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Abstract

For an irrational real α and γ 6∈ Z + Zα it is well known that

lim inf
|n|→∞

|n|||nα− γ|| ≤ 1

4
.

In the present paper we prove that, if the partial quotients, ai, in the negative
‘round-up’ continued fraction expansion of α have R := lim infi→∞ ai odd, then the
bound 1/4 can be replaced by

1

4

(
1− 1

R

)(
1− 1

R2

)
,

which is optimal. The optimal bound for even R ≥ 4 was already known.

1. Introduction

For a real irrational α and real γ in [0, 1) we define the inhomogeneous approxima-

tion constant

M(α, γ) := lim inf
|n|→∞

|n|||nα− γ||, (1)

where ||x|| is the distance from x to the nearest integer. Corresponding to the case

of worst inhomogeneous approximation, we define

ρ(α) := sup
γ 6∈Z+Zα

M(α, γ).
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From a well known theorem of Minkowski, see for example [1, Ch. III] or [8, IV.9],

ρ(α) ≤ 1

4
, (2)

Grace [3] giving examples with ρ(α) = 1
4 . These examples, though, have continued

fraction expansions with the partial quotients ai satisfying lim infi→∞ ai = ∞.

When the partial quotients of α are uniformly bounded, Khinchin [4] improved

Inequality (2) to

ρ(α) ≤ 1

4

√
1− 4M2(α, 0).

We are interested in improving Inequality (2) when the partial quotients have a

bounded subsequence. Fukasawa [2] used the nearest integer continued fraction

expansion to obtain bounds of this type. Here we shall use the negative expansion:

α =
1

a1 −
1

a2 −
1

a3 − · · ·

=: [0; a1, a2, a3, · · · ]−, (3)

where the integers ai ≥ 2 are generated by always rounding up instead of down:

α0 := {α} = α, an+1 :=

⌈
1

αn

⌉
, αn+1 :=

⌈
1

αn

⌉
− 1

αn
.

We write αi and ᾱi for the forwards and backwards expansions from the ith point:

αi := [0; ai+1, ai+2, . . .]
−, ᾱi := [0; ai, ai−1, . . . , a1]−.

A method to evaluate M(α, γ) from Equation (3) and a sequence of integers ti
obtained from an appropriate α-expansion of γ,

γ =

∞∑
i=1

1

2
(ai − 2 + ti)Di−1, Di−1 := α0α1 · · ·αi−1, (4)

was given in [7]. We review this in Section 2; see [5] for alternative algorithms to

compute M(α, γ). Setting

R := lim inf
i→∞

ai,

it was also shown in [7] that if R ≥ 3, then

ρ(α) ≤ 1

4

(
1− 1

R

)
. (5)

The restriction R ≥ 3 is needed here; the examples of Grace with ρ(α) = 1
4 will

have long strings of 2’s in their negative expansion.
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For R ≥ 4 even, Inequality (5) is best possible; for example, as shown in [7,

Theorem 2], if α = [0;R, 2N ]−, then taking all the ti = 0 in (4) gives

ρ(α) = M

(
α,

1

2
(1− α)

)
=

1

4
lim inf
k→∞

(1− αk)(1− ᾱk)

1− αkᾱk
.

As N →∞, the α2k−1, ᾱ2k−1 → 0, 1/R, the α2k, ᾱ2k → 1/R, 0, and

lim
N→∞

ρ(α) =
1

4

(
1− 1

R

)
.

When R is odd though, Inequality (5) can be improved.

Theorem 1. If R is odd then

ρ(α) ≤ C(R) :=
1

4

(
1− 1

R

)(
1− 1

R2

)
=

1

4

(
1− 1

R
− 1

R2
+

1

R3

)
. (6)

For odd R, Inequality (6) is also best possible.

Theorem 2. Suppose that α = [0;R,NR]− where N and R are positive integers

with R odd. Define γ∗ to have Equation (4) with t2i−1 = −1 and t2i = N . Then

lim
N→∞

M(α, γ∗) = C(R).

One can also obtain lower bounds on ρ(α) in terms of R. When R ≥ 4 is even,

we showed in [6] the optimal bound

ρ(α) ≥ R− 2

4(
√
R2 − 4 + 1)

=
1

4

(
1− 3

R
+

5

R2
+O(R−3)

)
,

and when R ≥ 3 is odd, a bound which is at least asymptotically optimal:

ρ(α) ≥
2R− 2−

√
(R+ 1)2 − 4

4(
√

(R+ 1)2 − 4− 1)
=

1

4

(
1− 3

R
+

4

R2
+O(R−3)

)
.

Here we have necessarily excluded the classical homogeneous case γ ∈ Z + αZ.

Of course M(α, 0) depends on the largest rather than the smallest partial quotients.

Using the negative expansion, if R ≥ 3 and r denotes lim supi→∞ ai, then

1√
r2 − 4

≤M(α, 0) = lim inf
i→∞

1

ai − αi − ᾱi−1
≤ 1

r −R+
√
R2 − 4

,

with equality in the lower bound for α = [0; r]− and the upper bound when the

expansion of α consists of blocks r,R, . . . , R︸ ︷︷ ︸
l times

with length l → ∞. Notice M(α, 0)

can only exceed the inhomogeneous upper bound, that is, Inequality (5) if R is even

and Inequality (6) if R is odd, for a few small r. Namely, when R = 3 and we have

3 ≤ r ≤ 7, when R = 4 and r = 4 or r = 5, and when R = 5 with r = 5.
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2. The Sequence of Best Inhomogeneous Approximations

In [7] it was shown how to use Equation (3) of α to expand γ ∈ (0, 1) in the form

γ =
∑∞
i=1 biDi−1, by taking

γ0 := γ, bn+1 :=

⌊
γn
αn

⌋
, γn+1 :=

{
γn
αn

}
,

and obtaining from the bi the sequence of best inhomogeneous approximations for

α and γ. To obtain more symmetric looking functions, it proves convenient to write

bi = 1
2 (ai − 2 − ti), leading to a unique α-expansion having the form of Equation

(4), where the ti are integers with

−(ai − 2) ≤ ti ≤ ai, ti ≡ ai mod 2,

with no blocks of the form ti = ai with tj = aj − 2 for all j > i or ti+` = ai+` with

tj = aj − 2 for any i < j < i+ `.

If the sequence of integers in Equation (4) has tk = ak infinitely often, then [7,

Lemma 1] gives

M(α, γ) ≤ lim inf
k→∞
tk=ak

ᾱk
4(1− ᾱkαk)

. (7)

For R ≥ 3, this will always be smaller than Inequality (6), and so these γ can be

safely ignored (see Inequality (9)).

If the sequence has tk = ak at most finitely often, then by using [7, Theorem 1]

to evaluate Equation (1), it is enough to look at the sequence of n of the form

Qk, Qk + qk−1, −(qk − qk−1 −Qk), −(qk −Qk),

where the qi are the convergent denominators:

pi/qi = [0; a1, . . . , ai]
−, qi = (ᾱ1 · · · ᾱi)−1,

and

Qk :=

k∑
i=1

1

2
(ai − 2 + ti)qi−1.

Writing

d−k := tkᾱk + tk−1ᾱkᾱk−1 + tk−2ᾱkᾱk−1ᾱk−2 + · · · ,
d+
k := tk+1αk + tk+2αkαk+1 + tk+3αkαk+1αk+2 + · · · ,

this is readily expressed in the more symmetric form given in Theorem 1 of [7]. We

note (see [7]) that |d−k | ≤ 1− ᾱk and |d+
k | ≤ 1−αk once k has passed the last tj = aj

and any following (necessarily finite) string of tj = aj − 2.
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Lemma 1. If γ /∈ Z + αZ and the α–expansion of γ has ti = ai at most finitely

many times, then

M(α, γ) = lim inf
k→∞

min{s1(k), s2(k), s3(k), s4(k)},

where

s1(k) :=
1

4
(1− ᾱk + d−k )(1− αk + d+

k )/(1− ᾱkαk),

s2(k) :=
1

4
(1 + ᾱk + d−k )(1 + αk − d+

k )/(1− ᾱkαk),

s3(k) :=
1

4
(1− ᾱk − d−k )(1− αk − d+

k )/(1− ᾱkαk),

s4(k) :=
1

4
(1 + ᾱk − d−k )(1 + αk + d+

k )/(1− ᾱkαk).

Notice that

s1(k)s3(k) =

(
(1− ᾱk)2 − (d−k )2

) (
(1− αk)2 − (d+

k )2
)

16(1− ᾱkαk)2
≤ (1− ᾱk)2(1− αk)2

16(1− ᾱkαk)2
.

If tk = ak at most finitely often, this plainly gives

M(α, γ) ≤ lim inf
k→∞

(1− ᾱk)(1− αk)

4(1− ᾱkαk)
, (8)

and ᾱk > 1/R when ak = R readily gives Inequality (5). When the ai are all even

we can take the ti to be 0 in Equation (4) and have equality in Inequality (8), but

when R is odd, |d−k | will not be small for the ak = R and Inequality (5) can be

improved.

3. Proofs of Theorems 1 and 2

Proof of Theorem 1. Suppose that α has R ≥ 3 odd. Setting β := [0;R]−, we can

assume that αk ≤ β and ᾱk ≤ β as k →∞. When R = 3 we have β = 1
2 (3−

√
5).

We need to show that M(α, γ) ≤ C(R) for any γ 6∈ Z + αZ.

From Inequality (7) we can assume that Equation (4) does not have tk = ak
infinitely often, for otherwise, as k →∞ we have

ᾱk
4(1− ᾱkαk)

=
1

4(ak − ᾱk−1 − αk)
≤ 1

4(R− 2β)
≤ 1

4
√

5
< C(3) ≤ C(R). (9)

Hence by Lemma 1 we just need to show that there are infinitely many k with

min{s1(k), s2(k), s3(k), s4(k)} ≤ C(R).
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Notice that

s3(k)s4(k) =

(
(1− d−k )2 − ᾱ2

k

) (
1− (αk + d+

k )2
)

16(1− ᾱkαk)2
<

(1− d−k )2

16(1− ᾱkαk)2
.

Hence if ak = R and tk ≥ 3, then d−k = (tk + d−k−1)ᾱk ≥ (3 + d−k−1)ᾱk > 2ᾱk and

αk ≤ β give

min{s3(k), s4(k)} ≤
1− d−k

4(1− ᾱkαk)
≤ 1− 2ᾱk

4(1− ᾱkβ)
.

Since f(x) = (1−2x)
(1−βx) has f ′(x) = − (2−β)

(1−βx)2 < 0 and ᾱk > 1/R, we get

min{s3(k), s4(k)} ≤
1− 2

R

4
(

1− β
R

) < C(R),

the latter inequality since(
1− 1

R

)(
1− 1

R2

)(
1− β

R

)
−
(

1− 2

R

)
=

1

R

(
1− 1

R

(
1− 1

R

)
− β

(
1− 1

R

)(
1− 1

R2

))
> 0.

Likewise, if tk ≤ −3 we get d−k ≤ (−3 + d−k−1)ᾱk < −2ᾱk and

min{s1(k), s2(k)} ≤
1 + d−k

4(1− ᾱkαk)
≤ C(R).

So we can assume that the ak = R have tk = ±1. Suppose now that ak = R

with tk = −1 so that

d−k = tkᾱk + d−k−1ᾱk = −ᾱk + d−k−1ᾱk.

If tk = +1 then we simply switch the roles of s1(k) and s3(k) and replace d−k−1, d
+
k

by −d−k−1,−d
+
k , respectively, in what follows.

Case 1. Suppose that d−k−1, d+
k ≤

1
R .

Then

s1(k) =

(
1− 2ᾱk + d−k−1ᾱk

) (
1− αk + d+

k

)
4(1− ᾱkαk)

≤
(
1− ᾱk(2− 1

R )
) (

1− αk + 1
R

)
4(1− ᾱkαk)

.

Since ᾱk(1 + 1
R ) < 1 and ᾱk >

1
R we get

s1(k) <

(
1− ᾱk

(
2− 1

R

)) (
1− αk + 1

R

)
4
(
1− αk/

(
1 + 1

R

)) =
1

4

(
1− ᾱk

(
2− 1

R

))(
1 +

1

R

)

<
1

4

(
1−

1

R

(
2− 1

R

))(
1 +

1

R

)
= C(R).
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Case 2. Suppose that d−k−1, d+
k ≥

1
R .

Then

s3(k) =

(
1− d−k−1ᾱk

) (
1− αk − d+

k

)
4(1− ᾱkαk)

≤
(
1− ᾱk

R

) (
1− αk − 1

R

)
4(1− ᾱkαk)

.

This time, using ᾱk(1− 1
R ) < 1 and ᾱk >

1
R , we get

s3(k) <

(
1− ᾱk

R

) (
1− αk − 1

R

)
4
(
1− αk/(1− 1

R )
) =

1

4

(
1− ᾱk

R

)(
1− 1

R

)
< C(R).

Case 3. Suppose that d−k−1 ≤
1
R and d+

k ≥
1
R .

We observe that

d−k = −ᾱk + d−k−1ᾱk ≤ −
(

1− 1

R

)
ᾱk,

and

min{s1(k), s3(k)} ≤
√
s1(k)s3(k) =

1

4

√
S,

with

S =

(
(1− ᾱk)2 − (d−k )2

) (
(1− αk)2 − (d+

k )2
)

(1− ᾱkαk)2

≤

(
(1− ᾱk)2 −

(
1− 1

R

)2
ᾱ2
k

) (
(1− αk)2 − 1

R2

)
(1− ᾱkαk)2

.

Hence we have

S <

(
(1− ᾱk)2 −

(
1− 1

R

)2

ᾱ2
k

)(
1− 1

R2

)
(10)

<

((
1− 1

R

)2

−
(

1− 1

R

)2
1

R2

)(
1− 1

R2

)
= C(R)2,

the first inequality in (10) holding since

(1− ᾱkαk)2

(
1− 1

R2

)
−
(

(1− αk)2 − 1

R2

)
= αk

(
2− (2− ᾱkαk)ᾱk

(
1− 1

R2

)
− αk

)
> 0,

and the second since ᾱk > 1/R and

f(x) = (1− x)2 −
(

1− 1

R

)2

x2 = 1− 2x+

(
2

R
− 1

R2

)
x2



INTEGERS: 24A (2024) 8

is plainly decreasing on 0 ≤ x ≤ 1
2 .

Case 4. Suppose that d−k−1 ≥
1
R and d+

k ≤
1
R .

This is almost the same as Case 3, except we observe that

d+
k−1 = (tk + d+

k )αk−1 ≤ −
(

1− 1

R

)
αk−1,

and use

min{s1(k − 1), s3(k − 1)} ≤
√
s1(k − 1)s3(k − 1) =

1

4

√
S,

with

S =

(
(1− ᾱk−1)2 − (d−k−1)2

) (
(1− αk−1)2 − (d+

k−1)2
)

(1− ᾱk−1αk−1)2

≤
(
(1− ᾱk−1)2 − 1

R2

) (
(1− αk−1)2 − (1− 1

R )2α2
k−1

)
(1− ᾱk−1αk−1)2

.

The proof follows, using ᾱk−1 and αk−1 in place of αk and ᾱk, respectively.

Proof of Theorem 2. Suppose that α and γ∗ have a2k−1 = R, t2k−1 = −1, a2k =

NR, and t2k = N for all k. Plainly, as N →∞,

ᾱ2k−1, α2k =
1

R−
1

NR−O(1)

→ 1

R
, α2k−1, ᾱ2k =

1

NR−O(1)
→ 0,

while for k ≥ 2

d−2k−1 = −ᾱ2k−1 + (N + d−2k−3)ᾱ2k−2ᾱ2k−1

= ᾱ2k−1

(
−1 +

N +O(1)

NR−O(1)

)
→ − 1

R
+

1

R2
,

and

d+
2k−1 = (N + d+

2k)α2k−1 =
N +O(1)

NR−O(1)
→ 1

R
.

Likewise d+
2k → −

1
R + 1

R2 and d−2k →
1
R . So

s1(2k − 1), s1(2k)→ 1

4

(
1− 2

R
+

1

R2

)(
1 +

1

R

)
= C(R),

s3(2k − 1), s3(2k)→ 1

4

(
1− 1

R2

)(
1− 1

R

)
= C(R),
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while s4(2k − 1) > s2(2k − 1) and s2(2k) > s4(2k) with

s2(2k − 1), s4(2k)→ 1

4

(
1 +

1

R2

)(
1− 1

R

)
> C(R).

Hence as N →∞

M(α, γ∗) = lim inf
k→∞

min{s1(k), s2(k), s3(k), s4(k)} → C(R).
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