^{k+1}$ and two "blue" congruence classes modulo 4^{k+2}.

The congruence class $r_{k}\left(\bmod 2 \cdot 4^{\mathrm{k}}\right)$ is the disjoint union of the following five congruence classes:

$$
\begin{gathered}
\sum_{i=0}^{k} 4^{i}+2 \cdot 4^{k}\left(\bmod 2 \cdot 4^{\mathrm{k}+1}\right) \\
\sum_{i=0}^{k} 4^{i}\left(\bmod 4^{\mathrm{k}+2}\right) \\
\sum_{i=0}^{k+1} 4^{i}+2 \cdot 4^{k}\left(\bmod 2 \cdot 4^{\mathrm{k}+1}\right) \\
\sum_{i=0}^{k+1} 4^{i}+4^{k+1}\left(\bmod 4^{\mathrm{k}+2}\right) \\
\sum_{i=0}^{k+1} 4^{i}\left(\bmod 2 \cdot 4^{\mathrm{k}+1}\right)
\end{gathered}
$$

Applying Lemmas 1 and 2, we see that every positive integer in the congruence classes $\sum_{i=0}^{k} 4^{i}+2 \cdot 4^{k}\left(\bmod 2 \cdot 4^{\mathrm{k}+1}\right)$ and $\sum_{i=0}^{k} 4^{i}\left(\bmod 4^{\mathrm{k}+2}\right)$ has permutation pattern (3, 2, 1). Applying Lemmas 3 and 4, we see that every positive integer in the congruence classes $\sum_{i=0}^{k+1} 4^{i}+2 \cdot 4^{k}\left(\bmod 2 \cdot 4^{\mathrm{k}+1}\right)$ and $\sum_{i=0}^{k+1} 4^{i}+4^{k+1}\left(\bmod 4^{\mathrm{k}+2}\right)$ has permutation pattern $(3,1,2)$. Thus, the positive integers in the set

$$
r_{k}\left(\bmod 2 \cdot 4^{\mathrm{k}}\right) \backslash r_{k+1}\left(\bmod 2 \cdot 4^{\mathrm{k}+1}\right)
$$

are partitioned into two sets, one with permutation pattern $(3,2,1)$ and the other with permutation pattern $(3,1,2)$. Each of these sets has density

$$
\frac{1}{4^{k+1}}+\frac{2}{4^{k+2}}=\frac{1}{8}\left(\frac{1}{4^{k-1}}-\frac{1}{4^{k}}\right)
$$

Thus, the positive integers in

$$
\begin{aligned}
& 5(\bmod 8) \backslash r_{k+1}\left(\bmod 2 \cdot 4^{\mathrm{k}+1}\right) \\
& \quad=\left(5(\bmod 8) \backslash r_{k}\left(\bmod 2 \cdot 4^{\mathrm{k}}\right)\right) \bigcup\left(r_{k}\left(\bmod 2 \cdot 4^{\mathrm{k}}\right) \backslash r_{k+1}\left(\bmod 2 \cdot 4^{\mathrm{k}+1}\right)\right)
\end{aligned}
$$

are partitioned into two sets, one with permutation pattern $(3,2,1)$ and the other with permutation pattern $(3,1,2)$. Each of these sets has density

$$
\frac{1}{8}\left(1-\frac{1}{4^{k-1}}\right)+\frac{1}{8}\left(\frac{1}{4^{k-1}}-\frac{1}{4^{k}}\right)=\frac{1}{8}\left(1-\frac{1}{4^{k}}\right)
$$

This completes the induction.

For every $\varepsilon>0$ there is an integer k such that $1 /\left(8 \cdot 4^{k}\right)<\varepsilon$ and so both sets \mathcal{R}_{1} and \mathcal{R}_{2} contain subsets of density greater than $1 / 8-\varepsilon$. The set \mathcal{R}_{0} has density 0 and the congruence class $5(\bmod 8)$ has density $1 / 4$ with respect to Ω. Applying Lemma 5 with $X=\Omega, W=\{m>1: m \equiv 5(\bmod 8)\}, t=2$, and $\alpha_{1}=\alpha_{2}=1 / 8$ to the partition $5(\bmod 8)=\mathcal{R}_{0} \cup \mathcal{R}_{1} \cup \mathcal{R}_{2}$, we see that \mathcal{R}_{1} has density $1 / 8$ and \mathcal{R}_{2} has density $1 / 8$. This completes the proof.

5. Some Impossible Permutation Patterns for Quadruples

By Theorem 1, every triple permutation pattern is the permutation pattern of triples $\left(m, S(m), S^{2}(m)\right)$ of the iterated Syracuse function for a set of integers m of positive density. The story for quadruple permutation patterns is different. In this section we prove that there are quadruple permutation patterns that never occur as permutation patterns of quadruples $\left(m, S(m), S^{2}(m), S^{3}(m)\right)$ of the iterated Syracuse function.

Theorem 5. Consider quadruples

$$
\left(m, S(m), S^{2}(m), S^{3}(m)\right)
$$

such that $S^{i}(m) \neq S^{j}(m)$ for $i \neq j$ and the triple $\left(m, S(m), S^{2}(m)\right)$ has permutation pattern $(1,2,3)$, that is,

$$
m<S(m)<S^{2}(m)
$$

For these quadruples there are four possible quadruple permutation patterns:

$$
(1,2,3,4), \quad(1,2,4,3), \quad(2,3,4,1), \quad(1,3,4,2)
$$

The density of each of these permutation patterns is as follows:

permutation pattern $\sigma \in \Sigma_{4}$	permutation density $d_{4}(\sigma)$
$(1,2,3,4)$	$1 / 8$
$(1,2,4,3)$	$1 / 16$
$(2,3,4,1)$	$1 / 16$
$(1,3,4,2)$	0

Moreover, the permutation pattern $(1,3,4,2)$ never occurs.
Note that $1 / 4=1 / 8+1 / 16+1 / 16$ is the Syracuse function permutation pattern density of the triple $(1,2,3)$.

Proof. By Theorems 3 and 4, we have $m<S(m)<S^{2}(m)$ if and only if

$$
m \equiv 7(\bmod 8)
$$

Then $m=7+8 x$ for some nonnegative integer x and

$$
m=7+8 x<S(m)=11+12 x<S^{2}(m)=17+18 x
$$

It follows that

$$
S^{3}(m)=\frac{26+27 x}{2^{e}}
$$

for some nonnegative integer e.
The congruence class $7(\bmod 8)$ is the disjoint union of the congruence classes $15(\bmod 16), 7(\bmod 32)$, and $23(\bmod 32)$.

If $m \equiv 15(\bmod 16)$, then the integers x and $26+27 x$ are odd and so $e=0$. We have

$$
m<S(m)<S^{2}(m)=17+18 x<26+27 x=S^{3}(x)
$$

and so the quadruple $\left(m, S(m), S^{2}(m), S^{3}(m)\right)$ has permutation pattern $(1,2,3,4)$.
If $m \equiv 7(\bmod 32)$, then $x=4 y$ and $e=1$. We obtain

$$
S^{3}(m)=\frac{26+27 x}{2}=13+54 y=13+\left(\frac{27}{2}\right) x
$$

The inequality

$$
7+8 x<11+12 x<13+\left(\frac{27}{2}\right) x<17+18 x
$$

implies

$$
m<S(m)<S^{3}(m)<S^{2}(m)
$$

The quadruple $\left(m, S(m), S^{2}(m), S^{3}(m)\right)$ has permutation pattern $(1,2,4,3)$.

If $m \equiv 23(\bmod 32)$, then $x=2+4 y$ and $e \geq 2$.

$$
\begin{aligned}
S^{3}(m) & =\frac{26+27 x}{2^{e}}=\frac{80+27 \cdot 4 y}{2^{e}}=\frac{20+27 y}{2^{e-2}} \\
& \leq 20+27 y=20+27\left(\frac{x-2}{4}\right) \\
& =\frac{13}{2}+\left(\frac{27}{4}\right) x<7+8 x=m
\end{aligned}
$$

The quadruple $\left(m, S(m), S^{2}(m), S^{3}(m)\right)$ has permutation pattern $(2,3,4,1)$.
We see that the permutation pattern $(1,3,4,2)$ never occurs, and that the permutation patterns $(1,2,3,4),(1,2,4,3)$, and $(2,3,4,1)$ have permutation densities $1 / 8,1 / 16$, and $1 / 16$, respectively. This completes the proof.

Theorem 6. Consider quadruples

$$
\left(m, S(m), S^{2}(m), S^{3}(m)\right)
$$

such that $S^{i}(m) \neq S^{j}(m)$ for $i \neq j$ and the triple $\left(m, S(m), S^{2}(m)\right)$ has permutation pattern $(1,3,2)$, that is,

$$
m<S^{2}(m)<S(m)
$$

For these quadruples there are four possible quadruple permutation patterns:

$$
(1,3,2,4), \quad(2,4,3,1), \quad(1,4,2,3), \quad(1,4,3,2)
$$

The density of each of these permutation patterns is as follows:

permutation pattern $\sigma \in \Sigma_{4}$	permutation density $d_{4}(\sigma)$
$(1,3,2,4)$	$1 / 16$
$(2,4,3,1)$	$1 / 16$
$(1,4,2,3)$	0
$(1,4,3,2)$	0

Moreover, the permutation patterns $(1,4,3,2)$ and $(1,4,2,3)$ never occur.
Note that $1 / 8=1 / 16+1 / 16$ is the Syracuse function permutation pattern density of the triple $(1,3,2)$.

Proof. By Theorems 3 and 4, we have $m<S^{2}(m)<S(m)$ if and only if

$$
m \equiv 11(\bmod 16)
$$

Then $m=11+16 x$ for some nonnegative integer x and

$$
m=11+16 x<S^{2}(m)=13+18 x<S(m)=17+24 x
$$

It follows that

$$
S^{3}(m)=\frac{20+27 x}{2^{e}}
$$

for some nonnegative integer e.
The congruence class $11(\bmod 16)$ is the disjoint union of the congruence classes $11(\bmod 32)$ and $27(\bmod 32)$.

If $m \equiv 27(\bmod 32)$, then x and $20+27 x$ are odd and so $e=0$. We have

$$
S(m)=17+24 x<20+27 x=S^{3}(m)
$$

and the quadruple ($m, S(m), S^{2}(m), S^{3}(m)$) has permutation pattern $(1,3,2,4)$.
If $m \equiv 11(\bmod 32)$, then x is even and $e \geq 1$. We obtain

$$
S^{3}(m)=\frac{20+27 x}{2^{e}} \leq 10+\left(\frac{27}{2}\right) x<11+16 x=m .
$$

The quadruple ($m, S(m), S^{2}(m), S^{3}(m)$) has permutation pattern $(2,4,3,1)$.
We see that the permutation patterns $(1,4,3,2)$ and $(1,4,2,3)$ never occur and that each of the permutation patterns $(1,3,2,4)$ and $(2,4,3,1)$ has density $1 / 16$. This completes the proof.

Theorem 7. Consider quadruples

$$
\left(m, S(m), S^{2}(m), S^{3}(m)\right)
$$

such that $S^{i}(m) \neq S^{j}(m)$ for $i \neq j$ and the triple $\left(m, S(m), S^{2}(m)\right)$ has permutation pattern $(2,1,3)$, that is,

$$
S(m)<m<S^{2}(m)
$$

For these quadruples there are four possible quadruple permutation patterns:

$$
(2,1,3,4), \quad(2,1,4,3), \quad(3,1,4,2), \quad(3,2,4,1)
$$

The density of each of these permutation patterns is as follows:

permutation pattern $\sigma \in \Sigma_{4}$	permutation density $d_{4}(\sigma)$
$(2,1,3,4)$	$1 / 16$
$(3,1,4,2)$	$1 / 32$
$(3,2,4,1)$	$1 / 32$
$(2,1,4,3))$	0

Moreover, the permutation pattern $(2,1,4,3)$ never occurs.
Note that $1 / 8=1 / 16+1 / 32+1 / 32$ is the Syracuse function permutation pattern density of the triple $(2,1,3)$.

Proof. By Theorems 3 and 4, we have $S(m)<m<S^{2}(m)$ if and only if

$$
m \equiv 9(\bmod 16)
$$

Then $m=9+16 x$ for some nonnegative integer x and

$$
S(m)=7+12 x<m=9+16 x<S^{2}(m)=11+18 x
$$

It follows that

$$
S^{3}(m)=\frac{17+27 x}{2^{e}}
$$

for some nonnegative integer e.
The congruence class $9(\bmod 16)$ is the disjoint union of the congruence classes $9(\bmod 32), 25(\bmod 64)$, and $57(\bmod 64)$.

If $m \equiv 9(\bmod 32)$, then x is even, $17+27 x$ is odd, and so $e=0$. We have

$$
S^{2}(m)=11+18 x<S^{3}(m)=17+27 x
$$

and the quadruple $\left(m, S(m), S^{2}(m), S^{3}(m)\right)$ has permutation pattern $(2,1,3,4)$.
If $m \equiv 57(\bmod 64)$, then $x=3+4 y$ and $e=1$. We obtain

$$
\begin{aligned}
S^{3}(m) & =\frac{17+27(3+4 y)}{2}=49+54 y \\
& =49+54\left(\frac{x-3}{4}\right)=\frac{17}{2}+\left(\frac{27}{2}\right) x
\end{aligned}
$$

The inequality

$$
7+12 x<\frac{17}{2}+\left(\frac{27}{2}\right) x<9+16 x
$$

implies

$$
S(m)<S^{3}(m)<m<S^{2}(m)
$$

The quadruple $\left(m, S(m), S^{2}(m), S^{3}(m)\right)$ has permutation pattern $(3,1,4,2)$.
If $m \equiv 25(\bmod 64)$, then $x=1+4 y$ and $e \geq 2$. We obtain

$$
\begin{aligned}
S^{3}(m) & =\frac{17+27(1+4 y)}{2^{e}}=\frac{11+27 y}{2^{e-2}} \\
& \leq 11+27 y=11+27\left(\frac{x-1}{4}\right)=\frac{17}{4}+\left(\frac{27}{4}\right) x \\
& <7+12 x=S(m)
\end{aligned}
$$

The quadruple $\left(m, S(m), S^{2}(m), S^{3}(m)\right)$ has permutation pattern $(3,2,4,1)$.
We see that the permutation pattern $(2,1,4,3)$ never occurs, and that the permutation patterns $(2,1,3,4),(3,1,4,2)$, and $(3,2,4,1)$ have densities $1 / 16,1 / 32$, and $1 / 32$, respectively. This completes the proof.

6. Dropping Time

An odd integer $m>1$ has dropping time $D(m)=k$ if k is the smallest positive integer such that $S^{k}(m)<m$, and dropping time $D(m)=\infty$ if $S^{k}(m)>m$ for all positive integers k. The Collatz conjecture is equivalent to the statement that $D(m)<\infty$ for all odd integers $m>1$. We have $D(m)>k$ if and only if $S^{i}(m) \neq 1$ for all $i \in\{1,2, \ldots, k\}$ and the permutation pattern of the $(k+1)$ tuple $\left(m, S(m), S^{2}(m), \ldots, S^{k}(m)\right)$ is not of the form $\left(1, a_{2}, a_{3}, \ldots, a_{k+1}\right)$, where $\left(a_{2}, a_{3}, \ldots, a_{k+1}\right)$ is any permutation of $(2,3, \ldots, k+1)$.

Theorem 8. Let $N_{k}(x)$ count the number of odd integers $m \leq x$ such that $D(m) \leq$ k. Then

$$
\begin{aligned}
& \bar{N}_{1}=\lim _{x \rightarrow \infty} \frac{N_{1}(x)}{x / 2}=\frac{1}{2} \\
& \bar{N}_{2}=\lim _{x \rightarrow \infty} \frac{N_{2}(x)}{x / 2}=\frac{5}{8} \\
& \bar{N}_{3}=\lim _{x \rightarrow \infty} \frac{N_{3}(x)}{x / 2}=\frac{3}{4}
\end{aligned}
$$

Proof. Permutation pattern densities give explicit values for $N_{k}(x)$ for $k=1,2$, and 3. An odd integer $m>1$ has dropping time $D(m)=1$ if and only if $S(m)<m$
if and only if the pair $(m, S(m))$ has permutation pattern $(2,1)$, and so \bar{N}_{1} is the density of the permutation pattern $(2,1)$. We have $\bar{N}_{1}=1 / 2$ by Theorem 2 .

The odd integer $m>1$ has dropping time $D(m) \leq 2$ if and only if the permutation pattern of the triple $\left(m, S(m), S^{2}(m)\right)$ is not $(1,2,3)$ or $(1,3,2)$. By Theorem 1 , the permutation pattern $(1,2,3)$ has density $1 / 4$ and the permutation pattern $(1,3,2)$ has density $1 / 8$. Therefore, $\bar{N}_{2}=1-1 / 4-1 / 8=5 / 8$.

The odd integer $m>1$ has dropping time $D(m) \leq 3$ if and only if the quadruple $\left(m, S(m), S^{2}(m), S^{3}(m)\right)$ has permutation pattern not equal to $\left(1, a_{2}, a_{3}, a_{4}\right)$, where $\left(a_{2}, a_{3}, a_{4}\right)$ is any of the six permutations of 2,3 , and 4 . By Theorems 5 and 6 , the sum of the densities of these six permutation patterns is $1 / 4$ and so $\bar{N}_{3}=1-1 / 4=$ $3 / 4$.

The dropping time function is the Syracuse function analogue of the stopping time function of Riho Terras [10]. It would be of interest to prove (similar to results of Terras) that the limit

$$
\bar{N}_{k}=\lim _{x \rightarrow \infty} \frac{N_{k}(x)}{x / 2}
$$

exists for all positive integers k and that

$$
\lim _{k \rightarrow \infty} N_{k}=1
$$

Acknowledgement. I thank Yosef Berman (CUNY Graduate Center) for computer calculations of permutation patterns for triples and quadruples of the iterated Syracuse function $S(m)$ that motivated this paper.

References

[1] M. Albert, B. Gudmundsson, and H. Ulfarsson, Collatz meets Fibonacci, Math. Mag. 95 (2022), 130-136.
[2] D. Barina, Convergence verification of the Syracuse problem, Journal of Supercomputing $\mathbf{7 7}$ (2021), 2681-2688.
[3] J. C. Lagarias, The $3 x+1$ problem and its generalizations, Amer. Math. Monthly 92 (1985), 3-23.
[4] M. B. Nathanson, Patterns in the iteration of an arithmetic function, 2022, arXiv:2208.02242.
[5] J. L. Simons, A simple (inductive) proof for the non-existence of 2-cycles of the $3 x+1$ problem, J. Number Theory 123 (2007), 10-17.
[6] J. L. Simons, On the (non-)existence of m-cycles for generalized Syracuse sequences, Acta Arith. 131 (2008), 217-254.
[7] J. L. Simons, Exotic Collatz cycles, Acta Arith. 134 (2008), 201-209.
[8] J. Simons and B.de Weger, Theoretical and computational bounds for m-cycles of the $3 n+1$ problem, Acta Arith. 117 (2005), 51-70.
[9] T. Tao, Almost all orbits of the Collatz map attain almost bounded values, Forum Math., Pi 10 (2022), Paper No. E12.
[10] R. Terras, A stopping time problem on the positive integers, Acta Arith. 30 (1976), 241-252.
[11] Wikipedia, Collatz conjecture

