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Instituto de Matemáticas, Universidad Nacional Autónoma de México, Morelia,
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Abstract
A natural number n is called a k-almost prime if n has precisely k prime factors,

counted with multiplicity. For any fixed k � 2, let Fk(X) be the number of k-th
powers mk � X such that φ(n) = mk for some squarefree k-almost prime n, where
φ(·) is the Euler function. We show that the lower bound Fk(X)� X1/k/(log X)2k

holds, where the implied constant is absolute and the lower bound is uniform over
a certain range of k relative to X. In particular, our results imply that there are
infinitely many pairs (p, q) of distinct primes such that (p − 1)(q − 1) is a perfect
square.

Dedicated to Carl Pomerance on the occasion of his 65th birthday

1. Introduction

A longstanding conjecture in number theory asserts the existence of infinitely many
primes of the form m2 + 1. Although the problem is intractable at present, there
have been a number of partial steps in the direction of this result. For instance,
thanks to Brun, one knows that the number of integers m2 + 1 � X that are prime
is at most O(x1/2/ log x). In the opposite direction, Iwaniec [6] has shown that
m2 + 1 is the product of at most two primes infinitely often.

For any prime p, we clearly have

p = m
2 + 1 ⇐⇒ φ(p) = m

2
,
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where φ(·) is the Euler function, and hence the m2+1 conjecture can be reformulated
as the assertion that the set

S2 = {n ∈ N : φ(n) is a perfect square}

contains infinitely many primes. Motivated by this observation, the set S2 was first
studied by Banks, Friedlander, Pomerance and Shparlinski [3]; they showed that

��{n � x : n ∈ S2}
�� � x

0.7038

for all sufficiently large values of x.
Although we cannot prove that S2 contains infinitely many primes, it is in-

teresting to ask whether other thin sets of integers enjoy an infinite intersection
with S2. Recently, Banks [2] showed that S2 contains infinitely many Carmichael
numbers, and he asked whether S2 contains infinitely many integers with at most
two prime factors. In this note, we give an affirmative answer to this question by
showing that there exist infinitely many pairs (p, q) of distinct primes such that
φ(pq) = (p− 1)(q − 1) is a perfect square.

Recall that a natural number n is called a k-almost prime if n has precisely k

prime factors, counted with multiplicity. Our main result is the following:

Theorem. For each k � 2, let Fk(X) be the number of k-th powers mk � X such
that φ(n) = mk for some squarefree k-almost prime n. There is a constant X0 such
that the bound

Fk(X) � 4X1/k

9e(log X)2k
holds for 2 � k �

�
log X

12 log log X

whenever X � X0.

2. Notation and Outline of Proof

In what follows, the letters p and q always denote prime numbers. As is customary,
we use π(x) to denote the number of primes p � x and π(x; d, a) the number of
such primes in the arithmetic progression a mod d.

Below, any constants implied by the symbols O, �, � and � are absolute.
In particular, the notation x � 1 means that x exceeds some positive absolute
constant.

Our approach to the proof of the theorem is as follows. Let x = X1/k. We begin
by constructing a certain set Q of primes close to x1/(3k). Next, we take P to be
the set of primes p � x such that p−1 = aqk for some prime q ∈ Q and an integer a

that is not divisible by any prime in Q. The number ap = a is uniquely determined
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by p, and ap � x2/3 for all p ∈ P, whereas the cardinality of P satisfies the lower
bound |P| � x2/3+1/3k(log x)−2, and hence it follows that P has a large subset of
the form Pa = {p ∈ P : ap = a}. For every k-element subset {p1, . . . , pk} of Pa,
the number n = p1 · · · pk does not exceed xk = X, and n is a squarefree k-almost
prime for which the totient φ(n) is a k-th power. Indeed, writing pj = aqk

j + 1 with
qj ∈ Q for each j, we have

φ(n) = φ(p1 · · · pk) = (p1 − 1) · · · (pk − 1) = (aq1 · · · qk)k
.

Thus, to obtain a lower bound for Fk(X), it suffices to count the number of k-
element subsets of P that are contained in one of the sets Pa.

3. Proof of the Theorem

Following Alford, Granville and Pomerance [1], let B be the set of numbers B ∈ (0, 1)
for which there is a number x0(B) > 0 and an integer DB � 1 such that whenever
x � x0(B), gcd(a, d) = 1 and 1 � d � min{xB, y/x1−B}, one has

π(y; d, a) � π(y)
2φ(d)

(1)

provided that d is not divisible by some member of DB(x), a set consisting of at
most DB integers, each of which exceeds log x. In [1, Section 2], it is shown that
the interval (0, 5/12) is contained in B.

Let B = 1/3 ∈ B, let x � x0(1/3), and let k � 2 be an integer such that

k � log x

12 log log x
. (2)

Observe that if x � 3, then k � log x, and we have

k log k � log x

12
. (3)

Let Q be the set of primes q in the range

x
1/(3k)

< q � x
1/(3k) (1 + 1/k)

and such that q �∈ D1/3(x). Since

|Q| = π
�
x

1/(3k) (1 + 1/k)
�
− π

�
x

1/(3k)
�

+ O(1),

it follows that

|Q| = c1x
1/(3k)

log x
(4)
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holds with some c1 = c1(x, k) ∈ [2, 4] provided that x is large and uniformly for all
k satisfying (2). Indeed, to derive (4) we have used the estimate

π(u + v)− π(u) =
v

log u

�
1 + O

�
(log log u)4

log u

��
,

which is valid for any v � u7/12 (see [4, 5]). Note that this estimate can be applied
with u = x1/(3k) and v = x1/(3k)/k since the inequality v � u7/12 is then equivalent
to

k log k � 5 log x

36
,

which holds in view of (3).
Let P be the set of primes p � x such that qk | p − 1 for some q ∈ Q, and

a = (p− 1)/qk is not divisible by any prime in Q. Clearly,

|P| �
�

q∈Q
π(x; qk

, 1)−
�

q1,q2∈Q
π(x; qk

1q2, 1). (5)

Taking y = x, d = qk, a = 1 in (1), we have

π(x; qk
, 1) � π(x)

2φ(qk)
� c2x

qk log x
(q ∈ Q, x� 1),

where c2 = 0.46 (say). Using this bound together with (4), it follows that
�

q∈Q
π(x; qk

, 1) � c2x

log x

�

q∈Q

1
qk

� c2x

log x
· |Q|
(x1/(3k))k(1 + 1/k)k

� c1c2x
2/3+1/(3k)

e(log x)2
(6)

if x is sufficiently large. On the other hand, using the Montgomery-Vaughan large
sieve estimate (see [7]) one has

π(x; qk
1q2, 1) � 2x

qk
1q2 log(x/(qk

1q2))
.

For all primes q1, q2 ∈ Q we have

q
k
1q2 � (1 + 1/k)k+1

x
1/3+1/(3k) � x

2/3

for all large x and uniformly in k � 2. Therefore, taking (4) into account we derive
the bound

�

q1,q2∈Q
π(x; qk

1q2, 1) � 6x
log x

�

q1∈Q

1
qk
1

�

q2∈Q

1
q2

� 6x
log x

· c2
1x

2/(3k)

(x1/(3k))k+1(log x)2

� 96x2/3+1/(3k)

(log x)3
(7)
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provided that x is large. Here, we have used the fact that c1 � 4. Inserting the
bounds (6) and (7) into (5), and taking into account that c1c2/e > 1/3, we obtain
the lower bound

|P| � x2/3+1/(3k)

3(log x)2
(x� 1). (8)

By construction, every prime p ∈ P has a unique expression of the form p =
apq

k
p + 1, where ap is a natural number and qp is a prime in Q. Let

A = {a ∈ N : a = ap for some p ∈ P}.

Since every ap is a positive integer that does not exceed x2/3, we have the trivial
bound

|A| � x
2/3

. (9)

We also note that the inequality

k|A|
|P| � 1

k + 1
(10)

holds for all large x and uniformly for all k satisfying (2). Indeed, in view of (8)
and (9) this inequality is implied by

3k(k + 1)(log x)2 � x
1/(3k)

.

Since k satisfies (2), it follows that 3k(k + 1) � (log x)2 for all large x, and hence it
suffices to observe that the inequality (log x)4 � x1/(3k) is equivalent to (2).

For every a ∈ A, let
Pa = {p ∈ P : ap = a}.

For an arbitrary subset S of P satisfying the properties

(i) |S| = k,

(ii) S ⊂ Pa for some a ∈ A,

we put
nS =

�

p∈S
p.

Then nS is a squarefree k-almost prime, and the totient φ(nS) is a k-th power since

φ(nS) =
�

p∈S
(p− 1) =

�

p∈S
(aq

k
p) =

�
a

�

p∈S
qp

�k
.

Moreover, the k-th powers constructed in this way are pairwise distinct as S varies
over the subsets of P satisfying (i) and (ii) since the set S is uniquely determined
by the number m = φ(nS)1/k. Indeed, the number a is the largest divisor of m that
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is coprime to every element of Q, and after factoring m = aq1 · · · qk, one recovers
the set S = {pj = aqk

j + 1 : j = 1, . . . , k}.
Put X = xk. Since φ(nS) � nS � X for every subset S ⊂ P satisfying (i)

and (ii), we see that Fk(X) is bounded below by the number of such subsets S;
therefore,

Fk(X) �
�

a∈A

�
|Pa|
k

�
=

�

a∈A0

�
|Pa|
k

�
, (11)

where A0 denotes the set of a ∈ A such that |Pa| � k. Note that |A0| is nonempty
for all large X, for if A0 = ∅ it follows that |P| � k|A|, which is untenable in view
of (10).

Now, for fixed k � 2 the function

fk(y) =
�

y

k

�
=

y(y − 1) · · · (y − k + 1)
k!

is convex as a function of y � k, and hence using (11) together with Jensen’s
inequality, we have

1
|A0|

Fk(X) � 1
|A0|

�

a∈A0

fk(|Pa|) � fk

�
1

|A0|
�

a∈A0

|Pa|
�

� fk

�
1

|A0|
�

a∈A
|Pa|− k

�
|A|− |A0|

|A0|

��
= fk

�
|P|− k|A|

|A0|
+ k

�
.

Since

fk(y) =
y(y − 1) · · · (y − k + 1)

k!
>

�
y − k

k

�k

(y � k � 2),

it follows that

Fk(X) � |A0|
�
|P|− k|A|

k|A0|

�k

=
|P|k

kk|A0|k−1

�
1− k|A|

|P|

�k

� |P|k
kk|A|k−1

�
1− k|A|

|P|

�k

. (12)

Taking into account (10) we see that

�
1− k|A|

|P|

�k

�
�

1− 1
k + 1

�k

> e
−1

.

Using this result in (12) along with (8) and (9) we derive that

Fk(X) � x

e(3k)k(log x)2k
=

X1/k

e(3/k)k(log X)2k
.
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Since (3/2)2 = 9/4 and (3/k)k � 1 for all k � 3, this proves the desired inequality
for those k � 2 that satisfy (2). To finish the proof, we observe that for any integer
k such that

2 � k �
�

log X

12 log log X
,

we clearly have

k
2 � log X

12 log log X
� k log x

12 log log x
.

Hence, (2) holds for any such k.
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