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Abstract

We describe our search for the smallest four-tuple of distinct relatively prime power-
ful numbers in arithmetic progression, which leads to the current “record” example
involving integers with 111 decimal digits.

1. Introduction

In [2], Erdős asked “Are there infinitely many quadruples of relatively prime pow-

erful numbers which form an arithmetic progression?”. Here, a powerful number

is a positive integer n with the property that if a prime p | n, then necessarily

p2 | n. Erdős’ question was perhaps somewhat motivated by the fact that no four

consecutive powerful numbers exist (and, indeed, it is conjectured that there are not

even three consecutive powerful numbers). Recently, Bajpai, the first author and

Chan [1] answered Erdős’ question in the affirmative, describing an algorithm which

produces infinitely many four-tuples of coprime integers in arithmetic progression.

In particular, if we represent such a four-tuple as {N,N + d,N + 2d,N + 3d}, let

(1.1) N = α3x2, N + d = β3y2, N + 2d = γ3z2, N + 3d = δ3w2,

be their representations as powerful numbers, with α, β, γ, δ ∈ N, and call the

sequence [α, β, γ, δ] the signature of the four-tuple, one finds in [1] a method for

constructing infinitely many four-tuples of signature [1, 1, 1, 73], the smallest with

190 and 191 decimal digits for N and d, respectively.
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It is a natural question then to ask for the smallest example of a four-term

arithmetic progression of coprime powerful numbers (which can theoretically be

found through an exhaustive if impractically large search). In this paper, we will

look for smaller examples, providing details of an analogous method which produces

such solutions for other signatures. As the most essential ingredient in our approach

is the group structure of an elliptic curve, it is not surprising that the examples

found are strikingly large, and moreover, for this type of problem, finding larger

solutions is relatively easy compared to finding smaller solutions. To this end, the

computation we will describe has been successful in finding a solution with signature

[1, 3, 5, 7] having 111 digits, which is currently the smallest known example.

2. An Overview of the Computation

We begin with noting that the first three equations in (1.1) are equivalent to solving

(1.2) α3x2 + γ3z2 = 2β3y2,

for a fixed triple of integers (α, β, γ). The complete set of integer solutions to such

an equation is described in Theorem 4 of Chapter 7 of Mordell [3], which leads to

explicit representations of (x, y, z) as values of quadratic forms

x = F1(u, v), y = F2(u, v), and z = F3(u, v),

where (F1, F2, F3) range over a finite set of triples of forms in Z[u, v].

In order to achieve a powerful value for the fourth term in the arithmetic pro-

gression, one can exploit the relation N + 3d = (N + 2d) + (N + d) − N together

with the forms F1, F2, F3. Defining

F (u, v) = γ3F3(u, v)2 + β3F2(u, v)2 − α3F1(u, v)2,

the problem thus becomes one of solving

δ3w2 = F (u, v),

or equivalently

(1.3) (δ2w)2 = δF (u, v).

The curve Y 2 = δF (u, v) is a hyperelliptic curve of genus one, which we will refer

to as H. If an integer solution (u0, v0) to F (u0, v0) = δ exists, one can use the

point P = (u0, v0) as a base point of the hyperelliptic curve in order to transform

it into an elliptic curve, say E, given by a Weierstrass equation, along with explicit

birational maps between H and E. The reader may wish to consult Section 5.3 of
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[1] for an elucidation of this process. Otherwise, one can defer to the Magma code

available at https://mysite.science.uottawa.ca/gwalsh/pwflprog.txt.

The problem remaining then is to find an integer point (Y, u, v) on H for which

δ2 divides Y . We will make heavy use of the arithmetic of E to carry this out.

In particular, given E, the problem then turns to computing generators of either

the full Mordell-Weil group of E over Q, or a subgroup that will be sufficient in

producing a point (Y, u, v) on H with δ2 dividing Y . Once such generators are

found, linear combinations of them are mapped to H and tested for the desired

property.

3. Details of the Computation

Let us briefly explain some implementation issues that arise, and how we chose

to deal with them. Firstly, a loop over (α, β, γ) involves only odd and squarefree

positive integers α, β, and γ, as the powerful numbers in the arithmetic progression

are necessarily odd, and squared factors can be subsumed in x, y, and z, respectively.

Next, we remark that the issue of common factors among the values of F1, F2, and F3

becomes an issue when solving (1.2), so instead, we simply solve the corresponding

equation with α3, β3, γ3 replaced by α, β, γ, and make up for it at the end of the

algorithm by looking for solutions (u, v) to Y 2 = F (u, v) which give rise to x, y, z

satisfying α | x, β | y, and γ | z.
We then compute F from F1, F2, F3 and loop over small values of |u| and |v|

to produce a suitably small value δ, along with (u0, v0), for which F (u0, v0) = δ.

One needs to keep in mind that the final phase of the calculation will require δ2 to

divide Y , as mentioned above, thus δ should not be too large or else the computation

will likely require going too far into the Mordell-Weil group, yielding a very large

solution to the problem.

Once a suitable δ is computed, and thus a hyperelliptic curve H, and an elliptic

curve E, one needs generators of E to work with. This is by far the most cumber-

some aspect of our computation (and the one aspect that prevents it from being an

actual algorithm.) Performing a descent on E is a useful tool for this, however any-

thing beyond a two-descent does not offer any gain for various reasons. Moreover,

a two-descent actually just means searching for points on H, as it is the cover of E

which is pertinent to the situation at hand.

We therefore simply fix a reasonable height bound, search on H for rational

points up to that bound, map those points to E, and proceed to computing linear

combinations of those points, despite the fact that these image points will most often

only generate a proper subgroup of E(Q). The linear combinations are mapped

back to H as triples (u, Y, v), and the testing of δ2 | Y , α | x, β | y, γ | z, with

https://mysite.science.uottawa.ca/gwalsh/pwflprog.txt
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x = F1(u, v), y = F2(u, v), and z = F3(u, v), then determines if the method has

found a solution or not.

4. Results of Our Search

We ran the above computation with a certain measure of success, although it be-

came abundantly clear that finding generators for E(Q), or a suitable subgroup

thereof, stood in the way of solving the problem for most triples (α, β, γ), and even

when generators for a suitable subgroup of E(Q) were found, the condition of hav-

ing δ2 to divide the coordinate Y of a point (u, Y, v) on H was indeed quite difficult

to satisfy. In the end, the algorithm was successful in finding quadruples of coprime

powerful numbers of signature [1, 1, 1, δ] for δ ∈ {73, 193, 241, 409, 601, 1081}, and

also of signature [1, 3, 5, 7]. Despite this rather disappointing outcome, we can re-

port that the smallest quadruple with signature [1, 3, 5, 7] has integers with only 111

digits, a considerable improvement on the previous record of 190 digits. Specifically,

the quadruple is given by N and common difference d with

N = 1460275868407649924432685861169647923963463007454989969837612212828

54060601390929532162486512072320073482429641

and

d = 70245347738306958033230171371056386434827954553864819741944157271564

352311287140966583001138305079433031383242.

5. Near Misses

It is not especially difficult to find examples of four-term arithmetic progressions

that almost possess the properties we desire. Indeed, if we relax the constraint

that the terms be coprime, then four-term progressions of powerful numbers are

relatively abundant. If we assume that N and N + d are powerful, it follows that

gcd(d,N) is also powerful and so the smallest such common factor exceeding 1

corresponds to gcd(d,N) = 4. The smallest example of a four-term arithmetic

progression of powerful numbers {N,N + d,N + 2d,N + 3d} with gcd(d,N) = 4 is

given by N = 2704 = 24 · 132 and d = 36284. In Table 1, we list primitive examples

of four term progressions with gcd(d,N) < 100 and N + 3d < 109. We call a

four-tuple {N,N + d,N + 2d,N + 3d} primitive if there does not exist an integer

t > 1 with the property that each of N/t, (N + d)/t, (N + 2d)/t and (N + 3d)/t is

a powerful positive integer.
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d N gcd(d,N)
36 22 · 32 36

5782 73 49
828 22 · 33 · 52 36

36284 24 · 132 4
330732 24 · 3112 4

22744836 22 · 32 · 53 · 472 36
923045724 22 · 33 · 232 · 732 36

Table 1: Primitive examples with small gcd

In a different direction, if we slightly relax the assumption that all four of our

terms in progression are powerful, we can find, by way of example, a 43-digit exam-

ple of a four term arithmetic progression of coprime integers which are all powerful

except only that one of the four numbers is properly divisible by 2. This example

is determined as above by N and d, whose values are

N = 1074491897493407528245506048484101277342291 and

d = 26195171726257776137965187389598830711169167.

Here, we have N = 112 · 193 · 7773094572 · 14638094092

N + d = 2 · 13022927232 · 28354126904992

N + 2d = 34 · 54 · 4312 · 2324514472 · 3243710412

N + 3d = 210 · 73 · 1572 · 2292 · 56472 · 81672 · 90825472.

6. Concluding Remarks

It is entirely possible that the example corresponding to signature [1, 3, 5, 7], given

at the end of Section 4, is actually the minimal one for this problem. To prove this

would require careful analysis of the quadratic forms arising from a given signature

[α, β, γ, δ], and generators for corresponding elliptic curves E.
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