AN UPPER BOUND ON THE INHOMOGENEOUS APPROXIMATION CONSTANTS

Bishnu Paudel
Department of Mathematics, Kansas State University, Manhattan, Kansas
bpaudel@ksu.edu
Chris Pinner
Department of Mathematics, Kansas State University, Manhattan, Kansas pinner@math.ksu.edu

Received: 5/30/23, Revised: 9/8/23, Accepted: 11/25/23, Published: 5/27/24

Abstract
For an irrational real α and $\gamma \notin \mathbb{Z}+\mathbb{Z} \alpha$ it is well known that

$$
\liminf _{|n| \rightarrow \infty}|n|| | n \alpha-\gamma| | \leq \frac{1}{4}
$$

In the present paper we prove that, if the partial quotients, a_{i}, in the negative 'round-up' continued fraction expansion of α have $R:=\liminf _{i \rightarrow \infty} a_{i}$ odd, then the bound $1 / 4$ can be replaced by

$$
\frac{1}{4}\left(1-\frac{1}{R}\right)\left(1-\frac{1}{R^{2}}\right)
$$

which is optimal. The optimal bound for even $R \geq 4$ was already known.

1. Introduction

For a real irrational α and real γ in $[0,1)$ we define the inhomogeneous approximation constant

$$
\begin{equation*}
M(\alpha, \gamma):=\liminf _{|n| \rightarrow \infty}|n|\|n \alpha-\gamma\| \tag{1}
\end{equation*}
$$

where $\|x\|$ is the distance from x to the nearest integer. Corresponding to the case of worst inhomogeneous approximation, we define

$$
\rho(\alpha):=\sup _{\gamma \notin \mathbb{Z}+\mathbb{Z} \alpha} M(\alpha, \gamma) .
$$

DOI: 10.5281/zenodo. 11352916

From a well known theorem of Minkowski, see for example [1, Ch. III] or [8, IV.9],

$$
\begin{equation*}
\rho(\alpha) \leq \frac{1}{4} \tag{2}
\end{equation*}
$$

Grace [3] giving examples with $\rho(\alpha)=\frac{1}{4}$. These examples, though, have continued fraction expansions with the partial quotients a_{i} satisfying $\liminf _{i \rightarrow \infty} a_{i}=\infty$. When the partial quotients of α are uniformly bounded, Khinchin [4] improved Inequality (2) to

$$
\rho(\alpha) \leq \frac{1}{4} \sqrt{1-4 M^{2}(\alpha, 0)}
$$

We are interested in improving Inequality (2) when the partial quotients have a bounded subsequence. Fukasawa [2] used the nearest integer continued fraction expansion to obtain bounds of this type. Here we shall use the negative expansion:

$$
\begin{equation*}
\alpha=\frac{1}{a_{1}-\frac{1}{a_{2}-\frac{1}{a_{3}-\cdots}}}=:\left[0 ; a_{1}, a_{2}, a_{3}, \cdots\right]^{-}, \tag{3}
\end{equation*}
$$

where the integers $a_{i} \geq 2$ are generated by always rounding up instead of down:

$$
\alpha_{0}:=\{\alpha\}=\alpha, \quad a_{n+1}:=\left\lceil\frac{1}{\alpha_{n}}\right\rceil, \quad \alpha_{n+1}:=\left\lceil\frac{1}{\alpha_{n}}\right\rceil-\frac{1}{\alpha_{n}} .
$$

We write α_{i} and $\bar{\alpha}_{i}$ for the forwards and backwards expansions from the i th point:

$$
\alpha_{i}:=\left[0 ; a_{i+1}, a_{i+2}, \ldots\right]^{-}, \quad \bar{\alpha}_{i}:=\left[0 ; a_{i}, a_{i-1}, \ldots, a_{1}\right]^{-} .
$$

A method to evaluate $M(\alpha, \gamma)$ from Equation (3) and a sequence of integers t_{i} obtained from an appropriate α-expansion of γ,

$$
\begin{equation*}
\gamma=\sum_{i=1}^{\infty} \frac{1}{2}\left(a_{i}-2+t_{i}\right) D_{i-1}, \quad D_{i-1}:=\alpha_{0} \alpha_{1} \cdots \alpha_{i-1} \tag{4}
\end{equation*}
$$

was given in [7]. We review this in Section 2; see [5] for alternative algorithms to compute $M(\alpha, \gamma)$. Setting

$$
R:=\liminf _{i \rightarrow \infty} a_{i}
$$

it was also shown in [7] that if $R \geq 3$, then

$$
\begin{equation*}
\rho(\alpha) \leq \frac{1}{4}\left(1-\frac{1}{R}\right) \tag{5}
\end{equation*}
$$

The restriction $R \geq 3$ is needed here; the examples of Grace with $\rho(\alpha)=\frac{1}{4}$ will have long strings of 2 's in their negative expansion.

For $R \geq 4$ even, Inequality (5) is best possible; for example, as shown in [7, Theorem 2], if $\alpha=[0 ; \overline{R, 2 N}]^{-}$, then taking all the $t_{i}=0$ in (4) gives

$$
\rho(\alpha)=M\left(\alpha, \frac{1}{2}(1-\alpha)\right)=\frac{1}{4} \liminf _{k \rightarrow \infty} \frac{\left(1-\alpha_{k}\right)\left(1-\bar{\alpha}_{k}\right)}{1-\alpha_{k} \bar{\alpha}_{k}} .
$$

As $N \rightarrow \infty$, the $\alpha_{2 k-1}, \bar{\alpha}_{2 k-1} \rightarrow 0,1 / R$, the $\alpha_{2 k}, \bar{\alpha}_{2 k} \rightarrow 1 / R, 0$, and

$$
\lim _{N \rightarrow \infty} \rho(\alpha)=\frac{1}{4}\left(1-\frac{1}{R}\right) .
$$

When R is odd though, Inequality (5) can be improved.
Theorem 1. If R is odd then

$$
\begin{equation*}
\rho(\alpha) \leq C(R):=\frac{1}{4}\left(1-\frac{1}{R}\right)\left(1-\frac{1}{R^{2}}\right)=\frac{1}{4}\left(1-\frac{1}{R}-\frac{1}{R^{2}}+\frac{1}{R^{3}}\right) \tag{6}
\end{equation*}
$$

For odd R, Inequality (6) is also best possible.
Theorem 2. Suppose that $\alpha=[0 ; \overline{R, N R}]^{-}$where N and R are positive integers with R odd. Define γ_{*} to have Equation (4) with $t_{2 i-1}=-1$ and $t_{2 i}=N$. Then

$$
\lim _{N \rightarrow \infty} M\left(\alpha, \gamma_{*}\right)=C(R)
$$

One can also obtain lower bounds on $\rho(\alpha)$ in terms of R. When $R \geq 4$ is even, we showed in [6] the optimal bound

$$
\rho(\alpha) \geq \frac{R-2}{4\left(\sqrt{R^{2}-4}+1\right)}=\frac{1}{4}\left(1-\frac{3}{R}+\frac{5}{R^{2}}+O\left(R^{-3}\right)\right)
$$

and when $R \geq 3$ is odd, a bound which is at least asymptotically optimal:

$$
\rho(\alpha) \geq \frac{2 R-2-\sqrt{(R+1)^{2}-4}}{4\left(\sqrt{(R+1)^{2}-4}-1\right)}=\frac{1}{4}\left(1-\frac{3}{R}+\frac{4}{R^{2}}+O\left(R^{-3}\right)\right)
$$

Here we have necessarily excluded the classical homogeneous case $\gamma \in \mathbb{Z}+\alpha \mathbb{Z}$. Of course $M(\alpha, 0)$ depends on the largest rather than the smallest partial quotients. Using the negative expansion, if $R \geq 3$ and r denotes $\lim \sup _{i \rightarrow \infty} a_{i}$, then

$$
\frac{1}{\sqrt{r^{2}-4}} \leq M(\alpha, 0)=\liminf _{i \rightarrow \infty} \frac{1}{a_{i}-\alpha_{i}-\bar{\alpha}_{i-1}} \leq \frac{1}{r-R+\sqrt{R^{2}-4}}
$$

with equality in the lower bound for $\alpha=[0 ; \bar{r}]^{-}$and the upper bound when the expansion of α consists of blocks $r, \underbrace{R, \ldots, R}_{l \text { times }}$ with length $l \rightarrow \infty$. Notice $M(\alpha, 0)$
can only exceed the inhomogeneous upper bound, that is, Inequality (5) if R is even and Inequality (6) if R is odd, for a few small r. Namely, when $R=3$ and we have $3 \leq r \leq 7$, when $R=4$ and $r=4$ or $r=5$, and when $R=5$ with $r=5$.

2. The Sequence of Best Inhomogeneous Approximations

In [7] it was shown how to use Equation (3) of α to expand $\gamma \in(0,1)$ in the form $\gamma=\sum_{i=1}^{\infty} b_{i} D_{i-1}$, by taking

$$
\gamma_{0}:=\gamma, \quad b_{n+1}:=\left\lfloor\frac{\gamma_{n}}{\alpha_{n}}\right\rfloor, \quad \gamma_{n+1}:=\left\{\frac{\gamma_{n}}{\alpha_{n}}\right\}
$$

and obtaining from the b_{i} the sequence of best inhomogeneous approximations for α and γ. To obtain more symmetric looking functions, it proves convenient to write $b_{i}=\frac{1}{2}\left(a_{i}-2-t_{i}\right)$, leading to a unique α-expansion having the form of Equation (4), where the t_{i} are integers with

$$
-\left(a_{i}-2\right) \leq t_{i} \leq a_{i}, \quad t_{i} \equiv a_{i} \quad \bmod 2
$$

with no blocks of the form $t_{i}=a_{i}$ with $t_{j}=a_{j}-2$ for all $j>i$ or $t_{i+\ell}=a_{i+\ell}$ with $t_{j}=a_{j}-2$ for any $i<j<i+\ell$.

If the sequence of integers in Equation (4) has $t_{k}=a_{k}$ infinitely often, then [7, Lemma 1] gives

$$
\begin{equation*}
M(\alpha, \gamma) \leq \liminf _{\substack{k \rightarrow \infty \\ t_{k}=a_{k}}} \frac{\bar{\alpha}_{k}}{4\left(1-\bar{\alpha}_{k} \alpha_{k}\right)} \tag{7}
\end{equation*}
$$

For $R \geq 3$, this will always be smaller than Inequality (6), and so these γ can be safely ignored (see Inequality (9)).

If the sequence has $t_{k}=a_{k}$ at most finitely often, then by using [7, Theorem 1] to evaluate Equation (1), it is enough to look at the sequence of n of the form

$$
Q_{k}, \quad Q_{k}+q_{k-1}, \quad-\left(q_{k}-q_{k-1}-Q_{k}\right), \quad-\left(q_{k}-Q_{k}\right)
$$

where the q_{i} are the convergent denominators:

$$
p_{i} / q_{i}=\left[0 ; a_{1}, \ldots, a_{i}\right]^{-}, \quad q_{i}=\left(\bar{\alpha}_{1} \cdots \bar{\alpha}_{i}\right)^{-1}
$$

and

$$
Q_{k}:=\sum_{i=1}^{k} \frac{1}{2}\left(a_{i}-2+t_{i}\right) q_{i-1}
$$

Writing

$$
\begin{aligned}
& d_{k}^{-}:=t_{k} \bar{\alpha}_{k}+t_{k-1} \bar{\alpha}_{k} \bar{\alpha}_{k-1}+t_{k-2} \bar{\alpha}_{k} \bar{\alpha}_{k-1} \bar{\alpha}_{k-2}+\cdots, \\
& d_{k}^{+}:=t_{k+1} \alpha_{k}+t_{k+2} \alpha_{k} \alpha_{k+1}+t_{k+3} \alpha_{k} \alpha_{k+1} \alpha_{k+2}+\cdots,
\end{aligned}
$$

this is readily expressed in the more symmetric form given in Theorem 1 of [7]. We note (see [7]) that $\left|d_{k}^{-}\right| \leq 1-\bar{\alpha}_{k}$ and $\left|d_{k}^{+}\right| \leq 1-\alpha_{k}$ once k has passed the last $t_{j}=a_{j}$ and any following (necessarily finite) string of $t_{j}=a_{j}-2$.

Lemma 1. If $\gamma \notin \mathbb{Z}+\alpha \mathbb{Z}$ and the α-expansion of γ has $t_{i}=a_{i}$ at most finitely many times, then

$$
M(\alpha, \gamma)=\liminf _{k \rightarrow \infty} \min \left\{s_{1}(k), s_{2}(k), s_{3}(k), s_{4}(k)\right\}
$$

where

$$
\begin{aligned}
& s_{1}(k):=\frac{1}{4}\left(1-\bar{\alpha}_{k}+d_{k}^{-}\right)\left(1-\alpha_{k}+d_{k}^{+}\right) /\left(1-\bar{\alpha}_{k} \alpha_{k}\right), \\
& s_{2}(k):=\frac{1}{4}\left(1+\bar{\alpha}_{k}+d_{k}^{-}\right)\left(1+\alpha_{k}-d_{k}^{+}\right) /\left(1-\bar{\alpha}_{k} \alpha_{k}\right), \\
& s_{3}(k):=\frac{1}{4}\left(1-\bar{\alpha}_{k}-d_{k}^{-}\right)\left(1-\alpha_{k}-d_{k}^{+}\right) /\left(1-\bar{\alpha}_{k} \alpha_{k}\right), \\
& s_{4}(k):=\frac{1}{4}\left(1+\bar{\alpha}_{k}-d_{k}^{-}\right)\left(1+\alpha_{k}+d_{k}^{+}\right) /\left(1-\bar{\alpha}_{k} \alpha_{k}\right) .
\end{aligned}
$$

Notice that

$$
s_{1}(k) s_{3}(k)=\frac{\left(\left(1-\bar{\alpha}_{k}\right)^{2}-\left(d_{k}^{-}\right)^{2}\right)\left(\left(1-\alpha_{k}\right)^{2}-\left(d_{k}^{+}\right)^{2}\right)}{16\left(1-\bar{\alpha}_{k} \alpha_{k}\right)^{2}} \leq \frac{\left(1-\bar{\alpha}_{k}\right)^{2}\left(1-\alpha_{k}\right)^{2}}{16\left(1-\bar{\alpha}_{k} \alpha_{k}\right)^{2}} .
$$

If $t_{k}=a_{k}$ at most finitely often, this plainly gives

$$
\begin{equation*}
M(\alpha, \gamma) \leq \liminf _{k \rightarrow \infty} \frac{\left(1-\bar{\alpha}_{k}\right)\left(1-\alpha_{k}\right)}{4\left(1-\bar{\alpha}_{k} \alpha_{k}\right)} \tag{8}
\end{equation*}
$$

and $\bar{\alpha}_{k}>1 / R$ when $a_{k}=R$ readily gives Inequality (5). When the a_{i} are all even we can take the t_{i} to be 0 in Equation (4) and have equality in Inequality (8), but when R is odd, $\left|d_{k}^{-}\right|$will not be small for the $a_{k}=R$ and Inequality (5) can be improved.

3. Proofs of Theorems 1 and 2

Proof of Theorem 1. Suppose that α has $R \geq 3$ odd. Setting $\beta:=[0 ; \bar{R}]^{-}$, we can assume that $\alpha_{k} \leq \beta$ and $\bar{\alpha}_{k} \leq \beta$ as $k \rightarrow \infty$. When $R=3$ we have $\beta=\frac{1}{2}(3-\sqrt{5})$. We need to show that $M(\alpha, \gamma) \leq C(R)$ for any $\gamma \notin \mathbb{Z}+\alpha \mathbb{Z}$.

From Inequality (7) we can assume that Equation (4) does not have $t_{k}=a_{k}$ infinitely often, for otherwise, as $k \rightarrow \infty$ we have

$$
\begin{equation*}
\frac{\bar{\alpha}_{k}}{4\left(1-\bar{\alpha}_{k} \alpha_{k}\right)}=\frac{1}{4\left(a_{k}-\bar{\alpha}_{k-1}-\alpha_{k}\right)} \leq \frac{1}{4(R-2 \beta)} \leq \frac{1}{4 \sqrt{5}}<C(3) \leq C(R) \tag{9}
\end{equation*}
$$

Hence by Lemma 1 we just need to show that there are infinitely many k with

$$
\min \left\{s_{1}(k), s_{2}(k), s_{3}(k), s_{4}(k)\right\} \leq C(R)
$$

Notice that

$$
s_{3}(k) s_{4}(k)=\frac{\left(\left(1-d_{k}^{-}\right)^{2}-\bar{\alpha}_{k}^{2}\right)\left(1-\left(\alpha_{k}+d_{k}^{+}\right)^{2}\right)}{16\left(1-\bar{\alpha}_{k} \alpha_{k}\right)^{2}}<\frac{\left(1-d_{k}^{-}\right)^{2}}{16\left(1-\bar{\alpha}_{k} \alpha_{k}\right)^{2}}
$$

Hence if $a_{k}=R$ and $t_{k} \geq 3$, then $d_{k}^{-}=\left(t_{k}+d_{k-1}^{-}\right) \bar{\alpha}_{k} \geq\left(3+d_{k-1}^{-}\right) \bar{\alpha}_{k}>2 \bar{\alpha}_{k}$ and $\alpha_{k} \leq \beta$ give

$$
\min \left\{s_{3}(k), s_{4}(k)\right\} \leq \frac{1-d_{k}^{-}}{4\left(1-\bar{\alpha}_{k} \alpha_{k}\right)} \leq \frac{1-2 \bar{\alpha}_{k}}{4\left(1-\bar{\alpha}_{k} \beta\right)}
$$

Since $f(x)=\frac{(1-2 x)}{(1-\beta x)}$ has $f^{\prime}(x)=-\frac{(2-\beta)}{(1-\beta x)^{2}}<0$ and $\bar{\alpha}_{k}>1 / R$, we get

$$
\min \left\{s_{3}(k), s_{4}(k)\right\} \leq \frac{1-\frac{2}{R}}{4\left(1-\frac{\beta}{R}\right)}<C(R)
$$

the latter inequality since

$$
\begin{aligned}
\left(1-\frac{1}{R}\right)\left(1-\frac{1}{R^{2}}\right) & \left(1-\frac{\beta}{R}\right)-\left(1-\frac{2}{R}\right) \\
= & \frac{1}{R}\left(1-\frac{1}{R}\left(1-\frac{1}{R}\right)-\beta\left(1-\frac{1}{R}\right)\left(1-\frac{1}{R^{2}}\right)\right)>0
\end{aligned}
$$

Likewise, if $t_{k} \leq-3$ we get $d_{k}^{-} \leq\left(-3+d_{k-1}^{-}\right) \bar{\alpha}_{k}<-2 \bar{\alpha}_{k}$ and

$$
\min \left\{s_{1}(k), s_{2}(k)\right\} \leq \frac{1+d_{k}^{-}}{4\left(1-\bar{\alpha}_{k} \alpha_{k}\right)} \leq C(R)
$$

So we can assume that the $a_{k}=R$ have $t_{k}= \pm 1$. Suppose now that $a_{k}=R$ with $t_{k}=-1$ so that

$$
d_{k}^{-}=t_{k} \bar{\alpha}_{k}+d_{k-1}^{-} \bar{\alpha}_{k}=-\bar{\alpha}_{k}+d_{k-1}^{-} \bar{\alpha}_{k}
$$

If $t_{k}=+1$ then we simply switch the roles of $s_{1}(k)$ and $s_{3}(k)$ and replace d_{k-1}^{-}, d_{k}^{+} by $-d_{k-1}^{-},-d_{k}^{+}$, respectively, in what follows.

Case 1. Suppose that $d_{k-1}^{-}, d_{k}^{+} \leq \frac{1}{R}$.
Then

$$
s_{1}(k)=\frac{\left(1-2 \bar{\alpha}_{k}+d_{k-1}^{-} \bar{\alpha}_{k}\right)\left(1-\alpha_{k}+d_{k}^{+}\right)}{4\left(1-\bar{\alpha}_{k} \alpha_{k}\right)} \leq \frac{\left(1-\bar{\alpha}_{k}\left(2-\frac{1}{R}\right)\right)\left(1-\alpha_{k}+\frac{1}{R}\right)}{4\left(1-\bar{\alpha}_{k} \alpha_{k}\right)} .
$$

Since $\bar{\alpha}_{k}\left(1+\frac{1}{R}\right)<1$ and $\bar{\alpha}_{k}>\frac{1}{R}$ we get

$$
\begin{aligned}
s_{1}(k) & <\frac{\left(1-\bar{\alpha}_{k}\left(2-\frac{1}{R}\right)\right)\left(1-\alpha_{k}+\frac{1}{R}\right)}{4\left(1-\alpha_{k} /\left(1+\frac{1}{R}\right)\right)}=\frac{1}{4}\left(1-\bar{\alpha}_{k}\left(2-\frac{1}{R}\right)\right)\left(1+\frac{1}{R}\right) \\
& <\frac{1}{4}\left(1-\frac{1}{R}\left(2-\frac{1}{R}\right)\right)\left(1+\frac{1}{R}\right)=C(R)
\end{aligned}
$$

Case 2. Suppose that $d_{k-1}^{-}, d_{k}^{+} \geq \frac{1}{R}$.
Then

$$
s_{3}(k)=\frac{\left(1-d_{k-1}^{-} \bar{\alpha}_{k}\right)\left(1-\alpha_{k}-d_{k}^{+}\right)}{4\left(1-\bar{\alpha}_{k} \alpha_{k}\right)} \leq \frac{\left(1-\frac{\bar{\alpha}_{k}}{R}\right)\left(1-\alpha_{k}-\frac{1}{R}\right)}{4\left(1-\bar{\alpha}_{k} \alpha_{k}\right)} .
$$

This time, using $\bar{\alpha}_{k}\left(1-\frac{1}{R}\right)<1$ and $\bar{\alpha}_{k}>\frac{1}{R}$, we get

$$
s_{3}(k)<\frac{\left(1-\frac{\bar{\alpha}_{k}}{R}\right)\left(1-\alpha_{k}-\frac{1}{R}\right)}{4\left(1-\alpha_{k} /\left(1-\frac{1}{R}\right)\right)}=\frac{1}{4}\left(1-\frac{\bar{\alpha}_{k}}{R}\right)\left(1-\frac{1}{R}\right)<C(R)
$$

Case 3. Suppose that $d_{k-1}^{-} \leq \frac{1}{R}$ and $d_{k}^{+} \geq \frac{1}{R}$.
We observe that

$$
d_{k}^{-}=-\bar{\alpha}_{k}+d_{k-1}^{-} \bar{\alpha}_{k} \leq-\left(1-\frac{1}{R}\right) \bar{\alpha}_{k}
$$

and

$$
\min \left\{s_{1}(k), s_{3}(k)\right\} \leq \sqrt{s_{1}(k) s_{3}(k)}=\frac{1}{4} \sqrt{S}
$$

with

$$
\begin{aligned}
S & =\frac{\left(\left(1-\bar{\alpha}_{k}\right)^{2}-\left(d_{k}^{-}\right)^{2}\right)\left(\left(1-\alpha_{k}\right)^{2}-\left(d_{k}^{+}\right)^{2}\right)}{\left(1-\bar{\alpha}_{k} \alpha_{k}\right)^{2}} \\
& \leq \frac{\left(\left(1-\bar{\alpha}_{k}\right)^{2}-\left(1-\frac{1}{R}\right)^{2} \bar{\alpha}_{k}^{2}\right)\left(\left(1-\alpha_{k}\right)^{2}-\frac{1}{R^{2}}\right)}{\left(1-\bar{\alpha}_{k} \alpha_{k}\right)^{2}}
\end{aligned}
$$

Hence we have

$$
\begin{align*}
S & <\left(\left(1-\bar{\alpha}_{k}\right)^{2}-\left(1-\frac{1}{R}\right)^{2} \bar{\alpha}_{k}^{2}\right)\left(1-\frac{1}{R^{2}}\right) \tag{10}\\
& <\left(\left(1-\frac{1}{R}\right)^{2}-\left(1-\frac{1}{R}\right)^{2} \frac{1}{R^{2}}\right)\left(1-\frac{1}{R^{2}}\right)=C(R)^{2}
\end{align*}
$$

the first inequality in (10) holding since

$$
\begin{aligned}
\left(1-\bar{\alpha}_{k} \alpha_{k}\right)^{2}\left(1-\frac{1}{R^{2}}\right) & -\left(\left(1-\alpha_{k}\right)^{2}-\frac{1}{R^{2}}\right) \\
& =\alpha_{k}\left(2-\left(2-\bar{\alpha}_{k} \alpha_{k}\right) \bar{\alpha}_{k}\left(1-\frac{1}{R^{2}}\right)-\alpha_{k}\right)>0
\end{aligned}
$$

and the second since $\bar{\alpha}_{k}>1 / R$ and

$$
f(x)=(1-x)^{2}-\left(1-\frac{1}{R}\right)^{2} x^{2}=1-2 x+\left(\frac{2}{R}-\frac{1}{R^{2}}\right) x^{2}
$$

is plainly decreasing on $0 \leq x \leq \frac{1}{2}$.

Case 4. Suppose that $d_{k-1}^{-} \geq \frac{1}{R}$ and $d_{k}^{+} \leq \frac{1}{R}$.
This is almost the same as Case 3, except we observe that

$$
d_{k-1}^{+}=\left(t_{k}+d_{k}^{+}\right) \alpha_{k-1} \leq-\left(1-\frac{1}{R}\right) \alpha_{k-1}
$$

and use

$$
\min \left\{s_{1}(k-1), s_{3}(k-1)\right\} \leq \sqrt{s_{1}(k-1) s_{3}(k-1)}=\frac{1}{4} \sqrt{S}
$$

with

$$
\begin{aligned}
S & =\frac{\left(\left(1-\bar{\alpha}_{k-1}\right)^{2}-\left(d_{k-1}^{-}\right)^{2}\right)\left(\left(1-\alpha_{k-1}\right)^{2}-\left(d_{k-1}^{+}\right)^{2}\right)}{\left(1-\bar{\alpha}_{k-1} \alpha_{k-1}\right)^{2}} \\
& \leq \frac{\left(\left(1-\bar{\alpha}_{k-1}\right)^{2}-\frac{1}{R^{2}}\right)\left(\left(1-\alpha_{k-1}\right)^{2}-\left(1-\frac{1}{R}\right)^{2} \alpha_{k-1}^{2}\right)}{\left(1-\bar{\alpha}_{k-1} \alpha_{k-1}\right)^{2}}
\end{aligned}
$$

The proof follows, using $\bar{\alpha}_{k-1}$ and α_{k-1} in place of α_{k} and $\bar{\alpha}_{k}$, respectively.
Proof of Theorem 2. Suppose that α and γ_{*} have $a_{2 k-1}=R, t_{2 k-1}=-1, a_{2 k}=$ $N R$, and $t_{2 k}=N$ for all k. Plainly, as $N \rightarrow \infty$,

$$
\bar{\alpha}_{2 k-1}, \alpha_{2 k}=\frac{1}{R-\frac{1}{N R-O(1)}} \rightarrow \frac{1}{R}, \quad \alpha_{2 k-1}, \bar{\alpha}_{2 k}=\frac{1}{N R-O(1)} \rightarrow 0
$$

while for $k \geq 2$

$$
\begin{aligned}
d_{2 k-1}^{-} & =-\bar{\alpha}_{2 k-1}+\left(N+d_{2 k-3}^{-}\right) \bar{\alpha}_{2 k-2} \bar{\alpha}_{2 k-1} \\
& =\bar{\alpha}_{2 k-1}\left(-1+\frac{N+O(1)}{N R-O(1)}\right) \rightarrow-\frac{1}{R}+\frac{1}{R^{2}}
\end{aligned}
$$

and

$$
d_{2 k-1}^{+}=\left(N+d_{2 k}^{+}\right) \alpha_{2 k-1}=\frac{N+O(1)}{N R-O(1)} \rightarrow \frac{1}{R}
$$

Likewise $d_{2 k}^{+} \rightarrow-\frac{1}{R}+\frac{1}{R^{2}}$ and $d_{2 k}^{-} \rightarrow \frac{1}{R}$. So

$$
\begin{aligned}
& s_{1}(2 k-1), s_{1}(2 k) \rightarrow \frac{1}{4}\left(1-\frac{2}{R}+\frac{1}{R^{2}}\right)\left(1+\frac{1}{R}\right)=C(R), \\
& s_{3}(2 k-1), s_{3}(2 k) \rightarrow \frac{1}{4}\left(1-\frac{1}{R^{2}}\right)\left(1-\frac{1}{R}\right)=C(R)
\end{aligned}
$$

while $s_{4}(2 k-1)>s_{2}(2 k-1)$ and $s_{2}(2 k)>s_{4}(2 k)$ with

$$
s_{2}(2 k-1), s_{4}(2 k) \rightarrow \frac{1}{4}\left(1+\frac{1}{R^{2}}\right)\left(1-\frac{1}{R}\right)>C(R)
$$

Hence as $N \rightarrow \infty$

$$
M\left(\alpha, \gamma_{*}\right)=\liminf _{k \rightarrow \infty} \min \left\{s_{1}(k), s_{2}(k), s_{3}(k), s_{4}(k)\right\} \rightarrow C(R)
$$

References

[1] J. W. S. Cassels, An Introduction to Diophantine Approximation, Cambridge Univ. Press, London/New York, 1957.
[2] S. Fukasawa, Über die Grössenordnung des absoluten Betrages von einer linearen inhomogenen Form, I, II \& IV, Jpn. J. Math. 3 (1926), 1-26, 91-106 \& 4 (1927) 147-167.
[3] J. H. Grace, Note on a Diophantine approximation, Proc. Lond. Math. Soc. 17 (1918), 316-319.
[4] A. Y. Khinchin, On the problem of Tchebyshev, Izv. Akad. Nauk SSSR, Ser. Mat. 10 (1946), 281-294.
[5] T. Komatsu, On inhomogeneous continued fraction expansions and inhomogeneous Diophantine approximation, J. Number Theory 62 (1997), no. 1, 192-212.
[6] B. Paudel and C. Pinner, Bounding the largest inhomogeneous approximation constant, preprint, arXiv:2301.08825.
[7] C. G. Pinner, More on inhomogeneous Diophantine approximation, J. Théor. Nombres Bordeaux 13 (2001) no. 2, 539-557.
[8] A. Rockett and P. Szüsz, Continued Fractions, World Scientific, Singapore, 1992.

