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Abstract

Let χ be a 2-coloring of [1, n]×[1, n] and defineMχ(n) to be the number of monochro-
matic solutions to x + y = z with x,y, z ∈ [1, n] × [1, n] under χ. Let M(n) be

the minimum value of Mχ(n) over all χ. We show that n4

209 (1 + o(1)) < M(n) <
n4

124 (1 + o(1)).

1. Introduction and Statement of Result

While attempting to prove Fermat’s Last Theorem, Schur [9] proved the follow-

ing result, which has since been named Schur’s Theorem. We use integer interval

notation in its statement and throughout the paper; that is, [1, n] = {1, 2 . . . , n}

Schur’s Theorem. For every r ∈ Z+, there exists a minimal integer S(r) such

that any r-coloring of [1, S(r)] admits a monochromatic solution to x+ y = z.

We call a solution to x+y = z a Schur triple. Simultaneously and independently,

this author along with Zeilberger [7] and Schoen [8] proved that the minimum

number of monochromatic Schur triples over all 2-colorings of [1, n] is n2

22 (1 + o(1)).

Later, Datskovsky [3] gave a nice proof of this result.

Recently, Balaji, Lott, and Rice [2] extended Schur’s Theorem to hold over the

two-dimensional integer lattice. Now, clearly if we 2-color [1, S(r)] × [1, S(r)] and

restrict our attention only to those points on y = x, we have, by Schur’s Theorem,

a monochromatic solution to x + y = z with x, y, and z in [1, S(r)] × [1, S(r)]

(where addition is component-wise). Their result is stronger. We state their result

only for Schur triples and 2 dimensions (the full result concerns monochromatic

generalized Schur triples and higher dimensional lattices; see [2], [1], [6] for more

information).

Theorem 1 (Bilaji, Lott, and Rice [2]). For every r ∈ Z+, there exists a minimal

integer S2(r) such that for any n ≥ S2(r), every r-coloring of [1, n] × [1, n] admits

a monochromatic solution to x + y = z with {x,y} linearly independent (over Q).
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The proof is an ingenious application of the Vandermonde matrix. Note that

the monochromatic solutions to x + y = z given before Theorem 1 clearly do not

satisfy the linearly independent criterium.

Lott gave a very nice presentation of this result at the Integers 2023 Conference

held in Athens, Georgia on May 18, 2023. Naturally, the subject piqued this author’s

interest, especially since the extremal colorings presented in the talk appeared to

have a nice structure (which will make an appearance in this paper).

This article investigates the minimum number of monochromatic solutions to x +

y = z that must occur in any 2-coloring of [1, n]× [1, n]. We will not be concerned

about whether or not the linearly independent criterium is satisfied and will refer

to any solution to x + y = z with x,y, z ∈ [1, n]× [1, n] as a 2-dimensional Schur

triple. To wit, we have the following result.

Theorem 2. The minimum number, M(n), of monochromatic 2-dimensional Schur

triples in any 2-coloring of [1, n]× [1, n] satisfies

n4

209
(1 + o(1)) < M(n) <

n4

124
(1 + o(1)).

More accurately (but at the expense of beauty) we have

.0047989675n4 /M(n) / .008002212n4(1 + o(1)).

Remark. In a roundabout way, Theorem 2 provides an alternative proof of The-

orem 1 since the number of linearly dependent solutions is o(n4). To see this, let

(a, b)+(c, d) = (e, f) with a ≤ c and assume (a, b) and (c, d) are linearly dependent,

so that there exists k ∈ Q+ such that (c, d) = k(a, b). For a fixed m, if k = `
m then

we must have m | a and m | b. This gives us at most n
m ·

n
m = n2

m2 possible choices

for (a, b) and, since we must have ka ≤ n, there are at most ` ≤ nm possibilities

for the value of k (with m fixed). Summing over the possible values of m we have

at most
n∑

m=1

n2

m2
· nm < n3(ln(n) + 1) = o(n4)

2-dimensional Schur triples of the form ((a, b), k(a, b), (k + 1)(a, b)).

2. Lower Bound

We will be counting unique solutions to x + y = z so that each solution triple is

viewed as a set and not an ordered triple. In this section it will be useful to double-

count the unique solutions by viewing them as ordered triples so that both x +

y = z and y + x = z are counted. To clarify this, we make the following ordering

of the points in Z+ × Z+.
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Definition 3. Let (a, b), (c, d) ∈ Z+×Z+. We say that (a, b) is less than (c, d), and

write (a, b) ≺ (c, d), if a < b or a = b and c < d. When enumerating 2-dimensional

Schur triples, we will be counting solutions to x + y = z with x≺ y and refer to

x as the smallest value.

Remark. Note that in the above definition we do not consider x =y. We may

safely ignore these solutions in our asymptotic calculations as the number of such

solutions is O(n2).

Expanding the (well-established) approach used by Datskovsky in [3] to 2 dimen-

sions, let χ be an arbitrary 2-coloring of [1, n] × [1, n] and let R and B be the red

and blue points, respectively, under χ. Define

r(x, y) =
∑

(s,t)∈R

e2πi(sx+ty) and b(x, y) =
∑

(s,t)∈B

e2πi(sx+ty).

Letting N(χ) be the number of monochromatic 2-dimensional Schur triples under

χ and accounting for the aforementioned double-counting, by the orthogonality of

characters (that is; we have
∫ 1

0
e2πix dx equal to 1 for x = 0 and equals 0 for all

other x; see page 5 of [5] for a short development of this fact) we have

2N(χ) =

∫ 1

0

∫ 1

0

(
(r(x, y))2 r(x, y) + (b(x, y))2 b(x, y)

)
dx dy,

where r(x, y) = r(−x,−y) and b(x, y) = b(−x,−y) (i.e., the complex conjugates).
Using the same algebraic rearrangement as found in [3], and letting

f(x, y) =
(
r(x, y)b(x, y) + r(x, y)b(x, y)

)
and g(x, y) = r(x, y)b(x, y)(r(x, y) + b(x, y))

we see that

2N(χ) =

∫ 1

0

∫ 1

0

(
(r(x, y) + b(x, y))2(r(x, y) + b(x, y))− f(x, y)− g(x, y)

)
dx dy.

It is easy to see that∫ 1

0

∫ 1

0

(
(r(x, y) + b(x, y))2(r(x, y) + b(x, y))

)
dx dy

is equal to |{(x1, y1), (x2, y2), (x3, y3) ∈ [1, n]× [1, n] : (x1, y1) + (x2, y2) = (x3, y3)}|
and that this is equal to

n∑
x1=1

n∑
y1=1

n−x1∑
x2=1

n−y1∑
y2=1

1 =
n4

4
+O(n3).

(Note that this informs us that the expected number of monochromatic 2-dimensional

Schur triples under a random 2-coloring of [1, n]× [1, n] is n4

32 (1 + o(1)).)
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To find a lower bound for N(χ) we define

S(χ) =

∫ 1

0

∫ 1

0

f(x, y) dx dy and T (χ) =

∫ 1

0

∫ 1

0

g(x, y) dx dy

so that providing an upper bound on S(χ) + T (χ) will give us a lower bound (up

to O(n3)) on 2N(χ) = n4

4 − (S(χ) + T (χ)).

Translating S(χ) and T (χ) into sets we find that

S(χ) =
∣∣{(x1, y1), (x2, y2) ∈ [1, n]2 of different colors : 1 ≤ x2 − x1, y2 − y1 ≤ n

}∣∣
and

T (χ) = |{(x1, y1) ∈ R, (x2, y2) ∈ B : 1 ≤ x1 + x2, y1 + y2 ≤ n}| .

This author was unable to determine the maximum of S(χ) +T (χ) over all χ, so
effective approximation is the next option. To this end, we partition [1, n] × [1, n]
into squares of side length n

L , where L is a parameter to be chosen later:

I(i, j) =

{
(x, y) ∈ [1, n]× [1, n] :

(i− 1)n

L
+ 1 ≤ x ≤ in

L
,

(j − 1)n

L
+ 1 ≤ y ≤ jn

L

}
for 1 ≤ i, j ≤ L and let ri,j = |R ∩ I(i, j)| and bi,j = |B ∩ I(i, j)| . By over-
counting elements in each of the sets underlying S(χ) and T (χ) we have

S(χ) ≤
L∑
i=1

L∑
j=1

L∑
k=i

L∑
`=j

(ri,j bk,` + bi,j rk,`) and T (χ) ≤
L∑
i=1

L∑
j=1

L−i+1∑
k=1

L−j+1∑
`=1

ri,j bk,`.

It turns out that we achieve better results by replacing the overcounted squares

with their total maximum possible value (e.g., ri,j bL−i+1,L−j+1 ≤ n2

2L2 · n
2

2L2 ) and
allow the variables to be free from the places where overcounting occurs. Hence, we
will use

S(χ) ≤ 3n4

8L
− 7n4

32L
+

L∑
i=1

L∑
j=1

L∑
k=i+1

L∑
`=j+1

(ri,j bk,` + bi,j rk,`) +O(n3)

and

T (χ) ≤ n4

2L
+

L−1∑
i=1

L−1∑
j=1

L−i∑
k=1

L−j∑
`=1

ri,j bk,` +O(n3)

so that, using 2N(χ) = n4

4 − (S(χ) + T (χ)), we have

2N(χ) ≥ n4

4
− 7n4

8L
+

7n4

32L2
−A(χ) +O(n3),

where

A(χ) =

L∑
i=1

L∑
j=1

L∑
k=i+1

L∑
`=j+1

(ri,j bk,` + bi,j rk,`) +

L−1∑
i=1

L−1∑
j=1

L−i∑
k=1

L−j∑
`=1

ri,j bk,`.



INTEGERS: 24A (2024) 5

Next, as was done in [4], we let ri,j = (1 + xi,j)
n2

2L2 and bi,j = (1 − xi,j) n2

2L2 .

Doing so, and relying on Maple for the simplification, we obtain (up to O(n3)) the
following:

A(χ) =
3n4

16
−3n4

8L
+

3n4

16L2
− n4

4L4

 L∑
i=1

L∑
j=1

L∑
k=i+1

L∑
`=j+1

2xi,j xk,` +

L−1∑
i=1

L−1∑
j=1

L−i∑
k=1

L−j∑
`=1

xi,j xk,`

.
with −1 ≤ xi,j ≤ 1 for all (i, j) ∈ [1, L]× [1, L].

Remark. Not visible in the above simplification is the not-so-obvious fact that∑L−1
i=1

∑L−1
j=1

∑L−i
k=1

∑L−j
`=1 (xi,j − xk,`) = 0, which is quite fortunate as we have pro-

duced a quadratic form A(χ) with no linear term, which is needed for us to apply
a very useful lemma (Lemma 4, below).

We now have

2N(χ) ≥ n4

16
− n4

2L
+

n4

32L2
+

n4

4L4
B(x) +O(n3), (1)

where B(x) is the quadratic form

B(x) =

L∑
i=1

L∑
j=1

L∑
k=i+1

L∑
`=j+1

2xi,j xk,` +

L−1∑
i=1

L−1∑
j=1

L−i∑
k=1

L−j∑
`=1

xi,j xk,`.

The last step before turning to the computer is to map xi,j 7→ x(i−1)L+j and
writing

B(x) = xTMx, x = (x1, x2, . . . , xL2), (2)

where M is an L2×L2 matrix. We use the computer to create M ; the Matlab code
is in the Appendix.

Our first attempt at maximizing our quadratic form was done by Maple’s QPSolve
routine with L = 16. Unfortunately, the resulting bound was worse than the trivial
bound N(χ) ≥ 0. However, it did give an interesting structure to the coloring that
minimized B(x), as seen in Figure 1 (disregard the lines at this point of the article).
This will be useful in the next section.

Since it is now clear that we need a more computationally efficient algorithm, we
need to translate the problem into one that can be solved with known semidefinite
optimization programs. We will rely on the following well-known lemma (we include
the proof for completeness).

Lemma 4. Let A be an m ×m matrix and let D = (d1, d2, . . . , dm) be a diagonal
m×m matrix. If A+D is positive semidefinite, then xTAx ≥ −trace(D) for any
x∈ [−1, 1]m.

Proof. Since A + D is positive semidefinite we have xT (A + D)x ≥ 0 for any x.
Hence,

xTAx ≥ −xTDx = −
m∑
i=1

dix
2
i ≥ −

m∑
i=1

di = −trace(D).
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Figure 1: Coloring produced by QPSolve minimizing B(x) with L = 16. The
diagonal structure is similar to the colorings presented by Lott at the Integers 2023
conference.

Using this lemma, our goal is to find a diagonal matrix D with minimal trace
such that M +D is positive definite. We turn to the Matlab add-on cvx and used
its SeDuMi engine option to run the optimization; see the Appendix for the cvx

code.

Once such a D is found, using Inequality (1), we have

N(χ) ≥ n4

32
− n4

4L
+

n4

64L2
− n4

8L4
trace(D) +O(n3). (3)

The best result obtained (using a single Apple Macbook Pro with an i7 2.3GHz
chip and 32G of RAM) used L = 100 (and, according to Matlab over 50 million
variables) and 4 days of time. Based on this, and some rounding to rationals, a
“small” trace of 19,162,076 was discovered. Using Inequality (3) we can state that

N(χ) ≥ .0047989675n4(1 + o(1)).

With more time and better resources, the method above will surely produce a
better lower bound for L > 100.

3. Upper Bound

Taking our cue from the coloring produced by Maple’s QPSolve routine given in
Figure 1, we let 1

2 ≤ β ≤ α < 1 and consider 2-colorings of [1, n] × [1, n] given by
coloring all points between x + y = αn and x + y = (1 + β)n blue and the other
points red. Denote such a coloring by γ(α, β). We present the case 2+β

4 ≤ α ≤ 2−β
2

as this situation produced our smallest discovered bound.

Figure 2 will help explain our method of counting monochromatic 2-dimensional
Schur triples under γ(α, β). (Regions A through G are not the same under different
assumptions on α and β.)
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Figure 2: Counting monochromatic 2-dimensional Schur triples under γ(α, β) with
(a, b) in the labeled region. The axes’ labels across all cases are identical (Case A
is larger for ease of reading these labels).
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Considering the smallest blue point (a, b) of the Schur triple to be in each of
the regions A through G, all points in the upper right area (bordering the line
x + y = (1 + β)n) can be reached by some blue point (c, d) with (a, b) ≺ (c, d).
Summing these areas over all possible (a, b) in each region produces the following
formulas (up to O(n3)):

A:

n/2∑
a=(1−α)n

(1+β−α)n−a∑
b=αn−a

(n− 2a) ((1 + β − α)n− a− b))

B:

(1−α)n∑
a=βn/2

βn∑
b=αn−a

(
(n− 2a) ((1 + β − α)n− a− b)− ((1− α)n− a)2

2

)

C:

(1−α)n∑
a=βn/2

(1+β−a)n−a∑
b=βn

(
((1+β)n−2a−b)((1+β−α)n−a−b)− ((1 + β − α)n− a− b)2

2

)

D:

βn/2∑
a=(α−1/2)n

n/2∑
b=αn−a

(
(n− b)((1 + β − α)n− a− b)− ((1− α)n− a+ b)2

2
− (βn− b)2

2

)

+

βn∑
b=n/2

βn/2∑
a=b−(1−α)n

(
(n− b)((1 + β − α)n− a− b)− ((1− α)n− a+ b)2

2
− (βn− b)2

2

)

E:

βn/2∑
a=(α+β−1)n

(1−α)n+a∑
b=βn

(
(n− b)((1 + β − α)n− a− b)− ((1− α)n+ a− b)2

2

)

F:

(α−1/2)n∑
a=(α−β)n

βn∑
b=αn−a

(
(n− b)((1 + β − α)n− a− b)− (βn− b)2

2

)

+

(α+β−1)n∑
a=(α−1/2)n

βn∑
b=(1−α)n+a

(
(n− b)((1 + β − α)n− a− b)− (βn− b)2

2

)

G:

(1−α+β/2)n∑
b=βn

b−(1−α)n∑
a=αn−b

((n− b)((1 + β − α)n− a− b))

+
αn∑

b=(1−α+β/2)n

(1+β−α)n−b∑
a=αn−b

((n− b)((1 + β − α)n− a− b))

+

(1+β−α)n∑
b=αn

(1+β−α)n−b∑
a=1

((n− b)((1 + β − α)n− a− b))
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Using Maple we evaluate each of the above sums and discard all terms less than
quartic powers of n. Summing all of these accounts for the blue 2-dimensional Schur
triples. For the red 2-dimensional Schur triples, it is easy to find that the number of

red 2-dimensional Schur triples entirely in the lower-left red triangle is α4

48n
4(1+o(1))

and that the only other red 2-dimensional Schur triples must have only their smallest

term in the lower-left red triangle, of which there are (1−β)4
24 n4(1 + o(1)) such red

triples. Having a formula for the number of monochromatic 2-dimensional Schur
triples under γ(α, β), we next minimize the result as a function of α and β, checking
critical points against all boundaries. We find that α ≈ .6500298027 and β ≈
.602220070 (the actual values are functions of a root of 63x3 + 240x2− 438x+ 166)
gives our best-discovered upper bound of .008002212n4(1 + o(1)).
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again organizing a fantastic conference and Andrew Lott for giving an engaging
talk on multidimensional (generalized) Schur triples at that conference. The author
would also like to thank the anonymous referee for such a careful reading that helps
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Appendix

First we have the cvx code (run in Matlab) for the optimization problem minimizing
the trace of the diagonal matrix in Inequality 3:

cvx_begin sdp

variable D(L^2,L^2) diagonal

minimize(trace(D));

subject to

M+D>=0;

cvx_end

Below is the Matlab code to produce matrix M in Equation (2).

L=100

M=zeros(L^2,L^2);

for i=1:L/2,

for j=1:L/2,

M(L*(i-1)+j,L*(i-1)+j)=1;

end

end

for i=1:L,

for j=1:L,

for k=i+1:L,

for l=j+1:L,

M(L*(i-1)+j,L*(k-1)+l)=1;

M(L*(k-1)+l,L*(i-1)+j)=1;

end

end

end

end

for i=1:L/2,

for j=1:L-1,

for l=j+1:L-j,

M(L*(i-1)+j,L*(i-1)+l)=M(L*(i-1)+j,L*(i-1)+l)+1;

M(L*(i-1)+l,L*(i-1)+j)=M(L*(i-1)+l,L*(i-1)+j)+1;

end

for k=i+1:L-i,

for l=1:L-j,

M(L*(i-1)+j,L*(k-1)+l)=M(L*(i-1)+j,L*(k-1)+l)+1;

M(L*(k-1)+l,L*(i-1)+j)=M(L*(k-1)+l,L*(i-1)+j)+1;

end

end

end

end


