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Abstract

We introduce the notion of balanced n-color compositions, and consider the related
enumeration problems. We also establish bijections with four other combinatorial
objects, namely two types of Motzkin lattice paths, pairs of regular compositions
with restricted parts, and regular compositions with a centered maximum.

1. Introduction

A composition is an ordered list of positive integers υ = (p1, . . . , pk). Each of the

numbers pi in the list is called a part of size pi of the composition. The sum of all

the parts is called the weight of the composition, and the number of parts is called

its length. We say that υ is a composition of ` (with k parts) if it has weight ` and

length k.

Agarwal [1] introduced the concept of n-color compositions. An n-color compo-

sition is a composition in which a part of size s can be in one of s different colors,

which are usually represented by numbered subscripts. For instance, (32, 43, 11) is

an example of an n-color composition of 8 with 3 parts. For any `, we use CC` to

refer to the set of n-color compositions of `.

A well known graphical representation of compositions is through tilings. The

scheme of spotted tilings for n-color compositions was introduced by Hopkins in [4].

A part ki is represented by a 1 × k tile with a spot marked on the i-th square, as

exemplified on Figure 1. This differs from the usual, spotless tiling that is used in

the case of regular compositions.
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Figure 1: Tiling representation of the regular composition (3, 2, 2, 1), and spotted
tiling representation of the n-color composition (32, 21, 22, 11).

In this pictorial view, we denote the barriers between parts as cuts, while the

dotted lines between two squares in the same part are called joins. For example, in

the tiling of Figure 1, the first two squares have a join between them, as opposed to

the cut in between the third and fourth squares. We do not consider the outermost

lines of the tiling as anything but the borders of the diagram.

Finally, we can describe the compositions through boundary words obtained from

their tilings, by assigning the letter J to any join, and the letter C to any cut. For

example, the tiling of the regular composition (3, 2, 2, 1) (shown in Figure 1) corre-

sponds to the word JJCJCJC. Note that the boundary word of the composition

(1) is the empty word ∅.

We use these tilings throughout this paper to showcase and exemplify many of the

results presented later. In Section 2, we establish an important link between n-color

and regular compositions, which we refine to introduce the balanced compositions in

Section 3. This is a subset of n-color compositions that has interesting connections

to several combinatorial objects, which are shown in Section 4.

2. A Connection with Regular Compositions

In general, to any n-color composition σ we can associate a regular composition

E(σ) with an even number of parts (specifically, double the length of σ), which we

call the expanded form of the composition. These expanded forms can be visualized

through their corresponding tilings, as follows. For an n-color composition, think

of the spotted squares as an additional type of barrier between parts of unmarked

tiles (besides the usual cuts). Since there is the possibility that a spotted square

is adjacent to a barrier (or to one of the ends of the tiling), we add an additional

1 × 1 square before and after each spotted square. This results in the tiling of a

valid regular composition. An example is given in Figure 2. To reverse this process,

simply replace every other cut with a spotted square, and then remove a square

before and after each one of these spots.

Similar representations have been studied in previous work. This is a slight

modification from the c-blocks and tails introduced by Hopkins and Wang in [5],
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↓

Figure 2: The expanded form of (32, 54, 11) is (2, 2, 4, 2, 1, 1).

but here we do not allow the tails to be empty. It is easy to see that the above map

introduces the corresponding bijection between these compositions, formally stated

in Proposition 1.

Proposition 1. There is a one-to-one correspondence between the n-color compo-

sitions of ` with m parts and compositions of `+m with 2m parts.

3. Balanced n-Color Compositions

As the expanded form of an n-color composition has an even length, we can split

it into an ordered pair of compositions of equal length: one formed by all parts in

even positions, and the other one with the parts from odd positions. We say that an

n-color composition is balanced if these two compositions have the same weight. For

example, the n-color composition (33, 21, 21, 11) is balanced, because its expanded

form (3, 1, 1, 2, 1, 2, 1, 1) splits into the pair of compositions ((3, 1, 1, 1), (1, 2, 2, 1)),

as shown in Figure 3. The n-color composition in Figure 2, on the other hand, is

not balanced, because its expanded form splits into ((2, 4, 1), (2, 2, 1)).

↓

↓

Figure 3: The expanded form of a balanced composition splits into two compositions
of equal weight.

A more direct way to determine if an n-color composition is balanced is to count

the number of non-spotted squares which, within their respective parts, are located
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to the left of the spotted 1× 1 tile. If this equals the (analogously defined) number

of squares to the right of spotted tiles, then the composition is balanced. Almost

immediately from the definition, we have the following observation for balanced

compositions.

Lemma 1. There is a bijection between balanced n-color compositions of ` with m

parts and ordered pairs of compositions of `+m
2 with m parts.

In particular, there are no balanced n-color compositions of ` with m parts if `+m

is odd. More importantly, this lemma gives us a way of counting the number of

balanced compositions for a given weight `. If we let q = `+m
2 and write m = 2q− `

instead; notice that, because 1 ≤ m ≤ `, then
⌊
`
2

⌋
+ 1 ≤ q ≤ `. Finally, since the

number of regular compositions of n with k parts is
(
n−1
k−1
)
, we have the following.

Theorem 1. For any ` ∈ N, the number of balanced n-color compositions of ` is

∣∣CCB` ∣∣ =
∑̀

q=b`/2c+1

(
q − 1

2q − `− 1

)2

.

Proof. For each q, there are
(

q−1
2q−`−1

)2
ordered pairs of compositions of q with m

parts.

The sequence
{∣∣CCB` ∣∣}`∈N, shown in Table 1, is listed as A051286 in the On-

line Encyclopedia of Integer Sequences [6]. Next, we present explicit bijections to

`
∣∣CCB` ∣∣

1 1
2 1
3 2
4 5
5 11

`
∣∣CCB` ∣∣

6 26
7 63
8 153
9 376
10 931

`
∣∣CCB` ∣∣

11 2317
12 5794
13 14545
14 36631
15 92512

Table 1: The sequence of the number of balanced n-color compositions.

three types of lattice paths and pairs of regular compositions also counted by this

sequence.

4. Connections to Other Combinatorial Objects

A Motzkin path is a type of lattice path that begins at the origin and ends somewhere

on the x axis. It consists of U = (1, 1), D = (1,−1), and H = (1, 0) steps. The

length of a path is the number of steps in the path, or equivalently, the x coordinate

of its right endpoint. Conventionally, these paths are only allowed to go through
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the first quadrant, with the notation of grand reserved for the case in which paths

are allowed to cross the x-axis. These paths can be uniquely represented by words

using the letters that correspond to the steps, as shown in Figure 4.

Figure 4: The grand Motzkin path UHDDUHUUDD.

In [3], Elizalde found a bijection between a modified type of Motzkin path and

unimodal bargraphs with a centered maximum. Both sets are also counted by the

OEIS Sequence A051286. A unimodal bargraph [7] is a composition (a1, . . . , ak) that

satisfies a1 ≤ · · · ≤ aj ≥ · · · ≥ ak for some index j. A centered maximum occurs

when j is one of
{⌊

k+1
2

⌋
,
⌈
k+1
2

⌉}
. From Figure 5, observe that we can also describe

bargraphs as lattice paths, using N = (0, 1), E = (1, 0) and S = (0,−1) steps. In

this case, the corresponding path is NENNENESSEESES.

Figure 5: The composition (1, 3, 4, 2, 2, 1) has a centered maximum because it
‘peaks’ as close to the middle as possible.

The lattice paths for unimodal bargraphs give an accessible way of analyzing

these objects. But unlike the Motzkin paths, we need to deal with the issue of

parity: notice there is only one possible index for the peak of the bargraph when it

has an odd number of parts, as opposed to two when it is even. In addition, observe

that the lattice paths of bargraphs always begin and end with vertical steps.
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4.1. Peakless Grand Motzkin Paths

Extending the definition given earlier, a peakless Motzkin path is a path which

does not contain the digraph UD anywhere in its word representation. We use the

word representations and the spotted tilings of balanced compositions to prove the

following result. Note that an empty path is a valid grand Motzkin path of length 0.

Theorem 2. Let ` ≥ 1. There is a bijection between the set of balanced compositions

of ` and the set of peakless grand Motzkin paths of length `− 1.

Proof. The case for ` = 1 is trivial since there is only one balanced composition

of 1, namely (11), and the empty path is the only peakless grand Motzkin path of

length 0. For positive `, we provide one-to-one mappings from a set to another and

vice versa. Thus, a bijection is established.

To find the balanced n-color composition associated with a given path of length

`− 1, we begin by appending a D and an H at the beginning and end of its word,

respectively. Next, we split the modified word into an ordered list of ` digraphs,

which we then transform into a list of 1× 1 squares, following the rules of Table 2.

Finally, we stick the squares together in the same order (the only ‘exception’ to

these rules occurs when transforming the first digraph of the modified word, which

will begin with a D, for which the left boundary is necessarily a border). The

resulting diagram will be the spotted tiling of a balanced n-color composition of

length `.

Begins

Ends
U D H

U N/A

D

H

Table 2: Digraph transformation rules.

To prove the validity of the generated diagram, it is necessary to confirm the

following:

1. The squares fit consistently. For any two consecutive squares, the right bound-

ary of the first one must be of the same type as the left boundary of the second

one.
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2. The tiling corresponds indeed to a balanced n-color composition of ` + 1,

meaning that each part of the tiling has exactly one spotted 1×1 square, and

that the left and right weights equal each other.

Observing (1) is straightforward. In Table 2, observe that the right boundary of

two squares in the same column is the same. Similarly for the left boundaries in

the rows. Now, notice that the relevant boundary is the same for the D column

and the D row (in this case, a dotted delimiter). The same thing occurs for the

U column and the U row, and again for the H column and the H row. Thus

any two consecutive digraphs (for which the ending letter of the first one is the

beginning letter of the second one) will transform into two squares for which the

right boundary of the first one will be of the same type as the left boundary of the

second one.

For (2), notice that the only cuts in the tiling arise from digraphs containing

the letter H. Thus, the ‘parts’ in the tiling correspond to subwords beginning

and ending with an H, with no other H in between. In each of these subwords,

since there are no digraphs UD, there must be exactly one digraph from the set

{DU,DH,HU,HH} (corresponding to the cases in which there are both D’s and

U ’s, only D’s, only U ’s, or nothing in between the two H’s, respectively). The part

corresponding to this subword will thus have only 1 spotted tile. The property that

the resulting diagram corresponds to a balanced composition is due to the fact that

the Motzkin path necessarily has the same number of D and U steps, since it must

end in the x-axis.

To see that the map is one-to-one, note that most digraphs in Table 2 generate

different types of squares. The only exceptions are the digraphs DD and UU , which

generate the same spotless square. If two distinct Motzkin words generated the same

composition, the only possibility would be for one of them to have a DD and the

other a UU (both in a same position). Call such event an awkward pair, and consider

its rightmost occurrence within the Motzkin words. We appended an H at the end

of each word, so this cannot be at the very last digraph of the list. In particular,

the digraph immediately following must be different in both words (one begins with

a D, and the other with a U), and because it can no longer be an awkward pair,

the corresponding generated tiles are different as well. So the hypothesis that both

words generated the same diagram would yield a contradiction.

Delimiter Step
Cut H

Join before spot D
Join after spot U

Table 3: Mapping from spotted tilings to words of Motzkin paths.

It is easy to describe the inverse map from spotted tilings to Motzkin paths.
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This time, we focus on the joins and cuts of the diagram. We say that a join is

before (or after) a spot if it is to the left (or right) of the spotted square within the

join’s part. The map described in Table 3 is one-to-one and sends balanced n-color

compositions of ` to peakless Motzkin paths of length ` − 1, because that is the

number of inner delimiters in the spotted tilings. Moreover, the resulting path is

always peakless, because there is always a cut (an H step) in between the joins that

map to U steps and those which map to D steps.

Example 1. Consider the peakless Motzkin path DUHUHDH of length 7. We

construct the digraph list (DD,DU,UH,HU,UH,HD,DH,HH) after appending

the corresponding D and H. The spotted tiling generated from Table 2 corresponds

to (32, 21, 22, 11), a balanced n-color composition of 8.

←→

Figure 6: The Motzkin path on the left is bijected with the balanced composition
on the right.

Note that turning this composition back into a Motzkin path using the mapping

in Table 3 gives the original path DUHUHDH.

4.2. Pairs of Regular Compositions with Restricted Parts

This bijection is inspired by the work of Bóna and Knopfmacher, who showed in [2]

that pairs of compositions of a shared length and weight and with parts equal to

only 1 or 2 are also enumerated by Sequence A051286.

Theorem 3. Let ` ≥ 2. There is a bijection between the set of balanced compositions

of ` and the set of ordered pairs of compositions of `−1 with the same length (number

of parts), with the restriction that these parts can only equal 1 or 2.

We ignore the case for ` = 1 because there may not be compositions of 0, unless

we consider an empty list () to be a valid composition. We note that in this case,

the pair ((), ()) is the only pair of restricted compositions of 0, so the result would

still hold.

Proof. Recall from Lemma 1 that a balanced n-color composition of ` with m parts

can be split into an ordered pair of compositions of `+m
2 with m parts. We use the

boundary words of these compositions to build a new pair of compositions of `− 1

with parts equal to 1 or 2 by assigning the value 2 to any join, and the value 1 to

any cut. Since ` ≥ 2, then `+m
2 > 1, so the boundary words are nonempty.
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Now, because both tilings have m parts, then there are exactly m−1 cuts in each,

and because both have the same size as well, then there must be `+m
2 − 1− (m− 1)

joins. Thus the weight of these new compositions will be

2

(
`+m

2
− 1− (m− 1)

)
+m− 1 = (`+m− 2)− (m− 1) = `− 1.

This one-to-one transformation has a straightforward inverse (turn any 2 back

into a join and a 1 into a cut), so it establishes the desired bijection.

4.3. Uneven Bicolored Grand Motzkin Paths

An uneven bicolored grand Motzkin path is a modified type of Motzkin path, in

which the U steps have a weight of 2, and there is an additional type of horizontal

step H ′ = (1, 0) with weight 2 (hence the ‘bicolored’). An alternative (but equiv-

alent) way of thinking about these paths is by considering the steps U2 = (2, 1),

D1 = (1,−1), H1 = (1, 0), and H2 = (2, 0). The advantage of this representation is

that the weight of a path matches the ending x-coordinate of the path, as occurs

with the regular Motzkin paths.

Theorem 4. Let ` ≥ 1. There is a bijection between the set of balanced n-color

compositions of ` and the set of uneven bicolored grand Motzkin paths of weight

`− 1.

Proof. Again, here if ` = 1, then the proposition is trivial because the empty path

is the only valid path of weight 0. In the rest of the cases, consider again the

boundary words of the two compositions of `+m
2 that arise from its expanded form.

To describe the bijection, first construct an ordered list of the ordered pairs of

letters in corresponding positions. For example, for the pair of words (JJC, JCC),

we would have the pairs (J, J), (J,C) and (C,C), in that order.

We build an uneven bicolored grand Motzkin path from that list, by turning

each pair into a step, as described in Table 4. Once again, this is a one-to-one,

reversible process (starting with a path, construct a pair of compositions using the

mappings from the table and rearranging the elements of the generated pairs to

form boundary words).

Pair type Step
(J, J) H2

(J,C) U2

(C, J) D1

(C,C) H1

Table 4: Mapping between spotted tilings and modified Motzkin paths.
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To see that the result is indeed a path of weight n, recall that both compositions

of `+m
2 have the same weight and length, so they also have the same number of cuts

and joins. From here, the number of U2 steps must be the same as the number of

D1 steps (and thus the path is a valid one). To obtain the weight, notice that a

step has weight 2 if and only if the first element of the pair that generated it is a

join. Thus the total weight of the path will be two times the number of joins plus

the number of cuts of the first composition which, as shown in the previous section,

equals `− 1.

The choice of assigning a weight 2 to the U step is independent of this result. If

we had instead put the weight on the D step, we would have obtained an analogous

statement.

Example 2. The results in Theorems 3 and 4 are fairly similar. Consider the

balanced composition (33, 21, 21, 11), which splits into the pair of compositions

((3, 1, 1, 1), (1, 2, 2, 1)), as illustrated in Figure 3.

Their corresponding boundary words are (JJCCC,CJCJC). From the weights

indicated in the proof of Theorem 3, we construct the pair ((2, 2, 1, 1, 1), (1, 2, 1, 2, 1))

of equally long compositions of weight 7, with parts all equal to 1 or 2. We also

construct the list of corresponding delimiters ((J,C), (J, J), (C,C), (C, J), (C,C)),

which yields the uneven bicolored grand Motzkin path U2H2H1D1H1 of weight 7.

Figure 7: The uneven bicolored Motzkin path corresponding to the composition
(33, 21, 21, 11).

4.4. Unimodal Bargraphs with a Centered Maximum

In this case, we look at bargraphs not by their weight, but by their semiperimeter.

The semiperimeter of an unimodal bargraph is the number of N (or S) and E steps

in its lattice path. An equivalent definition using compositions involves adding the

length of the composition and the size of the largest part. Either way, we end up

with the semiperimeter of the smallest rectangle that contains the bargraph, as

shown in Figure 8.

Theorem 5. Let ` ≥ 2. There exists a bijection between the balanced n-color

compositions of ` and the number of unimodal bargraphs with a centered maximum

whose semiperimeter is also `.
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Figure 8: The semiperimeter of a bargraph.

Notice that we ignore the case ` = 1 since the minimal semiperimeter of any

bargraph is 2. The strategy for proving this result is the following. From the pair of

regular compositions that we obtain from a balanced n-color composition, we build

a pair of lattice paths with common endpoints using horizontal (E) and vertical

(either S or N , but not both) steps. We then reflect one of the two and assemble a

valid bargraph.

Proof. We look again at the joins and cuts of the compositions generated when

splitting the expanded form, and build a pair of lattice paths. We describe this

bijection geometrically, so we use the words left and right to describe, respectively,

the paths corresponding to the first and second boundary words in the ordered pair

of compositions. For example, in the pair of words (JJCJ,CJJJ), the left word

(and the corresponding path) is JJCJ . The assignment of steps is as shown below

in Table 5.

Delimiter Step
Join E
Cut N or S

Table 5: Mapping between balanced compositions and bargraph lattice paths.

The algorithm for this bijection consists of two parts, namely:

1. If both of the first boundaries in the compositions are cuts (i.e. if the pair

of the first letters in both words is of the form (C,C)), then we use N steps.

Otherwise, we use S steps.

2. If we used N steps, we append an E at the end of both paths. Then, we reflect

the right path vertically (i.e. change all N ’s for S’s, and read it backwards),

and we merge both paths so that they overlap on the added E steps. If we

instead used S steps, then we append a S step at the end of both paths. Then,

we reflect the left path vertically, and merge both.
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As expected, the left path will become the left part of the bargraph, and similarly

for the right case. The resulting path will be unimodal because, each time we

transform compositions into bargraphs, we only use one type of vertical step. In

addition, both paths have the same number of horizontal steps (again because both

boundary words have the same number of joins), so when merging them we will end

up with a centered maximum.

Now, in the final bargraph, the number of E steps will be two times the number

of joins in any of the boundary words that are generated from the expanded form,

since each path contributes an equal number of E steps. The number of N steps,

on the other hand, will only equal the number of cuts of the composition that was

reflected. Finally, the added steps will either increase the number of E steps by

1 (because we overlap both of them) or increase the number of N steps by 1. In

both cases, the semiperimeter is (` − 1) + 1 = `, again using the identity from the

previous two sections.

This map is one-to-one because the cases in which we used N steps will yield

bargraphs with an odd number of parts, while those in which we used S steps will

yield bargraphs of even length, taking care of the parity issue in the process, and

ensuring that the two sets of generated bargraphs are disjoint. Now, within each

case, the map is one-to-one, because the map that sends balanced compositions to

the pair of boundary words is one-to-one.

Inverting this mapping is straightforward, but we need to be careful when de-

scribing how to do so. Informally, we break the bargraph right at the middle, and

then build a composition from the resulting halves. Here is the algorithm that

reverts the previous process.

1. If the length is odd, then we can decompose the bargraph as BLEBR, where

E is the middle E step. Consider the pair of paths (BL, B
′
R), where B′R is the

vertical reflection of BR. If it is even, then decompose it as NBLBRS, where

BL and BR have the same number of steps (we can do this because the first

and last steps in a bargraph are always vertical, and the length is even). In

this case, consider the pair of paths (B′L, BR), where again B′L is the reflection

of BL.

2. From the pair of paths, construct boundary words using Table 5. Then,

reassemble a balanced n-color composition as usual.

The resulting composition will be balanced because the number of horizontal and

vertical steps in BL and BR are the same, respectively (recall that we split the

bargraph in the middle). Its weight will be ` again because of the identity arising

from the number of joins and cuts in the boundary words.

Example 3. Consider the balanced composition (22, 22, 31, 32). From the splitting

of the expanded form, we get the boundary words JCJCCJ and CCJJCJ . Since
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the pair of first letters is (J,C), we use S steps, so we end up with the pair of paths

(ESESSE, SSEESE). After adding the additional S steps and reflecting the path

on the left, we end up with (NENNENE,SSEESES), which we assemble into

the bargraph corresponding to the composition (1, 3, 4, 2, 2, 1) as shown in Figure 9.

Now, for the composition (11, 43, 21, 32), which is also balanced, we obtain the

pair of boundary words (CJJCCJ,CJCJCJ). Because both of them begin with a

C, we use N steps instead, resulting in the paths (NEENNE,NENENE), which

we then turn into (NEENNEE,EESESES) after adding an E and reflecting the

right path. We merge them to obtain the bargraph associated with the composition

(1, 1, 3, 3, 3, 2, 1), also shown in Figure 9.

Figure 9: The bijection between balanced compositions and unimodal bargraphs.

5. Conclusion

In this paper, we introduced the concept of balanced n-color compositions. The

study of such compositions started with a simple but interesting connection to
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pairs of regular compositions, from which a straightforward sum arises as the to-

tal number of such compositions. Evaluating the sum leads to an OEIS sequence

that also enumerates a number of interesting combinatorial objects including two

types of Motzkin lattice paths, pairs of regular compositions with restricted parts,

and regular compositions with a centered maximum. Bijections are found between

the balanced n-color compositions and these other objects through spotted tiling

representations of n-color compositions.

Through the combinatorial proofs, we gain more insights on the objects under

consideration. For instance, from the algorithm that transforms compositions into

bargraphs, we note that all bargraphs with an odd length are in bijection with

balanced compositions for which the first part is 11, because that is the only way

in which the first delimiter in each boundary word is a C. Now, taking a 11 part

away from a balanced composition leaves another balanced composition. Thus the

bargraphs of odd length are also implicitly bijected with balanced compositions of a

smaller weight, one less than the original. In other words, if we only count bargraphs

that have an odd number of columns, we again obtain the same sequence, but shifted

by one position.

Corollary 1. Let ` ≥ 2. The number of unimodal bargraphs with a centered maxi-

mum and with an odd number of parts whose semiperimeter is ` equals the number

of balanced n-color compositions of `− 1.
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