POWERED NUMBERS IN SHORT INTERVALS

Tsz Ho Chan
Department of Mathematics, Kennesaw State University, Marietta, Georgia
tchan4@kennesaw.edu

Received: 8/3/23, Accepted: 4/4/24, Published: 5/27/24

Abstract

Generalizing the powerful numbers, Barry Mazur introduced the concept of powered numbers. In this note, we study powered numbers over short intervals.

1. Introduction and Main Results

A number n is squarefull or powerful if its prime factorization $n=p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{r}^{a_{r}}$ satisfies $a_{i} \geq 2$ for all $1 \leq i \leq r$. Similarly, n is k-full if $a_{i} \geq k$ for all $1 \leq i \leq r$. In contrast, n is squarefree if $a_{i}=1$ for all i. For example, $72=2^{3} \cdot 3^{2}$ is squarefull, $243=3^{5}$ is 5 -full, and $30=2 \cdot 3 \cdot 5$ is squarefree. Let $Q_{k}(x)$ denote the number of positive k-full numbers up to x. It is known that

$$
Q_{k}(x)=\prod_{p}\left(1+\sum_{m=k+1}^{2 k-1} \frac{1}{p^{m / h}}\right) x^{1 / k}+O\left(x^{1 /(k+1)}\right)
$$

where the product is over all primes (see [4] for example). Recently, the author [2] considered powerful numbers in short intervals $(x, x+y]$ and proved that

$$
\begin{equation*}
Q_{2}(x+y)-Q_{2}(x) \ll \frac{y}{\log (y+1)} \quad \text { uniformly for } \quad 1 \leq y \leq x \tag{1}
\end{equation*}
$$

which slightly improves upon a result of De Koninck, Luca and Shparlinski [3].
Let us recall the famous $a b c$-conjecture: For any $\epsilon>0$, there exists a constant $C_{\epsilon}>0$ such that, for any integers a, b, c with $a+b=c$ and $\operatorname{gcd}(a, b)=1$, the bound

$$
\max \{|a|,|b|,|c|\} \leq C_{\epsilon} \kappa(a b c)^{1+\epsilon}
$$

holds with $\kappa(n):=\prod_{p \mid n} p$, the squarefree kernel of n. Conditional on the $a b c$ conjecture, the author presented at the INTEGERS conference 2023 that,

$$
\begin{equation*}
Q_{2}(x+y)-Q_{2}(x) \ll \frac{y}{\exp \left(\log 2 \cdot(\log y)^{0.09}\right)} \tag{2}
\end{equation*}
$$

based on a very recent breakthrough result of Kelley and Meka [5] on the density of integer sequence without 3 -term arithmetic progressions.

Generalizing and smoothing the k-full numbers, Mazur [6] proposed the study of powered numbers. Let $l \geq 1$ be a real number (not necessarily an integer). A positive integer n is an l-powered number if

$$
\kappa(n) \leq n^{1 / l}
$$

Clearly, every number is 1-powered, and every k-full number is also a k-powered number. For $0<\theta<1$, define

$$
S_{\theta}(x):=\#\left\{n \leq x: \kappa(n) \leq n^{\theta}\right\}
$$

By an elementary argument, one has $x^{\theta} \ll S_{\theta}(x) \ll_{\epsilon} x^{\theta+\epsilon}$ for any $\epsilon>0$. Recently, Brüdern and Robert [1] did a finer study on $S_{\theta}(x)$ and proved that

$$
\begin{equation*}
S_{\theta}(x)=(1+o(1)) x^{\theta} \cdot F((1-\theta) \log x) \cdot \frac{1}{\theta} \sqrt{\frac{2}{1-\theta}} \cdot \frac{1}{\sqrt{\log x \cdot \log \log x}} \tag{3}
\end{equation*}
$$

where

$$
F(v)=\frac{6}{\pi^{2}} \sum_{m \geq 1} \frac{1}{\prod_{p \mid m}(p+1)} \min \left(1, \frac{e^{v}}{m}\right) \text { and } \log F(v)=(1+o(1)) \sqrt{\frac{8 v}{\log v}}
$$

Thus, it is natural to ask if one can say something about l-powered numbers in short intervals.

Question 1. Given $l>1$, find a uniform upper bound for

$$
S_{1 / l}(x+y)-S_{1 / l}(x)
$$

for all $1 \leq y \leq x$ that is independent of x.
For any integer n with prime factorization $n=p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{r}^{a_{r}}$, let

$$
q(n):=\prod_{i \text { with } a_{i}=1} p_{i} \text { be its "squarefree" part, }
$$

and $P(n):=\max p_{i}$ be its largest prime factor. For example, $q(120)=3 \cdot 5=15$, and $P(120)=5$. When $P(q(n))$ is small, one has the following general observation.

Proposition 1. For $1 \leq y \leq x$, we have

$$
\#\{x<n \leq x+y: P(q(n)) \leq \log y \log \log y\} \ll \frac{y \log \log (y+2)}{\log (y+2)}
$$

Hence, to obtain non-trivial upper bounds for Question 1, we need a better understanding of those l-powered numbers in $(x, x+y]$ with large prime factors in their "squarefree" parts. Although we lack such knowledge at the moment, one can prove the following conditional result.

Theorem 1. Let $l>3 / 2$. Under the abc-conjecture, there exists some constant $c_{l}>0$ such that

$$
S_{1 / l}(x+y)-S_{1 / l}(x)<_{l} \frac{y}{\exp \left(\left(c_{l} \log y\right)^{0.09}\right)}
$$

for all $1 \leq y \leq x$.
Theorem 1 goes beyond squarefull or 2-powered numbers and shows that few such l-powered numbers exist in short intervals when $l>3 / 2$. It also corrects an inaccuracy in (2) as the implicit constant may not be exactly $\log 2$ when $l=2$. Since l-powered numbers behave like l-full numbers, we have the following conjecture.

Conjecture 1. Given $l>1$ and any $\epsilon>0$,

$$
S_{1 / l}(x+y)-S_{1 / l}(x) \ll_{\epsilon, l} y^{1 / l+\epsilon}
$$

for all $1 \leq y \leq x$.
Even stronger, we suspect the following to be true.
Conjecture 2. Given $l>1$,

$$
S_{1 / l}(x+y) \leq S_{1 / l}(x)+S_{1 / l}(y)
$$

for all sufficiently large x and y (in terms of l).
In another direction, one can study short-interval behavior when l is very close to 1 . We have the following result.
Theorem 2. Let $\omega(n)$ be any increasing function with $\omega(n) \rightarrow \infty$ and $\frac{n}{\omega(n)} \rightarrow \infty$ as $n \rightarrow \infty$. Let

$$
S_{\omega}(x):=\#\left\{n \leq x: \kappa(n) \leq n^{1-\frac{1}{4 \omega(\log n / \log \log n)}}\right\} .
$$

Then, for sufficiently large integer y, there exist infinitely many integers x such that $S_{\omega}(x+y)-S_{\omega}(x)=y$.

This shows that it is impossible to obtain any $o(y)$-bound for integers $n \in(x, x+y]$ satisfying $\kappa(n) \leq n^{1-o(1)}$ with any slow decaying function $o(1)$.

Throughout the paper, p and p_{i} stand for prime numbers. The symbols $f(x)=$ $O(g(x)), f(x) \ll g(x)$, and $g(x) \gg f(x)$ are equivalent to $|f(x)| \leq C g(x)$ for some constant $C>0$. Also, $f(x)=O_{\lambda_{1}, \ldots, \lambda_{r}}(g(x))$ and $f(x)<{\lambda_{1}, \ldots, \lambda_{r}} g(x)$ mean that the implicit constant may depend on $\lambda_{1}, \ldots, \lambda_{r}$. Furthermore, $f(x)=o(g(x))$ means $\lim _{x \rightarrow \infty} f(x) / g(x)=0$.

2. Proof of Proposition 1

Proof. We may assume that y is sufficiently large as the theorem is clearly true for bounded y by picking a suitably large implicit constant. Note that any positive integer n can be factored uniquely as $n=a_{n} b_{n}$ where a_{n} is squarefree and b_{n} is squarefull with $\operatorname{gcd}\left(a_{n}, b_{n}\right)=1$. By the Prime Number Theorem, the number of primes up to $\log y \log \log y$ is at most $1.001 \log y$ for y large enough. Since $P(q(n)) \leq$ $\log y \log \log y$, the number of squarefree numbers a_{n} is at most

$$
\begin{equation*}
2^{1.001 \log y}=y^{1.001 \log 2} \leq y^{0.7} \tag{4}
\end{equation*}
$$

Now, we are going to split n 's according to the size of a_{n}. For $a_{n}>y^{0.9}$, we have $x / a_{n}<b_{n} \leq x / a_{n}+y / a_{n}<x / a_{n}+y^{0.1}$. Hence, there are at most $y^{0.1}+1$ choices for b_{n}, and there are at most

$$
\begin{equation*}
\sum_{a_{n}}^{*}\left(y^{0.1}+1\right) \ll y^{0.8} \tag{5}
\end{equation*}
$$

such n 's in $(x, x+y]$ by (4). Here and below, Σ^{*} denotes a sum over squarefree numbers with prime factors at most $\log y \log \log y$.

For $a_{n} \leq y^{0.9}$, the number of such n 's is at most

$$
\begin{align*}
\sum_{a \leq y^{0.9}}^{*} Q_{2}\left(\frac{x+y}{a}\right)-Q_{2}\left(\frac{x}{a}\right) & \ll \sum_{a \leq y^{0.9}}^{*} \frac{y / a}{\log (y / a)} \ll \frac{y}{\log y} \sum_{a \leq y^{0.9}}^{*} \frac{1}{a} \\
& \ll \frac{y}{\log y} \prod_{p \leq \log y \log \log y}\left(1+\frac{1}{p}\right) \\
& \leq \frac{y}{\log y} \exp \left(\sum_{p \leq \log y \log \log y} \frac{1}{p}\right) \ll \frac{y \log \log y}{\log y} \tag{6}
\end{align*}
$$

by (1), the inequality $e^{x} \geq 1+x$, and Merten's estimate $\sum_{p \leq x} \frac{1}{p}=\log \log x+M+$ $O\left(\frac{1}{\log x}\right)$ for some absolute constant M. Then Proposition 1 follows from (5) and (6).

3. Proof of Theorem 1

We need a recent groundbreaking result of Kelley and Meka [5]: Let $N \geq 2$ and $A \subset\{1,2, \ldots, N\}$ be a set with no non-trivial three-term arithmetic progressions, i.e., solutions to $x+y=2 z$ with $x \neq y$. Then

$$
\begin{equation*}
|A| \ll \frac{N}{2^{(\log N)^{0.09}}} \tag{7}
\end{equation*}
$$

Proof of Theorem 1. Fix $l>3 / 2$ and set $\epsilon=\frac{l}{3}-\frac{1}{2}>0$. First, we suppose that $y \leq$ $x^{\epsilon / l}$. We claim that there is no non-trivial three term arithmetic progression among the l-powered numbers in the interval $(x, x+y]$ under the $a b c$-conjecture. Suppose the contrary. Then we have three l-powered numbers in arithmetic progression $x<a_{1} b_{1}<a_{2} b_{2}<a_{3} b_{3} \leq x+y$ with a_{1}, a_{2}, a_{3} squarefree, b_{1}, b_{2}, b_{3} squarefull and $\operatorname{gcd}\left(a_{i}, b_{i}\right)=1$ for $1 \leq i \leq 3$. Note that, by definition of l-powered number,

$$
a_{i} \kappa\left(b_{i}\right)=\kappa\left(a_{i} b_{i}\right) \leq\left(a_{i} b_{i}\right)^{1 / l} \text { or } a_{i} \leq \frac{b_{i}^{1 /(l-1)}}{\kappa\left(b_{i}\right)^{l /(l-1)}} \text { or } a_{i} b_{i} \leq\left(\frac{b_{i}}{\kappa\left(b_{i}\right)}\right)^{l /(l-1)}
$$

This implies

$$
\begin{equation*}
\frac{b_{i}}{\kappa\left(b_{i}\right)} \geq x^{1-1 / l} \tag{8}
\end{equation*}
$$

Say,

$$
a_{1} b_{1}=a_{2} b_{2}-d \quad \text { and } \quad a_{3} b_{3}=a_{2} b_{2}+d
$$

for some positive integer d with $2 d \leq y$. Multiplying the above two equations, we get

$$
a_{1} b_{1} a_{3} b_{3}+d^{2}=a_{2}^{2} b_{2}^{2}
$$

Say $D^{2}=\operatorname{gcd}\left(a_{2}^{2} b_{2}^{2}, d^{2}\right)$ as the numbers are perfect squares. Then, the three integers $\frac{a_{1} a_{3} b_{1} b_{3}}{D^{2}}, \frac{d^{2}}{D^{2}}$, and $\frac{a_{2}^{2} b_{2}^{2}}{D^{2}}$ are pairwise relatively prime, and we have the equation

$$
\frac{a_{1} a_{3} b_{1} b_{3}}{D^{2}}+\frac{d^{2}}{D^{2}}=\frac{a_{2}^{2} b_{2}^{2}}{D^{2}}
$$

Now, by the abc-conjecture and (8), we obtain

$$
\begin{aligned}
\frac{x^{2}}{D^{2}} \leq \frac{a_{2}^{2} b_{2}^{2}}{D^{2}} & \ll l l\left(\frac{a_{1} a_{3} b_{1} b_{3}}{D^{2}} \frac{d^{2}}{D^{2}} \frac{a_{2}^{2} b_{2}^{2}}{D^{2}}\right)^{1+\epsilon} \\
& \ll l\left(a_{1} a_{2} a_{3} \kappa\left(b_{1}\right) \kappa\left(b_{2}\right) \kappa\left(b_{3}\right)\right)^{1+\epsilon} \kappa\left(\frac{d}{D}\right)^{1+\epsilon} \\
& \ll l\left(x^{3} \frac{\kappa\left(b_{1}\right)}{b_{1}} \frac{\kappa\left(b_{2}\right)}{b_{2}} \frac{\kappa\left(b_{3}\right)}{b_{3}}\right)^{1+\epsilon}\left(\frac{d}{D}\right)^{1+\epsilon} \ll x^{3(1+\epsilon) / l} \frac{y^{1+\epsilon}}{D^{1+\epsilon}}
\end{aligned}
$$

Since $1 \leq D \leq d \leq y \leq x^{\epsilon / l}$, the above implies

$$
x^{2-3(1+\epsilon) / l} \ll{ }_{l} D^{1-\epsilon} y^{1+\epsilon} \ll y^{2} \leq x^{2 \epsilon / l}
$$

which is a contradiction when $x \geq y>C_{l}$ for some sufficiently large constant C_{l} since

$$
2-\frac{3(1+\epsilon)}{l}=2-\frac{3\left(1+\frac{l}{3}-\frac{1}{2}\right)}{l}=1-\frac{3}{2 l}>\frac{2}{3}\left(1-\frac{3}{2 l}\right)=\frac{2}{l}\left(\frac{l}{3}-\frac{1}{2}\right)=\frac{2 \epsilon}{l} .
$$

Clearly, the theorem is true for $1 \leq y \leq C_{l}$ by picking an appropriate implicit constant. So, we may assume $y>C_{l}$. Since arithmetic progressions are invariant
under translation, we may shift all l-powered numbers in $(x, x+y]$ to numbers in $(0, y]$ without 3 -term arithmetic progressions. By (7), we have

$$
Q_{2}(x+y)-Q_{2}(x) \ll \frac{y}{\exp \left(\log 2 \cdot(\log y)^{0.09}\right)}
$$

which gives the theorem.
Now, suppose $y>x^{\epsilon / l}$. Then, the interval $(x, x+y]$ is a subset of the union of subintervals of length $x^{\epsilon / l}$:

$$
\left(x, x+x^{\epsilon / l}\right] \cup\left(x+x^{\epsilon / l}, x+2 x^{\epsilon / l}\right] \cup \cdots \cup\left(x+\left\lfloor\frac{y}{x^{\epsilon / l}}\right\rfloor x^{\epsilon / l}, x+\left(\left\lfloor\frac{y}{x^{\epsilon / l}}\right\rfloor+1\right) x^{\epsilon / l}\right]
$$

Over each subinterval $\left(x+j x^{\epsilon / l}, x+(j+1) x^{\epsilon / l}\right]$, we have the bound

$$
Q_{2}\left(x+(j+1) x^{\epsilon / l}\right)-Q_{2}\left(x+j x^{\epsilon / l}\right) \ll \frac{x^{\epsilon / l}}{\exp \left(\log 2\left(\log x^{\epsilon / l}\right)^{0.09}\right)}
$$

Summing over $\left\lfloor\frac{y}{x^{\epsilon / l}}\right\rfloor+1$ of these intervals, we have

$$
\begin{aligned}
Q_{2}(x+y)-Q_{2}(x) & \ll \frac{y}{x^{\epsilon / l}} \cdot \frac{x^{\epsilon / l}}{\exp \left(\log 2\left(\log x^{\epsilon / l}\right)^{0.09}\right)} \\
& \ll \frac{y}{\exp \left(c_{l}(\log x)^{0.09}\right)} \leq \frac{y}{\exp \left(c_{l}(\log y)^{0.09}\right)}
\end{aligned}
$$

with $c_{l}=\log 2 \cdot\left(\frac{1}{3}-\frac{1}{2 l}\right)^{0.09}$. This gives the theorem as well.

4. Proof of Theorem 2

Proof. Let $2=p_{1}<p_{2}<\ldots<p_{k}$ be the first k prime numbers with $\omega(k)$ large. Let l be an integer such that $\frac{2 k}{3 \omega(k)} \leq l \leq \frac{k}{\omega(k)+1}$. This is possible as $k / \omega(k) \rightarrow \infty$. Consider the moduli

$$
m_{j}:=\prod_{i=1}^{l} p_{j l+i}^{2} \quad \text { for } \quad 0 \leq j \leq u:=\left\lfloor\frac{k}{l}-1\right\rfloor
$$

and the system of congruence equations

$$
\begin{equation*}
n+j \equiv 0 \quad\left(\bmod m_{j}\right) \quad \text { for } \quad 0 \leq j \leq u \tag{9}
\end{equation*}
$$

The above congruence system has a solution $n\left(\bmod m_{1} m_{2} \cdots m_{u}\right)$ by the Chinese Remainder Theorem. As $k \rightarrow \infty$, the Prime Number Theorem gives

$$
p_{k}=(1+o(1)) k \log k, \quad \text { and } p_{k-l}=(1+o(1))(k-l) \log (k-l)=(1+o(1)) k \log k
$$

since $l \leq k / \omega(k)$ and $\omega(k) \rightarrow \infty$. Also,

$$
e^{2 \sum_{i \leq k-l} \log p_{i}} \leq m_{0} m_{1} \cdots m_{\lfloor k / l-1\rfloor} \leq e^{2 \sum_{i \leq k} \log p_{i}}
$$

Hence, there is an integer $n_{0} \in\left(m_{0} m_{1} \cdots m_{u}, 2 m_{0} m_{1} \cdots m_{u}\right]$ satisfying (9). Then

$$
n_{0}+i \quad \text { with } \quad\left\lfloor\frac{2 u}{3}\right\rfloor \leq i \leq u
$$

give $u-\left\lfloor\frac{2 u}{3}\right\rfloor+1$ consecutive integers of size $e^{(2+o(1)) k \log k}$. Note that $k=\left(\frac{1}{2}+\right.$ $o(1)) \frac{\log \left(n_{0}+i\right)}{\log \log \left(n_{0}+i\right)}$ and

$$
m_{\left\lfloor\frac{2 u}{3}\right\rfloor} \geq\left(p_{\left\lfloor\frac{2 u}{3}\right\rfloor l}\right)^{2 l} \geq(0.6 k \log 0.6 k)^{2 l} \geq e^{1.1 \frac{k}{\omega(k)} \log k} \geq\left(n_{0}+i\right)^{\frac{1}{2 \omega(k)}}
$$

by the Prime Number Theorem, $\frac{2 k}{3 \omega(k)} \leq l$, and ω being increasing. Thus, each $n_{0}+i$ has squarefree kernel

$$
\kappa\left(n_{0}+i\right) \leq \frac{n_{0}+i}{\sqrt{m_{\left\lfloor\frac{2 u}{3}\right\rfloor}}} \leq\left(n_{0}+i\right)^{1-\frac{1}{4 \omega\left(\log \left(n_{0}+i\right) / \log \log \left(n_{0}+i\right)\right)}} .
$$

This gives the theorem by setting $y=u-\left\lfloor\frac{2 u}{3}\right\rfloor+1$ and $x=n_{0}+\left\lfloor\frac{2 u}{3}\right\rfloor$. Since $k / \omega(k)$, y, and x grow as $k \rightarrow \infty$, we have longer and longer stretches of consecutive integers satisfying $\kappa(n) \leq n^{1-1 /(4 \omega(\log n / \log \log n))}$. This gives infinitely many x 's satisfying the condition of Theorem 2 for any given fixed large integer y.

Acknowledgement. The author would like to thank the anonymous referee and the managing editor, Bruce Landman, for helpful suggestions.

References

[1] J. Brüdern and O. Robert, On the distribution of powered numbers, preprint, arXiv:2306.05981.
[2] T.H. Chan, A note on powerful numbers in short intervals, Bull. Aust. Math. Soc. 108 (2023), 99-106.
[3] J.M. De Koninck, F. Luca, and I.E. Shparlinski, Powerful numbers in short intervals. Bull. Austral. Math. Soc. 71 (2005), no. 1, 11-16.
[4] P. Erdős and G. Szekeres, Über die Anzahl der Abelschen Gruppen gegebener Ordnung und über ein verwandtes zahlentheoretisches Problem, Acta Univ. Szeged, 7 (1934-1935), 95-102.
[5] Z. Kelley and R. Meka, Strong bounds for 3-progressions, preprint, arXiv:2302.05537.
[6] B. Mazur. Questions about powers of numbers. Notices Amer. Math. Soc. 47 (2000), no. 2, 195-202.

