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Abstract

Let P(n) denote the multi-set of all parts of all partitions of n. We study var-
ious digital questions concerning P(n), and show that it satisfies the generalized
Benford’s law and is also asymptotically normal regardless of base.

1. Introduction

Let p(n) denote the usual partition function, counting all possible partitions of n,

and let P(n) denote the multi-set of all parts in partitions of n, with appropriate

multiplicity. For example, if n = 5, then the partitions of n are

5, 4+1, 3+2, 3+1+1, 2+2+1, 2+1+1+1, 1+1+1+1+1.

So we would have p(5) = 7 and

P(5) = {5, 4, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}.

We will be interested in studying the following two digital properties.

• We say that a sequence of multi-sets A(n) satisfies the generalized Benford’s

law if the proportion of elements of A(n) that start with a number c in base

b approaches logb(1 + 1/c) as n goes to infinity.1

• We say that a sequence of multi-sets A(n) is asymptotically normal if the

number of times a base-b string s appears within the digits of the elements of

A(n) is proportional to b−|s| (relative to all substrings of length |s|) as n goes

to infinity.

Throughout this paper, we will assume we are working with a fixed base b ∈ N,

b ≥ 2, and we will often elide the difference between positive integers and strings

DOI: 10.5281/zenodo.11352985
1The standard version of Benford’s law assumes that c is a one-digit number.
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(which are sequences of base-b digits) as there is a natural bijection between them,

provided one ignores strings that start with 0. Also, |s| refers to the number of

digits in the string s.

Our main result will be the following.

Theorem 1. The sequence of multi-sets P(n) satisfies the generalized Benford’s

law and is asymptotically normal.

The fact that the numbers p(n) themselves satisfy Benford’s law was proved in

[1]. Another Benford’s law result relating to partitions was covered in [12].

Our investigations were inspired by a question regarding normal numbers that

Nathan Jones asked of the author at a conference. A number x ∈ [0, 1) with base-b

expansion

x = 0.a1a2a3 · · · , ai ∈ {0, 1, . . . , b− 1}

is said to be base-b normal if every base-b string s (including those beginning with 0)

appears in a1a2 · · · an with proportion approaching b−|s| as n goes to infinity. While

the normality of many commonly used irrationals is still unknown, there have been

a variety of constructions of normal numbers. One common method is to take a

sequence of strings sn related to some function or arithmetic data and concatenate

them to form a number x = 0.(s1)(s2)(s3) · · · . Most famously, Champernowne [2]

showed that concatenating the integers in order resulted in a normal number, so

x = 0.12345678910111213141516 · · ·

is base-10 normal. Other constructions of this type include concatenating primes [3],

concatenating values of polynomials [5], concatenating values of the totient function

[15], and concatenating values of the largest prime divisor function [6].

Jones asked if one could concatenate the partition function p(n) and obtain a

normal number. That question remains open, due to the rate of growth of p(n).2

Instead, we will show the following related result.

Theorem 2. Let P(n) denote the string formed by concatenating the elements of

P(n) in order from greatest to least. Then 0.(P(1))(P(2))(P(3)) · · · is normal.

The choice of ordering elements from greatest to least is not necessary; any order

would work, but we have chosen a specific one to give a compactly stated theorem.

In base 10, the number constructed by Theorem 2 would look like

0.121132111143222111111154332222111111111111 · · · .

Due to the prevalence of 1’s, this does not appear normal from the digits so far given,

and indeed even after a decillion digits, there is still a noticeably larger number of

1’s relative to all other digits. See Section 2 for more numerical data.

2Currently, constructions of normal numbers via concatenating a function require that the
growth rate of that function does not exceed polynomial.
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Theorem 2 is not an immediate consequence of Theorem 1. Instead we must

make use of the following idea.

Proposition 1. Given a sequence of multi-sets of integers A(n), let L(A(n)) denote

the sum of the (base-b) lengths of elements of A(n):

L(A(n)) =
∑

a∈A(n)

(blogb ac+ 1) .

Let A(n) denote a string formed by concatenating the elements of A(n) in any order.

If

lim
n→∞

L(A(n))

|A(n)|
=∞ lim

n→∞

L(A(n+ 1))∑n
i=1 L(A(i))

= 0

and A(n) is asymptotically normal, then the number

0.(A(1))(A(2))(A(3)) · · ·

is normal.

This proposition is a simple variation of the combinatorial method of normality

proofs (see [14, Theorem 1]). As such, we will not provide a full proof of the

proposition, but instead include a sketch of the proof.

Our main tool in proving Theorem 1 will be the function Qk(n), which will

represent the number of times k appears in P(n). Using our example from the

start of the paper, Q3(5) = 2 and Q1(5) = 12. The On-Line Encyclopedia of

Integer Sequences (OEIS) contains several entries related to Qk(n) [13]. Entry

A066633 gives a triangle of values of Qk(n), where n gives the row and k the

column. Entry A000070 gives Q1(n) (with offset 1) and entries A024786–A024794

give Q2(n) through Q10(n). The functions Q1(n) (and more generally Qk(n)) have

been studied for their application to Stanley’s Theorem (resp., Elder’s Theorem)

[4, 9].

We will need the following asymptotic results on Qk(n).

Lemma 1. Let ε ∈ (0, 1/4). Then we have

Qk(n) =
p(n)

eπk/
√
6ñ − 1

(
1 +O

(
ñ−2ε

))
=

eπ
√

2ñ/3

4
√

3ñ(eπk/
√
6ñ − 1)

(
1 +O

(
ñ−2ε

))
, (1)

uniformly for 1 ≤ k ≤ n3/4−ε/3 as n goes to infinity. Here ñ = n− 1/24.

Moreover, if ε > 0, then we have that

Qk(n) = p(n− k)
(

1 +O
(
e−n

ε
))

uniformly in n1/2+ε ≤ k ≤ n.
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The full range of k is crucial for our work. Both Fristedt [8] and Grabner,

Knopfmacher, and Wagner [10] provide strong asymptotics for Qk(n) but they only

hold when k = o(n1/2). On OEIS, Vaclav Kotesovec gives some asymptotics for

Qk(n) for a few specific values of k, although the method used is not clear.

We will frequently make use of asymptotic notations in this paper. By f(x) =

O(g(x)) or f(x) � g(x) we mean that |f(x)| ≤ C|g(x)| for all sufficiently large x.

The constant C is known as the implicit constant. If we write f(x) = Oy(g(x)), then

we mean that the implicit constant may depend on the variable y. We also write

f(x) = o(g(x)) for limx→∞ f(x)/g(x) = 0 and f(x) � g(x) for g(x)� f(x)� g(x).

We will make use of the fact that
∫ b
a
O(f(x)) dx = O(

∫ b
a
|f(x)| dx).

The paper is arranged as follows. In Section 2, we provide some computer cal-

culations on the digits of P(n). In Section 3, we will provide a proof of Lemma

1. In Section 4, we will prove the first half of Theorem 1, that P(n) satisfies the

generalized Benford’s law. In Section 5, we will prove the second half of Theorem

1, that P(n) is asymptotically normal. In Section 6, we will prove Theorem 2 after

a sketched proof of Proposition 1.

2. Numerical Data

The rate of convergence of many of these results is quite slow. For example, consider

(P(1))(P(2))(P(3)) · · · (P(1000)) (2)

in base 10. In order for the infinite concatenation of P(n) to be normal, we would

expect every digit from 0 to 9 to appear one-tenth of the time. However, (2) contains

over 74 ·1033 digits of which the digit 1 occurs approximately 34% of the time, while

the digit 0 occurs approximately 3% of the time. The frequency of the digits appears

more like a Benford distribution than an equidistribution expected by normality.

However, this should not be surprising, as the numbers being concatenated are so

small, a large chunk of the digits we are considering are still leading digits.

Part of the issue is the choice of base. By choosing a smaller base, we can see

the convergence occurring quicker. For the remaining examples, we will consider

base 4. As a result of this new base, in (2), the digit 1 occurs approximately 44%

of the time, the digit 2 approximately 25% of the time, the digit 3 approximately

18% of the time, and the digit 0 approximately 14% of the time. This is still

not equidistributed, but much closer to it. In Tables 1 and 2, we have calculated

frequencies of leading digits or the frequencies of all digits across various P(4n).

The choice of testing at 4n was used for ease of calculation. We see a fairly steady

(although not monotonic) approach to the expected frequency.
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Frequency of leading digit 1 2 3

P(41) 0.667 0.25 0.083
P(42) 0.640 0.240 0.120
P(43) 0.607 0.251 0.142
P(44) 0.588 0.259 0.153
P(45) 0.572 0.265 0.163
P(46) 0.562 0.269 0.169
P(47) 0.553 0.272 0.174
P(48) 0.548 0.275 0.178

Expected frequency 0.5 0.292 0.208

Table 1: Frequency of base-4 leading digits in various P(n).

Frequency of digit 0 1 2 3

P(41) 0.077 0.615 0.231 0.077
P(42) 0.076 0.573 0.230 0.121
P(43) 0.101 0.514 0.239 0.147
P(44) 0.121 0.472 0.244 0.163
P(45) 0.138 0.439 0.247 0.176
P(46) 0.151 0.414 0.249 0.186
P(47) 0.162 0.394 0.250 0.194
P(48) 0.171 0.379 0.251 0.200

Expected frequency 0.25 0.25 0.25 0.25

Table 2: Frequency of base-4 digits in various P(n).

3. Facts about p(n) and Qk(n)

Hardy and Ramanujan [11] proved the following asymptotic for the partition func-

tion:

p(n) =
1

2π
√

2

d

dx

eπ√ 2
3 (x− 1

24 )√
x− 1

24

∣∣∣∣∣∣
x=n

+O
(
eD
√
n
)
, n ≥ 1,

where D is any number larger than π
2

√
2
3 . If we analyze this formula further, we

get

p(n) =
eπ
√

2
3 (n−

1
24 )

4
√

3(n− 1
24 )
− eπ

√
2
3 (n−

1
24 )

4
√

2π(n− 1
24 )3/2

+O
(
eD
√
n
)
, n ≥ 1. (3)

Since it will come up frequently, we will write ñ := n − 1
24 . We will also assume

that D = 3π
4

√
2
3 , so that the error term here is significantly smaller than any other

term.
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The simple form of this asymptotic will be used as well:

p(n) � eπ
√

2n/3

n
, n ≥ 1. (4)

We first show how to write Qk(n) as a sum of values of the partition function.

This result is not new to this paper and can be found, for example, in [4].

Lemma 2. We have that

Qk(n) =
∑
j≥1

p(n− jk).

Proof. We begin by showing that Qk(n) = p(n−k) +Qk(n−k). There is a natural

bijection between those partitions of n that contain at least one part of size k and

all partitions of size n − k: simply remove the part of size k from the partition of

n to get a partition of n− k. Note that all remaining parts are unchanged by this.

Thus Qk(n) counts the total number of parts of size k in all partitions of n (which

we can assume have at least one part of size k, since the other partitions do not

contribute to this term), while Qk(n− k) counts the total number of parts of size k

in all partitions of n− k. The only difference between these are the parts that are

removed by the bijection, and there must be one for every such partition, namely

there must be p(n− k) of them, which completes the argument.

Iterating this argument repeatedly we get

Qk(n) = p(n− k) +Qk(n− k) = p(n− k) + p(n− 2k) +Qk(n− 2k) = · · · ,

which leads to our desired formula. Note that since Qk(n) = 0 whenever k > n, this

process will eventually terminate. We also use the standard definition of p(0) = 1,

which matches our expectation of Qk(k) = 1.

We now prove Lemma 1.

Proof of Lemma 1. To prove this, we begin by applying Lemma 2 together with the

Hardy-Ramanujan asymptotic Equation (3):

Qk(n) = O(1) +
∑

1≤j<n/k

(
eπ
√

2
3 (ñ−jk)

4
√

3(ñ− jk)
− eπ

√
2
3 (ñ−jk)

4
√

2π(ñ− jk)3/2
+O

(
eD
√
n−jk

))
.

(5)

The O(1) comes from the possibility that j = n/k, as here p(n − jk) = 1, but the

Hardy-Ramanujan asymptotic does not apply.

Let ε ∈ (0, 1/4), N = ñ3/4−ε, and assume k ≤ N/3. Consider a sum of the form

∑
1≤j<N/k

eπ
√

2
3 (n−jk−

1
24 )

(n− jk − 1
24 )λ

, (6)
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for λ equal to 1 or 3/2. Applying Taylor’s Theorem, we have that

√
ñ− jk =

√
ñ

(
1− jk

ñ

)

=
√
ñ

(
1− jk

2ñ
+O

((
jk

ñ

)2
))

(7)

=
√
ñ− jk

2
√
ñ

+O
(
n−2ε

)
,

provided we are in the range 1 ≤ j < N/k. Similarly, we have

(ñ− jk)
−λ

=
1

ñλ

(
1 +O

(
jk

ñ

))
=

1

ñλ
(
1 +O

(
n−2ε

))
. (8)

Thus, applying Equation (7) and equation (8) to Equation (6) and using that ex =

1 +O(x) for bounded x, we get

∑
1≤j<N/k

eπ
√

2
3 (ñ−jk)

(ñ− jk)λ
=
eπ
√

2ñ/3

ñλ
(
1 +O

(
n−2ε

)) ∑
1≤j<N/k

e
− πk√

6ñ
j
.

Since
∑

1≤j≤` e
−cj = (1− e−cb`c)/(ec − 1) and since

e
−
πk√
6ñ

N
k


≤ e
− π

2
√

6
ñ1/4+ε

= O
(
n−2ε

)
for sufficiently large n, we obtain

∑
1≤j≤N/k

eπ
√

2
3 (ñ−jk)

(ñ− jk)λ
=
eπ
√

2ñ/3

ñλ
· 1

eπk/
√
6ñ − 1

(1 +O(ñ−2ε)). (9)

This estimate shrinks as k increases, so since k ≤ N/3, at a minimum we have that

∑
1≤j≤N/k

eπ
√

2
3 (ñ−jk)

(ñ− jk)λ
� eπ

√
2ñ/3

ñλ
· 1

eπN/3
√
6ñ − 1

� n−λeπ
√

2ñ/3−πñ1/4−ε/3
√
6. (10)

For the remaining terms, first note that we can bound the sum by the largest

term times the number of terms, which becomes the following:

∑
N/k≤j<n/k

eπ
√

2
3 (ñ−jk)

(ñ− jk)λ
�

∑
N/k≤j<n/k

eπ
√

2
3 (ñ−jk) � neπ

√
2
3 (ñ−N).
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Applying Equation (7), we see that
√
ñ−N =

√
ñ− n1/4−ε/2 +O(n−2ε). Thus we

can bound the remainder sum by

∑
N/k≤j<n/k

eπ
√

2
3 (ñ−jk)

(ñ− jk)λ
� neπ

√
2
3 (
√
ñ−n1/4−ε/2). (11)

Similarly, we have that ∑
1≤j<n/k

eD
√
n−jk ≤ neD

√
n. (12)

We see that the upper bounds of Equations (11) and (12) are both orders of mag-

nitude smaller than the lower bound in Equation (10); in fact, they are both less

than n−2ε times the lower bound.

Therefore, combining Equations (5), (9), (11), and (12), we get

Qk(n) =
eπ
√

2ñ/3

4
√

3ñ
· 1

eπk/
√
6ñ − 1

(1 +O(ñ−2ε)),

as desired.

Now suppose that ε > 0 and n1/2+ε ≤ k < n/2. Then

Qk(n) =
∑
j≥1

p(n− jk) = p(n− k) +O(np(n− 2k)).

We use the fact that
√
a− b ≤

√
a− b

2
√
a

for 0 < b ≤ a to obtain

√
n− 2k ≤

√
n− k − k

2
√
n− k

≤
√
n− k − k

2
√
n
≤
√
n− k − nε

2
.

Since n − 2k ≥ 1, we can apply the simple asymptotic Equation (4) to p(n − 2k)

together with the bound just shown and obtain

np(n− 2k)� neπ
√

2(ñ−2k)/3

ñ− 2k
� neπ

√
2(ñ−k)/3−πnε/

√
6

� eπ
√

2(ñ−k)/3

(ñ− k)
e−n

ε

� p(n− k)e−n
ε

.

Thus Qk(n) = p(n− k)(1 +O(e−n
ε

)) as desired. When k = n/2, then

Qk(n) = p(n− k) + p(n− 2k) = p(n/2) + 1,

and when n/2 < k ≤ n, then Qk(n) = p(n− k). These trivially satisfy the asymp-

totic p(n− k)(1 +O(e−n
ε

)) and complete the proof.
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4. Proof of Theorem 1 – Benford’s Law

In this section, we will prove that the sequence of multi-sets P(n) satisfies the

generalized Benford’s law. To do this we will make use of the indicator function

Ic(k), which, for a given string c not starting with 0, is 1 if the expansion of k starts

with c and is 0 otherwise.

We begin with the following useful lemma.

Lemma 3. We have∑
k≤x

Ic(k)

k
= logb

(
1 +

1

c

)
log x+O

(
1

c

)
,

where the implicit constant is only dependent on the number of digits in c.

Proof. We will prove the desired asymptotic holds for
∑
k<x Ic(k)/k, as the differ-

ence between these sums is negligible compared to the error term O(1/c).

Recall the formula ∑
k<x

1

k
= log x+ γ +O(1/x),

where γ is the Euler–Mascheroni constant.

Let J denote the number of base-b digits in c. Note that for any j ∈ N≥0, we

have ∑
k∈[bJ+j−1,bJ+j)

Ic(k)

k
=

∑
k∈[0,bj)

1

bjc+ k

= log

(
bjc+ bj

bjc

)
+O

(
1

bjc

)
= log

(
1 +

1

c

)
+O

(
1

bjc

)
.

This entire sum could also be bounded by O(1/c).

Let bK be the smallest power of b with x ≤ bK . Then

∑
k<x

Ic(k)

k
=
∑
k<bK

Ic(k)

k
+O

 ∑
k∈[bK−1,bK)

Ic(k)

k


=
∑
k<bK

Ic(k)

k
+O

(
1

c

)
.

We can now break up this first sum into b-adic intervals and apply our earlier

estimation to obtain∑
k<x

Ic(k)

k
=

K−J∑
j=0

∑
k∈[bJ+j−1,bJ+j)

Ic(k)

k
+O

(
1

c

)
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=

K−J∑
j=0

(
log

(
1 +

1

c

)
+O

(
1

bjc

))
+O

(
1

c

)

= (K − J + 1) log

(
1 +

1

c

)
+O

(
1

c

)
= (logb x+OJ(1)) log

(
1 +

1

c

)
+O

(
1

c

)
= logb

(
1 +

1

c

)
log x+OJ

(
1

c

)
.

This completes the proof.

We are ready to show that P(n) satisfies the generalized Benford’s Law.

Proof of the first half of Theorem 1. It suffices to prove that

∑
k≤n

Ic(k)Qk(n) = logb

(
1 +

1

c

)
log(ñ)eπ

√
2ñ/3

4π
√

2ñ

(
1 +O

(
1

log n

))
, (13)

as the sum on the left will count the number of k ∈ P(n) with Ic(k) = 1, and

the main term on the right will be identical over all c except for the factor of

logb(1 + 1/c), as desired.

We will split the sum
∑
k≤n Ic(k)Qk(n) into two parts, one over k ≤ n3/5 and

k > n3/5. Selecting ε = 1/10, we may apply the first half of Lemma 1 uniformly

to all k in the first interval and the second half of Lemma 1 uniformly to all k in

the second interval. In fact, for the second interval, we will use the much simpler

bound Qk(n)� p(n− k).

For the sum over k > n3/5, we have∑
n3/5<k≤n

Ic(k)Qk(n) ≤
∑

n3/5<k≤n

Qk(n)�
∑

n3/5<k≤n

p(n− k)� np(n− n3/5).

Again using the fact that
√
a− b ≤

√
a− b

2
√
a

for 0 ≤ b ≤ a, together with Equation

(4), we have that

np(n− n3/5)� neπ
√

2
3 (ñ−n3/5)

4
√

3ñ
≤ eπ

√
2
3 ñ−

π√
6
n1/10

. (14)

Due to the e−πn
1/10/

√
6, the sum over k > n3/5 is orders of magnitude smaller than

even the error term in Equation (13).

For the remaining terms, we make use of Equation (1) for the Qk(n), and note

that the (1 + O(ñ−1/5)) can be factored out of the sum due to being uniform over
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all the terms. Thus we have

∑
k≤n3/5

Ic(k)Qk(n) =

 ∑
k≤n3/5

Ic(k)

eπk/
√
6ñ − 1

 eπ
√

2ñ/3

4
√

3 · ñ
(1 +O(ñ−1/5)). (15)

We will evaluate this inner sum using partial summation as follows, making use of

Lemma 3 as we proceed:∑
k≤n3/5

Ic(k)

eπk/
√
6ñ − 1

=
∑

k≤n3/5

Ic(k)

k
· k

eπk/
√
6ñ − 1

=

 ∑
k≤n3/5

Ic(k)

k

 n3/5

eπn3/5/
√
6ñ − 1

−
∫ n3/5

1

∑
k≤u

Ic(k)

k

 d

du

(
u

eπu/
√
6ñ − 1

)
du

=

(
logb

(
1 +

1

c

)
log(n3/5) +O

(
1

c

))
n3/5

eπn3/5/
√
6ñ − 1

(16)

− logb

(
1 +

1

c

)∫ n3/5

1

log u
d

du

(
u

eπu/
√
6ñ − 1

)
du (17)

+O

(
1

c

∫ n3/5

1

d

du

(
u

eπu/
√
6ñ − 1

)
du

)
. (18)

In (18), we could pull the big-O out of the integral because the derivative is of

constant sign. The terms in Equations (16) and (18) are bounded by

O

(
n3/5 log n

c(eπn3/5/
√
6ñ − 1)

+
1

c(eπ/
√
6ñ − 1)

)
= O

(√
n

c

)
.

When multiplied by eπ
√

2ñ/3/ñ from Equation (15), the resulting order of magnitude

is precisely that of the error term in Equation (13).

This leaves the integral in Equation (17), which can be evaluated precisely using

the following formula:∫
log u

d

du

(
u

eπu/
√
6ñ − 1

)
du

=
u log u

eπu/
√
6ñ − 1

−

√
6ñ log

(
eπu/

√
6ñ − 1

)
π

+ u+ C. (19)

Note that log(x−1) = log x+O(1/x) for large x. Thus, when evaluated at u = n3/5,

the second and third term of Equation (19) will almost entirely cancel to leave just
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the first term and a small remainder:

n3/5 log(n3/5)

eπn3/5/
√
6ñ − 1

+O

(
n

eπn3/5/
√
6ñ

)
. (20)

As this integral is multiplied by − logb(1 + 1/c) = O(1/c) in Equation (17), ev-

erything in Equation (20) is negligible compared with the O(
√
n/c) term already

found. When Equation (19) is evaluated at u = 1, we use the fact that log(ex−1) =

log x+O(x) when x is close to 0 to obtain

1 log 1

eπ/
√
6ñ − 1

−

√
6ñ log

(
eπ/
√
6ñ − 1

)
π

+ 1

= −
√

6ñ

π

(
log

(
π√
6ñ

)
+O

(
1√
ñ

))
+ 1

=

√
ñ log ñ

π
√

2/3

(
1 +O

(
1

log n

))
.

Together this gives

∑
k≤n3/5

Ic(k)

eπk/
√
6ñ − 1

= logb

(
1 +

1

c

) √
ñ log ñ

π
√

2/3

(
1 +O

(
1

log n

))
. (21)

Inserting Equation (21) into Equation (15) gives the desired result.

5. Proof of Theorem 1 – Asymptotic Normality

As in the previous section, we will need some initial lemmas about an ancillary

function. Let c denote an arbitrary string, now including strings that start with 0,

and let Nc(k) denote the number of times the string c appears as a substring of k.

The following lemma is due to Copeland and Erdős [3].

Lemma 4. Let c be an arbitrary string. For any ε > 0 and all k in [1, x], we have

that

Nc(k) =
logb(k) +O(1)

b|c|
(1 +O(ε)) (22)

with at most O(x1−δ) exceptions, where δ > 0 is dependent on ε, b, and |c|. The

implicit constants are all uniform provided x is sufficiently large (where the bound

on x may depend on ε, b, and |c| again).

From this we derive the following estimate.
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Lemma 5. For all strings c of the same length, we have∑
k≤x

Nc(k) =
x logb x

b|c|
(1 + o(1)) (23)

uniformly.

Proof. We make use of Equation (22) and note that for the O(x1−δ) exceptions,

we still have that Nc(k) = O(logb(x)), as the number of times c appears in k is

bounded by the number of base-b digits k has, which in turn is bounded by the

number of base-b digits x has. Thus∑
k≤x

Nc(k) =
∑
k≤x

logb(k) +O(1)

b|c|
(1 +O(ε)) +O

(
x1−δ logb x

)
=

(
x(logb x+O(1))

b|c|

)
(1 +O(ε)) +O

(
x1−δ logb x

)
.

Provided x is large enough, we have that∑
k≤x

Nc(k) =
x logb x

b|c|
(1 +O(ε)).

However, since this holds uniformly for any ε > 0, we may replace O(ε) with o(1).

We will proceed directly into the proof.

Proof of the second half of Theorem 1. We will look at
∑
k≤nNc(k)Qk(n) as we did

in the previous proof. It suffices to show that∑
k≤n

Nc(k)Qk(n) =
1

b|c|
F (n)(1 + o(1)), (24)

for some function F (n) that is independent of c. (The o(1) may depend on c.)

While we will not find a simple form for F (n), we will prove that it is of order at

least

M(n) =
log n · eπ

√
2n/3

√
n

.

In particular, any contribution to
∑
k≤nNc(k)Qk(n) that we can show is o(M(n))

will be swept into the o(1) term of Equation (24). In the following, we will assume

that |c| is fixed, but otherwise c may range freely.

We will, as before, split the sum
∑
k≤nNc(k)Qk(n) into two parts, one over

k ≤ n3/5 and one over k > n3/5, in order to apply Lemma 1 with ε = 1/10.



INTEGERS: 24A (2024) 14

For k > n3/5, we will use the fact that Nc(k)� log n for k ≤ n and also Equation

(14) to obtain

∑
n3/5<k≤n

Nc(k)Qk(n)� n log n · p(n− n3/5)� n log n · eπ
√

2
3 ñ−

π
6 n

1/10

4
√

3ñ
,

which is o(M(n)) due to the e−
π
6 n

1/10

term.

For the remaining terms, we apply our asymptotic from Lemma 1, to get

∑
k≤n3/5

Nc(k)Qk(n) =

 ∑
k≤n3/5

Nc(k)

eπk/
√
6ñ − 1

 eπ
√

2ñ/3

4
√

3ñ
(1 +O(n−1/5)).

We apply partial summation to the resulting sum:∑
k≤n3/5

Nc(k)

eπk/
√
6ñ − 1

=
1

eπn3/5/
√
6ñ − 1

∑
k≤n3/5

Nc(k)

−
∫ n3/5

1

∑
k≤u

Nc(k)

 d

du

(
1

eπu/
√
6ñ − 1

)
du

=
1

eπn3/5/
√
6ñ − 1

∑
k≤n3/5

Nc(k) (25)

−
∫ log logn

1

∑
k≤u

Nc(k)

 d

du

(
1

eπu/
√
6ñ − 1

)
du (26)

−
∫ n3/5

log logn

∑
k≤u

Nc(k)

 d

du

(
1

eπu/
√
6ñ − 1

)
du. (27)

We assume that n is large enough so that we can apply Equation (23) to Equations

(25) and (27).

Applying Equation (23) to Equation (25) shows that it is o(1). For the integral

in Equation (26) we have∑
k≤u

Nc(k)� u log u� log2 log n for 1 ≤ u ≤ log log n

and that 1/(eπu/
√
6ñ − 1) is a strictly decreasing function, so that

∫ log logn

1

∑
k≤u

Nc(k)

 d

du

(
1

eπu/
√
6ñ − 1

)
du
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� log2 log n

∫ log logn

1

∣∣∣∣ ddu
(

1

eπu/
√
6ñ − 1

)∣∣∣∣ du
� log2 log n

∫ log logn

1

d

du

(
1

eπu/
√
6ñ − 1

)
du

� log2 log n

eπ/
√
6ñ − 1

�
√
n log2 log n,

which even after multiplication by eπ
√

2ñ/3/ñ will still be o(M(n)).

Finally let us consider Equation (27). Applying Equation (23), and noting that

the asymptotic is uniform over the entire integral, we obtain

−1 + o(1)

b|c|

∫ n3/5

log logn

u log u · d
du

(
1

eπu/
√
6ñ − 1

)
du.

When u � n1/2, we have that

u log u · d
du

(
1

eπu/
√
6ñ − 1

)
� log n.

Thus the entire integral must be at least a constant times n1/2 log n, which, after

multiplication by eπ
√

2ñ/3/ñ, is on the order of M(n). Thus, if we set

F (n) = −e
π
√

2ñ/3

4
√

3ñ

∫ n3/5

log logn

u log u · d
du

(
1

eπu/
√
6ñ − 1

)
du,

then Equation (24) is true.

6. Proof of Theorem 2

Sketch of the proof of Proposition 1. If we let x = 0.(A(1))(A(2))(A(3)) · · · , then

we want to show that the frequency with which a string c appears in the first k

digits of x tends to b−|c| as k → ∞. Suppose that the kth digit of x appears in

A(n) and let l(k) = |(A(1))(A(2)) · · · (A(n))|. The assumption that

lim
n→∞

L(A(n+ 1))∑n
i=1 L(A(i))

= 0

implies that as k gets large the proportion with which c appears in the first k digits

will be negligibly different from the proportion with which c appears in the first

l(k) digits. So we can focus on the latter instead. The assumption that

lim
n→∞

L(A(n))

|A(n)|
=∞
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guarantees that the occurrences of c that appear starting in one of the concate-

nated strings and ending in another are negligible. Normality of x then follows

immediately from the asymptotic normality of the sets A(n).

Proof of Theorem 2. We will make use of Proposition 1. Since we have already

shown that P(n) is asymptotically normal in Theorem 1, it suffices to show that

lim
n→∞

L(P(n))

|P(n)|
=∞ and lim

n→∞

L(P(n+ 1))∑n
i=1 L(P(i))

= 0.

By summing Equation (13) over all possible c ∈ {1, 2, . . . , b− 1}, we see that

|P(n)| =
∑
k≤n

Qk(n) =
log ñ · eπ

√
2ñ/3

4π
√

2ñ
(1 + o(1)). (28)

(This is also a well-known result of Erdős and Lehner [7].) Let us consider the

contribution to this sum of those terms with k ≤ log n. Since (ex− 1)−1 = x−1(1 +

O(x)) for small x, we have

∑
k≤logn

Qk(n) =

 ∑
k≤logn

1

eπk/
√
6ñ − 1

 eπ
√

2ñ/3

4
√

3ñ
(1 +O(n−1/6))

=

 ∑
k≤logn

√
6ñ

πk

 eπ
√

2ñ/3

4
√

3ñ
(1 +O(n−1/6))

=
log log n · eπ

√
2ñ/3

2π
√

2ñ
(1 + o(1)),

which is o(1) of the full sum Equation (28). Thus

L(P(n)) =
∑
k≤n

(blogb kc+ 1)Qk(n)

≥
∑

logn<k≤n

blogb log ncQk(n)

= blogb log nc
∑
k≤n

Qk(n) +O

(
log2 log n · eπ

√
2ñ/3

2π
√

2ñ

)

=
log ñ logb log n · eπ

√
2ñ/3

4π
√

2ñ
(1 + o(1)).

Thus L(P(n))/|P(n)| → ∞ as n→∞.

On the other hand, since

|P(n)| =
∑
k≤n

Qk(n) and L(P(n)) =
∑
k≤n

(blogb kc+ 1)Qk(n),
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we have that by bounding 1� blogb kc � log n that

log n · eπ
√

2ñ/3

4π
√

2ñ
� L(P(n))� log2 n · eπ

√
2ñ/3

4π
√

2ñ
.

Utilizing this lower bound, we have

n∑
i=1

L(P(n))�
n∑
i=1

log n · eπ
√

2n/3

4π
√

2n
�

n∑
i=2

eπ
√

2n/3

√
n

≥
∫ n

2

eπ
√

2x/3

√
x

dx � eπ
√

2n/3.

Note that the integrand is strictly increasing on the given range, which is why the

comparison applies. Thus

L(P(n+ 1))� log2(n+ 1) · eπ
√

2(ñ+1)/3

√
ñ+ 1

= o
(
eπ
√

2n/3
)

= o

(
n∑
i=1

L(P(n))

)

as desired.
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