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Abstract
Generalizing the powerful numbers, Barry Mazur introduced the concept of powered
numbers. In this note, we study powered numbers over short intervals.

1. Introduction and Main Results

A number n is squarefull or powerful if its prime factorization n = p{*p4? .- - pr
satisfies a; > 2 for all 1 <+¢ < r. Similarly, n is k-full if a; > k for all 1 <i <r. In
contrast, n is squarefree if a; = 1 for all i. For example, 72 = 23 - 32 is squarefull,
243 = 3% is 5-full, and 30 = 2 3 - 5 is squarefree. Let Qx(z) denote the number of
positive k-full numbers up to x. It is known that

2k—1

Qk(ﬂf):H(1+ Z ﬁ)xl/k_’_O(xl/(kJrl))?
P

m=k+1
where the product is over all primes (see [4] for example). Recently, the author [2]

considered powerful numbers in short intervals (z,xz 4+ y] and proved that

Yy
Q2(z +y) — Qa(r) < Togly + 1)

which slightly improves upon a result of De Koninck, Luca and Shparlinski [3].

uniformly for 1<y <z, (1)

Let us recall the famous abc-conjecture: For any € > 0, there exists a constant
C¢ > 0 such that, for any integers a, b, ¢ with a+b = ¢ and ged(a, b) = 1, the bound

max{|al, b, |¢[} < Cer(abe)*

holds with k(n) := Hmnp, the squarefree kernel of n. Conditional on the abc
conjecture, the author presented at the INTEGERS conference 2023 that,

Qa7 +y) — Q2(z) K exp(log 2 ,y(log y)0-09Y (2)
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based on a very recent breakthrough result of Kelley and Meka [5] on the density
of integer sequence without 3-term arithmetic progressions.

Generalizing and smoothing the k-full numbers, Mazur [6] proposed the study
of powered numbers. Let | > 1 be a real number (not necessarily an integer). A
positive integer n is an [-powered number if

k(n) < nt/t,

Clearly, every number is 1-powered, and every k-full number is also a k-powered
number. For 0 < 0 < 1, define

So(x) := #{n <z : rx(n) <n}.

By an elementary argument, one has z¥ < Sy(x) < 2%T¢ for any ¢ > 0. Recently,
Briidern and Robert [1] did a finer study on Sp(x) and proved that

So(x) = (1+0(1)) 2" - F((1 - 0)logz) NE W ?

8v
logv’

Fv) = o Z ﬁmin(l7 %) and log F(v) = (1 + o(1))

Thus, it is natural to ask if one can say something about [-powered numbers in
short intervals.

Question 1. Given [ > 1, find a uniform upper bound for

Si(x+y) = Si(z)
for all 1 < y < z that is independent of x.

For any integer n with prime factorization n = pi*p3? - - - por, let

q(n) = H p; be its “squarefree” part,

1 with a;=1

and P(n) := maxp; be its largest prime factor. For example, ¢(120) = 3 -5 = 15,
and P(120) = 5. When P(g(n)) is small, one has the following general observation.

Proposition 1. For 1 <y <z, we have

yloglog(y + 2)

< P <1 logl
#{r <n<z+y: Pg(n)) <logyloglogy} < log(y + 2)



INTEGERS: 24A (2024) 3

Hence, to obtain non-trivial upper bounds for Question 1, we need a better
understanding of those [-powered numbers in (z,z + y] with large prime factors in
their “squarefree” parts. Although we lack such knowledge at the moment, one can
prove the following conditional result.

Theorem 1. Let | > 3/2. Under the abc-conjecture, there exists some constant
¢ > 0 such that

Y
exp((clogy)?%%)

Sip(@ +y) = Siu(r) <

foralll <y<u.

Theorem 1 goes beyond squarefull or 2-powered numbers and shows that few
such [-powered numbers exist in short intervals when [ > 3/2. It also corrects an
inaccuracy in (2) as the implicit constant may not be exactly log 2 when [ = 2. Since
l-powered numbers behave like [-full numbers, we have the following conjecture.

Conjecture 1. Given [ > 1 and any € > 0,
Sy +y) = Siu(r) Ly y'/ire
forall 1 <y <z
Even stronger, we suspect the following to be true.
Conjecture 2. Given [ > 1,
Sip(z+y) < Si(x) + Si(y)
for all sufficiently large = and y (in terms of [).

In another direction, one can study short-interval behavior when [ is very close
to 1. We have the following result.

Theorem 2. Let w(n) be any increasing function with w(n) — oo and Sy

as n — o0o. Let
Su(z) := #{n <z:r(n) < nl‘m}

Then, for sufficiently large integer y, there exist infinitely many integers x such that
Sw(x + y) - Sw(x) =Y.

This shows that it is impossible to obtain any o(y)-bound for integers n € (z, z+y]
satisfying x(n) < n'~°() with any slow decaying function o(1).

Throughout the paper, p and p; stand for prime numbers. The symbols f(z) =
O(g(z)), f(x) < g(z), and g(x) > f(z) are equivalent to |f(x)| < Cg(x) for some
constant C' > 0. Also, f(z) = Ox,,..a,.(9(z)) and f(x) <, ... g(x) mean that
the implicit constant may depend on Ay, ..., A,. Furthermore, f(x) = o(g(z)) means
limg o0 f(x)/g(x) = 0.
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2. Proof of Proposition 1

Proof. We may assume that y is sufficiently large as the theorem is clearly true for
bounded y by picking a suitably large implicit constant. Note that any positive
integer n can be factored uniquely as n = a,b,, where a, is squarefree and b, is
squarefull with ged(an,b,) = 1. By the Prime Number Theorem, the number of
primes up to logyloglogy is at most 1.001 log y for y large enough. Since P(g(n)) <
log ylog log y, the number of squarefree numbers a,, is at most

21.001 logy _ yl.()Ol log 2 < y0.7. (4)
Now, we are going to split n’s according to the size of a,. For a, > y?, we have

r/a, < b, <x/an+y/an < x/a, +y°'. Hence, there are at most y°! + 1 choices
for b,, and there are at most

PRSI (5)

Qn

such n’s in (z,2 + y] by (4). Here and below, ¥* denotes a sum over squarefree
numbers with prime factors at most logy loglogy.
For a,, < yo.97 the number of such n’s is at most

DR RO et
< H (1+3)
)<

p<logyloglogy

ol Y

p<logyloglog y

<
~ logy

yloglogy log logy
1 (©
ogy

by (1), the inequality e* > 1+ z, and Merten’s estimate Zp<x 5 =loglogx + M +
O(log ) for some absolute constant M. Then Proposition 1 follows from (5) and
(6). O

3. Proof of Theorem 1

We need a recent groundbreaking result of Kelley and Meka [5]: Let N > 2 and
A C {1,2,...,N} be a set with no non-trivial three-term arithmetic progressions,
i.e., solutions to x + y = 2z with = # y. Then

N
Al < (log NY0-09 - (7)
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Proof of Theorem 1. Fix 1 > 3/2 and set e = é—% > 0. First, we suppose that y <
z¢/!. We claim that there is no non-trivial three term arithmetic progression among
the I-powered numbers in the interval (x, z + y] under the abe-conjecture. Suppose
the contrary. Then we have three [-powered numbers in arithmetic progression
T < arby < asbs < agbs < x + y with aq, as, az squarefree, by, bo, b squarefull and
ged(aq, b;) =1 for 1 <4 < 3. Note that, by definition of I-powered number,

pl/ =1 by \U/U-1)
(b)) = b /1 . i b, v
az“(bz) = H(azbz) < (azbz) or a; < W or a;b; < (/{(bl))
This implies
bi 1-1/1
> .

Say,
ai1by = asbs —d and aszbs = asby +d

for some positive integer d with 2d < y. Multiplying the above two equations, we
get
arbragbs + d? = a%b%

Say D? = ged(a3b3, d?) as the numbers are perfect squares. Then, the three integers

2b2 . . . .
af,; are pairwise relatively prime, and we have the equation

ajagzbiby  d?
D2

y D29 and

a1a3b1b3 d2 a%b%
D> D2 D2

Now, by the abc-conjecture and (8), we obtain

2 a%b% aiasbi by d? a%b% 1+e
07 < ot <P o)

€ d 1+e€
< (a1a2a3n(b1)li(b2)n(b3))1+ H(B)
3 k(b1) k(b2) Ii(bg))l"‘e( d )1"'6 < 30+l y'te

< (l’ TT? D1+e'

D
Since 1< D<d<y< xe/l, the above implies
2230146/ < Dl—eyl-‘re < y2 < x26/l7

which is a contradiction when = > y > () for some sufficiently large constant C
since

1
2_@:2_

l

3 2

3(1+l§§) 3 2(1 3):2(1 1):2;.

=1- — — —_—
2~ 3\ T g

Clearly, the theorem is true for 1 < y < Cj by picking an appropriate implicit
constant. So, we may assume y > (. Since arithmetic progressions are invariant
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under translation, we may shift all I-powered numbers in (z,z + y| to numbers in
(0,y] without 3-term arithmetic progressions. By (7), we have

y
exp(log2 - (logy)?%9)

Q2(z +y) — Qa2(r) <

which gives the theorem.
Now, suppose y > z¢/!. Then, the interval (z,z + y] is a subset of the union of
subintervals of length z¢/*:

(z,z + /N0 (@ + 29"z + 20U - U (m—l— {inﬁ/l,x—i— ({LJ —|—1)x5/l}.
e/l e/l

Over each subinterval (z + jz</!, x + (j + 1)2¢/!], we have the bound

xe/l
exp(log 2(log z¢/1)0-09)"

Qa(x+ (j + 1z — Qa(x + ja/) <

Summing over [ ~%7 | + 1 of these intervals, we have
y xe/l
Q2($ + y) - Q2<.'17) <<ﬁ : exp(log?(log xe/l)0.0Q)

Y < Y
exp(c(logz)%%?) = exp(ci(log y)%?)
with ¢; =1log2- (1 — 2;)%%°. This gives the theorem as well. O

4. Proof of Theorem 2

Proof. Let 2 = p; < ps < ... < pi be the first k prime numbers with w(k) large.
Let I be an integer such that 35&) << This is possible as k/w(k) — oo.
Consider the moduli

k
w(k)+1"

1
k
my = [[phs for 0<j<u=]7-1],
=1

and the system of congruence equations
n+j=0 (modm;) for 0<j<u. (9)

The above congruence system has a solution n (mod myms - --m,) by the Chinese
Remainder Theorem. As k — oo, the Prime Number Theorem gives

pr = (1+0(1))klogk, and pr_; = (14 0(1))(k—1)log(k—1) = (1+0(1))klogk
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since | < k/w(k) and w(k) — co. Also,
62 Ziék*l log p; S momzq -+ - m\_k/l—l] S 62 Ziﬁk Ingi.
Hence, there is an integer ng € (momyq - - - My, 2momy - - - my,| satisfying (9). Then
S 2u )
ng + 1 with {?J <i<u

give u — [ 2] + 1 consecutive integers of size e(>T°()Floek  Note that k = (3 +

o(1)) log(no+1)

log log(no+1) and

1.1-E<logk JR
Mz > (pza ) > (0.6k1og 0.6k)* > e 150 88 > (ng +4) %0
by the Prime Number Theorem, 35&) < I, and w being increasing. Thus, each
no + ¢ has squarefree kernel
Ko +) € S < (g -+ i)' TR SR

V2
This gives the theorem by setting y = u— %] +1 and x = ng+ | 2*]. Since k/w(k),
y, and x grow as k — oo, we have longer and longer stretches of consecutive integers
satisfying r(n) < n!'—1/(4wlogn/loglogn)) = This gives infinitely many s satisfying
the condition of Theorem 2 for any given fixed large integer y. O
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