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Abstract

Generalizing the powerful numbers, Barry Mazur introduced the concept of powered
numbers. In this note, we study powered numbers over short intervals.

1. Introduction and Main Results

A number n is squarefull or powerful if its prime factorization n = pa11 p
a2
2 · · · parr

satisfies ai ≥ 2 for all 1 ≤ i ≤ r. Similarly, n is k-full if ai ≥ k for all 1 ≤ i ≤ r. In

contrast, n is squarefree if ai = 1 for all i. For example, 72 = 23 · 32 is squarefull,

243 = 35 is 5-full, and 30 = 2 · 3 · 5 is squarefree. Let Qk(x) denote the number of

positive k-full numbers up to x. It is known that

Qk(x) =
∏
p

(
1 +

2k−1∑
m=k+1

1

pm/h

)
x1/k +O(x1/(k+1)),

where the product is over all primes (see [4] for example). Recently, the author [2]

considered powerful numbers in short intervals (x, x+ y] and proved that

Q2(x+ y)−Q2(x)� y

log(y + 1)
uniformly for 1 ≤ y ≤ x, (1)

which slightly improves upon a result of De Koninck, Luca and Shparlinski [3].

Let us recall the famous abc-conjecture: For any ε > 0, there exists a constant

Cε > 0 such that, for any integers a, b, c with a+ b = c and gcd(a, b) = 1, the bound

max{|a|, |b|, |c|} ≤ Cεκ(abc)1+ε

holds with κ(n) :=
∏
p|n p, the squarefree kernel of n. Conditional on the abc

conjecture, the author presented at the INTEGERS conference 2023 that,

Q2(x+ y)−Q2(x)� y

exp(log 2 · (log y)0.09)
, (2)
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based on a very recent breakthrough result of Kelley and Meka [5] on the density

of integer sequence without 3-term arithmetic progressions.

Generalizing and smoothing the k-full numbers, Mazur [6] proposed the study

of powered numbers. Let l ≥ 1 be a real number (not necessarily an integer). A

positive integer n is an l-powered number if

κ(n) ≤ n1/l.

Clearly, every number is 1-powered, and every k-full number is also a k-powered

number. For 0 < θ < 1, define

Sθ(x) := #{n ≤ x : κ(n) ≤ nθ}.

By an elementary argument, one has xθ � Sθ(x)�ε x
θ+ε for any ε > 0. Recently,

Brüdern and Robert [1] did a finer study on Sθ(x) and proved that

Sθ(x) = (1 + o(1))xθ · F ((1− θ) log x) · 1

θ

√
2

1− θ
· 1√

log x · log log x
(3)

where

F (v) =
6

π2

∑
m≥1

1∏
p|m(p+ 1)

min
(

1,
ev

m

)
and logF (v) = (1 + o(1))

√
8v

log v
.

Thus, it is natural to ask if one can say something about l-powered numbers in

short intervals.

Question 1. Given l > 1, find a uniform upper bound for

S1/l(x+ y)− S1/l(x)

for all 1 ≤ y ≤ x that is independent of x.

For any integer n with prime factorization n = pa11 p
a2
2 · · · parr , let

q(n) :=
∏

i with ai=1

pi be its “squarefree” part,

and P (n) := max pi be its largest prime factor. For example, q(120) = 3 · 5 = 15,

and P (120) = 5. When P (q(n)) is small, one has the following general observation.

Proposition 1. For 1 ≤ y ≤ x, we have

#{x < n ≤ x+ y : P (q(n)) ≤ log y log log y} � y log log(y + 2)

log(y + 2)
.
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Hence, to obtain non-trivial upper bounds for Question 1, we need a better

understanding of those l-powered numbers in (x, x+ y] with large prime factors in

their “squarefree” parts. Although we lack such knowledge at the moment, one can

prove the following conditional result.

Theorem 1. Let l > 3/2. Under the abc-conjecture, there exists some constant

cl > 0 such that

S1/l(x+ y)− S1/l(x)�l
y

exp((cl log y)0.09)

for all 1 ≤ y ≤ x.

Theorem 1 goes beyond squarefull or 2-powered numbers and shows that few

such l-powered numbers exist in short intervals when l > 3/2. It also corrects an

inaccuracy in (2) as the implicit constant may not be exactly log 2 when l = 2. Since

l-powered numbers behave like l-full numbers, we have the following conjecture.

Conjecture 1. Given l > 1 and any ε > 0,

S1/l(x+ y)− S1/l(x)�ε,l y
1/l+ε

for all 1 ≤ y ≤ x.

Even stronger, we suspect the following to be true.

Conjecture 2. Given l > 1,

S1/l(x+ y) ≤ S1/l(x) + S1/l(y)

for all sufficiently large x and y (in terms of l).

In another direction, one can study short-interval behavior when l is very close

to 1. We have the following result.

Theorem 2. Let ω(n) be any increasing function with ω(n) → ∞ and n
ω(n) → ∞

as n→∞. Let

Sω(x) := #
{
n ≤ x : κ(n) ≤ n1−

1
4ω(logn/ log logn)

}
.

Then, for sufficiently large integer y, there exist infinitely many integers x such that

Sω(x+ y)− Sω(x) = y.

This shows that it is impossible to obtain any o(y)-bound for integers n ∈ (x, x+y]

satisfying κ(n) ≤ n1−o(1) with any slow decaying function o(1).

Throughout the paper, p and pi stand for prime numbers. The symbols f(x) =

O(g(x)), f(x) � g(x), and g(x) � f(x) are equivalent to |f(x)| ≤ Cg(x) for some

constant C > 0. Also, f(x) = Oλ1,...,λr (g(x)) and f(x) �λ1,...,λr g(x) mean that

the implicit constant may depend on λ1, ..., λr. Furthermore, f(x) = o(g(x)) means

limx→∞ f(x)/g(x) = 0.
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2. Proof of Proposition 1

Proof. We may assume that y is sufficiently large as the theorem is clearly true for

bounded y by picking a suitably large implicit constant. Note that any positive

integer n can be factored uniquely as n = anbn where an is squarefree and bn is

squarefull with gcd(an, bn) = 1. By the Prime Number Theorem, the number of

primes up to log y log log y is at most 1.001 log y for y large enough. Since P (q(n)) ≤
log y log log y, the number of squarefree numbers an is at most

21.001 log y = y1.001 log 2 ≤ y0.7. (4)

Now, we are going to split n’s according to the size of an. For an > y0.9, we have

x/an < bn ≤ x/an + y/an < x/an + y0.1. Hence, there are at most y0.1 + 1 choices

for bn, and there are at most ∑∗

an

(y0.1 + 1)� y0.8 (5)

such n’s in (x, x + y] by (4). Here and below, Σ∗ denotes a sum over squarefree

numbers with prime factors at most log y log log y.

For an ≤ y0.9, the number of such n’s is at most∑∗

a≤y0.9
Q2

(x+ y

a

)
−Q2

(x
a

)
�
∑∗

a≤y0.9

y/a

log(y/a)
� y

log y

∑∗

a≤y0.9

1

a

� y

log y

∏
p≤log y log log y

(
1 +

1

p

)
≤ y

log y
exp
( ∑
p≤log y log log y

1

p

)
� y log log y

log y
(6)

by (1), the inequality ex ≥ 1 + x, and Merten’s estimate
∑
p≤x

1
p = log log x+M +

O( 1
log x ) for some absolute constant M . Then Proposition 1 follows from (5) and

(6).

3. Proof of Theorem 1

We need a recent groundbreaking result of Kelley and Meka [5]: Let N ≥ 2 and

A ⊂ {1, 2, ..., N} be a set with no non-trivial three-term arithmetic progressions,

i.e., solutions to x+ y = 2z with x 6= y. Then

|A| � N

2(logN)0.09
. (7)



INTEGERS: 24A (2024) 5

Proof of Theorem 1. Fix l > 3/2 and set ε = l
3 −

1
2 > 0. First, we suppose that y ≤

xε/l. We claim that there is no non-trivial three term arithmetic progression among

the l-powered numbers in the interval (x, x+ y] under the abc-conjecture. Suppose

the contrary. Then we have three l-powered numbers in arithmetic progression

x < a1b1 < a2b2 < a3b3 ≤ x + y with a1, a2, a3 squarefree, b1, b2, b3 squarefull and

gcd(ai, bi) = 1 for 1 ≤ i ≤ 3. Note that, by definition of l-powered number,

aiκ(bi) = κ(aibi) ≤ (aibi)
1/l or ai ≤

b
1/(l−1)
i

κ(bi)l/(l−1)
or aibi ≤

( bi
κ(bi)

)l/(l−1)
.

This implies
bi

κ(bi)
≥ x1−1/l. (8)

Say,

a1b1 = a2b2 − d and a3b3 = a2b2 + d

for some positive integer d with 2d ≤ y. Multiplying the above two equations, we

get

a1b1a3b3 + d2 = a22b
2
2.

Say D2 = gcd(a22b
2
2, d

2) as the numbers are perfect squares. Then, the three integers
a1a3b1b3
D2 , d2

D2 , and
a22b

2
2

D2 are pairwise relatively prime, and we have the equation

a1a3b1b3
D2

+
d2

D2
=
a22b

2
2

D2
.

Now, by the abc-conjecture and (8), we obtain

x2

D2
≤ a22b

2
2

D2
�l κ

(a1a3b1b3
D2

d2

D2

a22b
2
2

D2

)1+ε
�l

(
a1a2a3κ(b1)κ(b2)κ(b3)

)1+ε
κ
( d
D

)1+ε
�l

(
x3
κ(b1)

b1

κ(b2)

b2

κ(b3)

b3

)1+ε( d
D

)1+ε
� x3(1+ε)/l

y1+ε

D1+ε
.

Since 1 ≤ D ≤ d ≤ y ≤ xε/l, the above implies

x2−3(1+ε)/l �l D
1−εy1+ε � y2 ≤ x2ε/l,

which is a contradiction when x ≥ y > Cl for some sufficiently large constant Cl
since

2− 3(1 + ε)

l
= 2−

3(1 + l
3 −

1
2 )

l
= 1− 3

2l
>

2

3

(
1− 3

2l

)
=

2

l

( l
3
− 1

2

)
=

2ε

l
.

Clearly, the theorem is true for 1 ≤ y ≤ Cl by picking an appropriate implicit

constant. So, we may assume y > Cl. Since arithmetic progressions are invariant
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under translation, we may shift all l-powered numbers in (x, x + y] to numbers in

(0, y] without 3-term arithmetic progressions. By (7), we have

Q2(x+ y)−Q2(x)� y

exp(log 2 · (log y)0.09)

which gives the theorem.

Now, suppose y > xε/l. Then, the interval (x, x + y] is a subset of the union of

subintervals of length xε/l:

(x, x+ xε/l] ∪ (x+ xε/l, x+ 2xε/l] ∪ · · · ∪
(
x+

⌊ y

xε/l

⌋
xε/l, x+

(⌊ y

xε/l

⌋
+ 1
)
xε/l

]
.

Over each subinterval (x+ jxε/l, x+ (j + 1)xε/l], we have the bound

Q2(x+ (j + 1)xε/l)−Q2(x+ jxε/l)� xε/l

exp(log 2(log xε/l)0.09)
.

Summing over b y
xε/l
c+ 1 of these intervals, we have

Q2(x+ y)−Q2(x)� y

xε/l
· xε/l

exp(log 2(log xε/l)0.09)

� y

exp(cl(log x)0.09)
≤ y

exp(cl(log y)0.09)

with cl = log 2 · ( 1
3 −

1
2l )

0.09. This gives the theorem as well.

4. Proof of Theorem 2

Proof. Let 2 = p1 < p2 < . . . < pk be the first k prime numbers with ω(k) large.

Let l be an integer such that 2k
3ω(k) ≤ l ≤ k

ω(k)+1 . This is possible as k/ω(k)→∞.

Consider the moduli

mj :=

l∏
i=1

p2jl+i for 0 ≤ j ≤ u :=
⌊k
l
− 1
⌋
,

and the system of congruence equations

n+ j ≡ 0 (mod mj) for 0 ≤ j ≤ u. (9)

The above congruence system has a solution n (mod m1m2 · · ·mu) by the Chinese

Remainder Theorem. As k →∞, the Prime Number Theorem gives

pk = (1 + o(1))k log k, and pk−l = (1 + o(1))(k − l) log(k − l) = (1 + o(1))k log k
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since l ≤ k/ω(k) and ω(k)→∞. Also,

e2
∑
i≤k−l log pi ≤ m0m1 · · ·mbk/l−1c ≤ e2

∑
i≤k log pi .

Hence, there is an integer n0 ∈ (m0m1 · · ·mu, 2m0m1 · · ·mu] satisfying (9). Then

n0 + i with
⌊2u

3

⌋
≤ i ≤ u

give u − b 2u3 c + 1 consecutive integers of size e(2+o(1))k log k. Note that k = (1
2 +

o(1)) log(n0+i)
log log(n0+i)

and

mb 2u3 c ≥ (pb 2u3 cl)
2l ≥ (0.6k log 0.6k)2l ≥ e1.1

k
ω(k)

log k ≥ (n0 + i)
1

2ω(k)

by the Prime Number Theorem, 2k
3ω(k) ≤ l, and ω being increasing. Thus, each

n0 + i has squarefree kernel

κ(n0 + i) ≤ n0 + i√
mb 2u3 c

≤ (n0 + i)
1− 1

4ω(log(n0+i)/ log log(n0+i)) .

This gives the theorem by setting y = u−b 2u3 c+1 and x = n0+b 2u3 c. Since k/ω(k),

y, and x grow as k →∞, we have longer and longer stretches of consecutive integers

satisfying κ(n) ≤ n1−1/(4ω(logn/ log logn)). This gives infinitely many x’s satisfying

the condition of Theorem 2 for any given fixed large integer y.

Acknowledgement. The author would like to thank the anonymous referee and

the managing editor, Bruce Landman, for helpful suggestions.

References
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