
#A8 INTEGERS 24A (2024)

TABULATING ABSOLUTE LUCAS PSEUDOPRIMES

Chloe Helmreich
Department of Mathematical Sciences, Butler University, Indianapolis, Indiana

Jonathan Webster
Department of Mathematical Sciences, Butler University, Indianapolis, Indiana

jewebste@butler.edu

Received: 10/24/23, Revised: 3/27/24, Accepted: 5/2/24, Published: 5/27/24

Abstract

In 1977, Hugh Williams studied numbers that were Lucas pseudoprimes to all Lu-
cas sequences of a fixed discriminant. These are composite numbers analogous to
Carmichael numbers, and they satisfy a Korselt-like criterion: n must be a product
of distinct primes pi and (pi − δpi) | (n − δn) where δn is a Legendre symbol with
the first argument being the discriminant of the Lucas sequence. Motivated by tab-
ulation algorithms for Carmichael numbers, we give algorithms to tabulate these
numbers and provide some asymptotic analysis of the algorithms. We show that
there are only finitely many absolute Lucas pseudoprimes n =

∏k
i=1 pi with a given

set of k− 2 prime factors for k > 2. We also provide the first known tabulations up
to 264 for discriminants 5,−7,−11, and 13.

1. Introduction

A base a Fermat pseudoprime is a composite integer n such that

an−1 − 1 ≡ 0 (mod n).

It is well-known that Carmichael numbers are the composite integers for which that

congruence holds for all a such that (a, n) = 1. Korselt showed that such a number

n is a product of k > 2 distinct primes p1, p2, . . . , pk and (pi−1) | (n−1). The least

example is 561 = 3 · 11 · 17. From a computational view, Fermat’s Little Theorem

was a step into primality testing and Carmichael numbers are a roadblock to this

being a successful test. One notable way to strengthen this test is by combining

it with a seemingly conflicting test based on Lucas sequences. An example of this

would be the Baillie-PSW test [2, 1], which is what the GNU Multiple Precision

library [9] currently implements. Another example would be Grantham’s Frobenius

DOI: 10.5281/zenodo.11352771

INTEGERS: 24A (2024) 2

pseudoprimes [10]. The pseudoprimes to the Lucas sequences are our motivating

interest.

Since Carmichael numbers inform us about the reliability of the Fermat test, it

would make sense to examine the analogous numbers for Lucas sequences. These

numbers are, perhaps, less well-known. H.C. Williams showed that these numbers

also satisfy a Korselt-like criterion [21]. Using this result as a starting point, we

continue a study of these numbers from an algorithmic point of view with an aim

of tabulating them. The strategy is to consider numbers of the form n = Pqr for P

a squarefree, odd number with q and r prime. Our key contributions are as follows:

1. We prove theorems establishing finiteness and boundedness conditions. For

Carmichael numbers, these theorems were initially proved by Beeger for a

prime P and generalized by Duparc for P being composite [4, 5].

2. We provide an algorithmic interpretation of these theorems in the spirit of

[15, 18]. In particular, the bounds on two primes are O(P 2) and O(P 3)

but we can find both primes after creating only an average of O(P (logP)2)

candidates.

3. We implemented the algorithms in C++ and produced four tabulations for

n < 264 using the discriminants 5,−7,−11, and 13.

These discriminants were chosen to match the choice of discriminants for the Lucas

sequences used in the Baillie-PSW test1.

The rest of the paper is organized as follows. Section 2 gives the background

on Lucas sequences, defines what absolute Lucas pseudoprimes are, and states the

Korselt-like criterion. Section 3 is a comment on how we will account for asymptotic

cost. Section 4 establishes the new theorems providing bounds that may be used

for algorithmic purposes. Sections 5 and 6 state algorithms for tabulating these

numbers and provide some asymptotic analysis; these two sections are bifurcated by

a “small” input size vs a “large” input size. Finally, Section 7 addresses the practical

issues with the implementation, provides some statistics on the tabulation, and

concludes by pointing out a curious non-uniformity of distribution of the numbers

with respect to the Jacobi symbols.

2. Lucas Sequences

There are many equivalent definitions of the Lucas U -sequence. We state two of

them and encourage the reader to consult standard sources (such as [14, 20]) for a

1Technically, there are at least 8 different ways to choose the specific parameters for the Lucas
sequence. Method A, A?, B, B? all start with 5 and uses successive odd discriminants fixing the
sign so that d ≡ 1 (mod 4)

INTEGERS: 24A (2024) 3

more robust account. First, they may be defined by expressions involving roots of

a certain polynomial:

Un = Un(A,B) = (αn − βn)/(α− β),

where α, β are the zeros of x2−Ax+B, and A, B are relatively prime integers with

A > 0. Let the discriminant be d = A2 − 4B. Alternatively, we may define these

sequences with a recurrence relation:

U0(A,B) = 0, U1(A,B) = 1, and Un(A,B) = AUn−1(A,B)−BUn−2(A,B).

This latter definition is used to derive identities that allow efficient computation of

Un(A,B) (mod m) for large n with an algorithm akin to square-and-multiply [13].

We will frequently suppress the A,B notation since our work concerns all Lucas

sequences with a fixed discriminant. There is a well-known analog of Fermat’s little

theorem for Lucas sequences with A and B fixed.

Theorem 1 (Analog of Fermat’s Little Theorem). If p is an odd prime and p - dB,

then

Up−δp(A,B) ≡ 0 (mod p),

where δp is the Jacobi symbol
(
d
p

)
.

In everything that follows, we use δp for the Jacobi symbol
(
d
p

)
. Since the first

argument is always d, which is understood from context, we choose a notation that

suppresses this.

As with Fermat’s Little theorem, the contrapositive of this theorem can be used

to detect if an integer is composite. And, one can find composite numbers which the

contrapositive of the above theorem does not detect, which motivates the following

definition.

Definition 1. An (A,B)-Lucas pseudoprime is a composite integer n satisfying

Un−δn(A,B) ≡ 0 (mod n).

For example, the Fibonacci pseudoprimes (sequence A081264 in the OEIS) are

(1,−1)-Lucas pseudoprimes. The first 15 are: 323, 377, 1891, 3827, 4181, 5777,

6601, 6721, 8149, 10877, 11663, 13201, 13981, 15251, and 17119.

Definition 2. An absolute Lucas pseudoprime (to the discriminant d) is a com-

posite integer n satisfying

Un−δn(A,B) ≡ 0 (mod n)

for all Lucas sequences with discriminant d and (n, dB) = 1.

INTEGERS: 24A (2024) 4

From the above 15 Fibonacci pseudoprimes, the numbers 323, 6601, 6721, 11663,

and 17119 are absolute Lucas pseudoprimes. This can be checked with a Korselt-like

criterion.

Theorem 2 (Williams’ Criterion [21]). A composite number n is an absolute Lucas

pseudoprime if and only if n is squarefree and (p−δp) | (n−δn) for all prime divisors

p of n.

If d = 1, the absolute Lucas pseudoprimes are Carmichael numbers and the

divisibility statement in Theorem 2 becomes (p− 1)|(n− 1). In the algorithms for

tabulating Carmichael numbers, it was common to need the Carmichael function

λ(n). We will need a similar function but only state what values it takes for square-

free numbers, which is our only concern.

Definition 3. For a product n =
∏j
i=1 pi of distinct primes, define

λd(n) = lcm(p1 − δp1 , . . . , pj − δpj).

If d = 1, λ1(n) is the Carmichael function. In the same way that λ1(n) is the

least universal exponent, λd(n) is the least universal “rank of apparition” for Lucas

sequences with discriminant d. While the asymptotic behavior of λ1(n) has been

well-studied (e.g., [7, 8]), we know of no asymptotic results on λd(n) for d 6= 1.

3. Boundedness Theorems

As with the tabulation algorithms for Carmichael numbers, we will explicitly con-

struct the prime factorization of the number. For numbers with exactly k prime

factors, we will start with a preproduct that has either k − 1 (the “large” case) or

k − 2 (the “small” case) prime factors. Then we will use the below theorems to

find the remaining one or two prime factors which we will usually call q and r.

These theorems will limit both the number and size of primes that may complete

the preproduct. We show that criterion in Theorem 2 may be used to get analogous

boundedness and finiteness results.

First, we establish the analog of Proposition 1 of [15].

Theorem 3. Let n =
∏k
i=1 pi be an absolute Lucas pseudoprime less than B with

k > 2 prime factors listed in increasing order by subscript, and Pj =
∏j
i=1 pi for

some j < k. Then the following statements hold:

(i) pj+1 < (B/Pj)
1/(k−j) and pj+1 − δpj+1

is relatively prime to pi for all i ≤ j;

(ii) Pk−1pk ≡ δPk−1
δpk (mod λd(Pk−1)) and pk − δpk divides Pk−1 − δPk−1

;

(iii) each pi satisfies pi ≤ Pk−1 + 2 <
√

2n <
√

2B.

INTEGERS: 24A (2024) 5

Proof. Parts (i) and (ii) follow from the fact that (pi− δpi) divides (n− δn) for each

i. For (iii), n = Pk−1pk and (pi − δpi) | (n − δn) imply pk ≤ Pk−1 + 2 < 2Pk−1.

Now, p2k < 2Pk−1pk = 2n < 2B.

Theorem 3 requires k > 2; we will address the case of k = 2 below. The require-

ment that pj+1 − δpj+1
is relatively prime to pi for all i ≤ j is stronger than the

square-free requirement in Theorem 2. We call a square-free composite number Pj
admissible if all of its prime divisors satisfy the relatively prime criterion of The-

orem 3(i). Further, we say Pj is bounds admissible (with respect to B) if it also

satisfies the inequality in Theorem 3(i).

When d = 1, the admissible numbers are also called cyclic (in the group theory

sense) numbers. In [6], Erdős proved that the counting function of cyclic numbers

is asymptotic to
e−γB

log log logB
,

where γ ≈ 0.5772 . . . is the Euler-Mascheroni constant. We believe that his proof

holds for d 6= 1 due to a formal replacement of various “1’s” in the proof to some

appropriate Jacobi symbol. This factor of log log logB plays no role in the analysis

that follows, so we do not attempt to prove this result.

Second, we establish the analog of Proposition 2 of [15].

Theorem 4. Let n be an absolute Lucas pseudoprime of the form n = Pqr with q

and r primes, q < r, and P > 1. There are integers 1 ≤ D < P < C such that,

putting ∆ = CD − P 2, we have

q − δq =
(P − δP)(δqP + δrD)

∆
, (4.1)

r − δr =
(P − δP)(δrP + δqC)

∆
, (4.2)

(p− 1)P 2 − 2P

p+ 1
< CD <

(p+ 3)P 2 + 2P

p+ 1
, (4.3)

where p is the largest prime dividing P .

Proof. Since

(q − δq) | (Pqr − δP δqδr) = Pqr − Prδq + Prδq − δP δqδr

it follows that (q − δq) | (Pr − δP δr). Similarly, (r − δr) | (Pq − δP δq). Hence, we

define positive integers

D =
Pq − δP δq
r − δr

and C =
Pr − δP δr
q − δq

,

INTEGERS: 24A (2024) 6

satisfying 1 ≤ D < P < C. We have

C(q − δq) = P

(
Pq − δP δq

D
+ δr

)
− δP δr

so that

CD(q − δq) = P 2q − PδP δq + PDδr −DδP δr.

Further,

(CD − P 2)(q − δq) = P 2δq − PδP δq + PDδr −DδP δr
= (P − δP)(δqP + δrD).

Note that ∆ = CD − P 2 6= 0, so that

q − δq =
(P − δP)(δqP + δrD)

∆
.

and similarly

r − δr =
(P − δP)(δrP + δqC)

∆
.

Note that p+ 1 ≤ q − δq so

p+ 1 ≤ q − δq =
(P − δP)(δqP + δrD)

∆
.

So,

|CD − P 2| < (P + 1)(P +D)

p+ 1
<

2P (P + 1)

p+ 1

implies

−2P (P + 1)

p+ 1
+ P 2 < CD <

(2P)(P + 1)

p+ 1
+ P 2

which is equivalent to

(p− 1)P 2 − 2P

p+ 1
< CD <

(p+ 3)P 2 + 2P

p+ 1
.

Corollary 1. There are only finitely many absolute Lucas pseudoprimes with k > 2

prime factors assuming a set of k − 2 of the prime factors are fixed.

Corollary 2. With the notation above, q < 2(P + 1)2 and r < (P + 1)3.

A naive interpretation of the above corollary would imply O(P 2 logP) arithmetic

operations are required to use a sieve of Eratosthenes to find candidate primes q

for P . This, in turn, requires Ω(P 2 logP) arithmetic operations to find r because

there is at least O(1) arithmetic operations required for a given pair P and q. We

will see below that we can do much better than this.

INTEGERS: 24A (2024) 7

4. Model of Computation

It is common to measure the asymptotic cost of an algorithm in either bit operations

or arithmetic operations. Informally, asymptotic notation (especially big-O) is often

used as a way to give guidance about the run-time of implemented algorithms. Our

theorem statements will count the number of candidate pairs created for q and r

but our exposition may speak more loosely as if this were measuring time. The

theorems state the asymptotic count of arithmetic operations to create q and r

without testing if they are prime. We could multiply the asymptotic costs in this

model by the asymptotic cost of primality testing to get a result that would be

an asymptotic result measuring arithmetic operations. However, this result would

not be of much guidance for the run-time of an implementation because primality

testing is not often the bottle-neck. It is often the case that q and r may be checked

with O(1) arithmetic operations. Here are some examples: they may be too big,

they may not be integers, they may not satisfy certain divisibility statements, or

they may be found in a look-up table. So, it could be the case that the average

cost is O(1) arithmetic operations. Our implementation uses strong Fermat tests

with the bases {2, 3, 5, 7, 11} and this is sufficient to prove primality for all 32-bit

integers [12]. Whenever some factorizations of n− 1 or n+ 1 are known, there are

fast primality tests2 (see Sections 4.1 and 4.2 of [3] or [20] for more details). As we

will see below, it is often the case that we know a complete or partial factorization

of q− δq or r− δr and these tests would be helpful. Given the variety of approaches

that are available, we believe that it is best to provide asymptotic arguments in

terms of the counts of candidates q and r rather than the more traditional bit or

arithmetic operations. For empirical evidence supporting this, see Example 1 where

about 15.6 million candidate primes are created and the algorithm only invoked a

primality test 68 times.

5. Algorithms for Small Preproducts

In [15, 18], Carmichael numbers are constructed of the form n = Pqr. We provide a

sketch of the main algorithmic ideas of this section. Using Theorem 4, the inequality

1 ≤ D < P may be used in a for loop. Then, there are two approaches. First and

following the approach of [15], we use (4.3) to construct valid C for the inner for

loops. With C and D, one can construct q and r and perform the required checks.

Second and following the approach of [18], we use the numerator of q−δq in (4.1) to

construct all of its possible divisors ∆. These divisors are efficiently obtained via the

use of some variant of the sieve of Eratosthenes. With D and ∆, we may construct

2It is perhaps fitting for this work that these tests are also inspired by Édouard Lucas and some
of the variants bear his name.

INTEGERS: 24A (2024) 8

C and r and perform the required checks. Before a more thorough explanation and

analysis, we deal with the smallest possible preproduct, P = 1. This situation is

unique to these numbers and cannot arise with Carmichael numbers.

5.1. P = 1

A complete tabulation must account for the case that n is a product of exactly

two primes, n = p1p2. In [21], it is proved that this only happens when p1 =

p2 − 2, δp1 = −1, and δp2 = 1. Therefore, it suffices to tabulate twin primes in

set residue classes3. For example, with d = 5 we need the primes that are 17, 19

(mod 30). A straightforward implementation of the sieve of Eratosthenes finds

these in O(B1/2 log logB) arithmetic operations. There are other sieving methods

that can improve the time by a factor of (log logB)3 [19]. This component of the

computation contributes only a lower-order term in the overall asymptotic cost of

tabulation. Henceforth, we assume that there are always k > 2 prime factors in our

construction.

5.2. CD Method

The first approach follows Pinch’s method of constructing CD pairs. To do so, a

double nested for loop creates D satisfying 1 ≤ D < P . The inequality (4.3) sets

the bounds for C for the second for loop. In the inner loop, we check that the

number n is an absolute Lucas pseudoprime. That is, we check that q and r are

integral. Second, we check that the divisibility statements in Theorem 2 hold for

all primes. Lastly, we check that both q and r are primes. The purpose of ordering

of these checks is to delay the most expensive checks until last.

Theorem 5. The number of CD pairs used to tabulate all absolute Lucas pseudo-

primes of the form Pqr is Θ(Pk−3P logP) ⊂ O(P 2− 1
k−2 logP).

Proof. We start with the inequality in the proof of Theorem 4 that bounds the

length of the interval around P 2:

|CD − P 2| < 2P (P + 1)

p+ 1
< 2Pk−3(P + 1).

So, the interval length is bounded by 4Pk−3(P + 1). Now, the total number of C

values created for each D is given by

P−1∑
D=1

⌊
4Pk−3(P + 1)

D

⌋
= Θ(Pk−3P logP).

3This example could be seen as the simplest example of a Chernick-like class of absolute Lucas
pseudoprimes and for two prime factors that is all there is. It is not hard to create other Chernick-
like families, e.g., n = p1p2p3 = (6k − 1)(6k + 1)(18k − 1), where −δp1 = δp2 = −δp3 = 1, will be
an absolute Lucas pseudoprime.

INTEGERS: 24A (2024) 9

Since Pk−3 may be bounded by P 1− 1
k−2 (see Theorem 3(i)), this gives a bound of

O(P 2− 1
k−2 logP).

Due to the absolute value on the inequality above, double the work is required.

For each CD pair, two cases are considered. This implies that this should be about

four times slower than the CD method for the Carmichael case. Since this constant

is ignored in the asymptotic analysis, the result is the same as Theorem 4 from [18].

5.3. D∆ Method

The second method is to construct the divisors of (P −δP)(δqP +δrD). The symbol

δr allows |(δqP + δrD)| to be any integer in [1, 2P − 1] (except P). The symbol

δq allows these divisors to be positive or negative. So, there are a total of four

different cases to consider. For each integer in [1, 2P − 1], the algorithm considers

its negation, too. Thus, we account for all four possible choices of Jacobi symbols.

For each of the four separate cases, we constructed C by first checking it is an

integer. Next, q and r are created using the symbols from the four choices. Lastly,

the divisibility criteria of Theorem 2 is checked before testing whether q and r are

primes.

Theorem 6. The number of D∆ pairs used to tabulate all absolute Lucas pseudo-

primes of the form Pqr is O(τ(P − δP) (P logP)).

Proof. For every P , we consider all D in the interval [1, P − 1]. Then count the

number of divisors of (P − δP)(δqP + δrD).

∑
D<P

τ ((P − δP)(δqP + δrD)) < τ(P − δP)

(∑
D<P

τ(δqP + δrD)

)

< 2τ(P − δP)

(∑
n<2P

τ(n)

)
= 2τ(P − δP) (2P log 2P +O(P))

= O(τ(P − δP) (P logP))

The second inequality follows from two facts. Since (δqP + δrD) can be either

positive or negative, this accounts for the appearance of the 2 in third line. Since,

(δqP + δrD) ranges in values from 1 to 2P − 1, this accounts for the change in the

bounds on the summation.

As with the CD method, this is the same asymptotic result as Theorem 5 from

[18] but with an implied constant that is 4 times larger.

Example 1. Let P = 11 · 13 · 17 · 19 = 46189 and d = 5, then there are eight

absolute Lucas pseudoprimes for d = 5 of the form Pqr.

INTEGERS: 24A (2024) 10

1. P · 57349 · 331111621 = 877079242172199781

2. P · 709 · 4093501 = 134053974841501

3. P · 1009 · 378901 = 17658567813601

4. P · 230941 · 29144629 = 310883829596647021

5. P · 2161 · 231589 = 23115923797681

6. P · 23 · 83 = 88174801

7. P · 161659 · 577351 = 4311003447437401

8. P · 1459 · 2251 = 983368161419501

The divisor method requires constructing about 7.8 million D∆ pairs. The CD

method requires the construction of about 4.8 billion CD pairs. By prioritizing

all other checks first, the D∆ method used only 68 primality checks (and 16 were

required to get the above output).

6. Algorithms for Large Preproducts

6.1. Distinguishing “Large” from “Small”

So far, the only approach to find n < B has been to construct a preproduct P =

Pk−2 and use Theorem 4 to find the remaining two primes in time that is essentially

linear in P . This approach has the benefit that it is not dependent on k or λd(P).

However, as P grows in size (with respect to B) it is more and more likely to create

absolute Lucas pseudoprimes outside the tabulation bound. We may discard these

but there is no obvious way to improve the asymptotic cost and only generate the

q = pk−1 and r = pk of the correct sizes. At some point it will be more efficient to

exhaustively generate the candidate q values via a look-up table or with a sieve. In

either case, the cost will be roughly linear in the length of the interval the primes

lie in (differing by logB factors depending on the method used).

Since the algorithms in Section 5 allows us to create all q in time roughly linear

in P , the bound q < 2(P + 1)2 is not helpful in figuring out when to switch to

an exhaustive search because this implies a search cost that is roughly quadratic

in P . The bound Pq2 < B implies q < (B/P)1/2. So, P and (B/P)1/2 equalize

around P = B1/3. For the “large” case, we will assume that P > X > B1/3 where

X is some chosen cross-over point. We will construct q by exhaustive search for

primes in the interval (pk−2,
√
B/P) ⊂ (pk−2,

√
B/X) ⊂ [1, B1/3). With q, we

know Pk−1 = Pq and λd(Pk−1), and will use this information to analyze the cost

of finding r = pk. The difficulty with getting an asymptotic estimate of the total

INTEGERS: 24A (2024) 11

cost of the tabulation of the “large case” is that not much is known about the

asymptotic behavior of λd(Pk−1). For example, if λd(Pk−1) were within a fixed

constant multiple ` of Pk−1, then there would only be 2` candidate values of pk to

check. However, there is no reason to believe that this could happen. Since λ1(n)

can be very small with respect to n, it would be reasonable to believe that λd(n)

has the same property.

6.2. Finding pk Given Pk−1

There are a few approaches for finding pk given Pk−1. We describe what we did

and discuss some valid options that were not implemented.

We use congruence in Theorem 3(ii) to describe pk up to a sign:

pk ≡ δPk−1
δpkP

−1
k−1 (mod λd(Pk−1)).

This means that there are two residue classes r1, r2 modulo λd(Pk−1) to consider

and the number of candidates to be considered in this arithmetic progression is

min

{⌈
Pk−1 − δPk−1

λd(Pk−1)

⌉
,

⌈
B

Pk−1λd(Pk−1)

⌉}
.

The first term comes from (pk − δpk) | (Pk−1 − δPk−1
) implying pk − δpk ≤ Pk−1 −

δPk−1
. The second term comes from the fact that Pk−1pk < B and we compute the

greatest multiple of λd(Pk−1) for which the inequality holds. This is all we imple-

mented; creating candidates in arithmetic progression is “fast,” memory efficient,

and easy to program.

However, there is an asymptotically superior choice that we did not implement.

This is because the worst-case arises when λd(Pk−1) is really small. For these

cases, one should view the problem as integer factorization rather than sieving in

an arithmetic progression. That is, we want to find factors of Pk−1 − δPk−1
. On

this view, the congruence

pk ≡ δPk−1
δpkP

−1
k−1 (mod λd(Pk−1))

can happen to make the factoring problem easier. This happens whenever λd(Pk−1)

is large enough (see results on divisors in residue classes in Section 4.2.3 of [3]).

When λd(Pk−1) is particularly small, then testing candidates in arithmetic progres-

sion could be worse than trial division because there could be O(Pk−1/λd(Pk−1)) =

O(Pk−1) candidates to check. Trial division would only check O(
√
Pk−1) candi-

dates and this is among the slowest of factoring algorithms. Any asymptotically

faster integer factorization algorithm will find candidates for pk in an asymptotically

superior way.

INTEGERS: 24A (2024) 12

7. Implementation, Statistics, and Questions

7.1. Implementation Details

In Section 5.3, we required divisors of integers in the interval [1, 2P −1]. One option

was a large look-up table with prime factorizations of every integer in [1, 2X] to be

used for every P < X. This table could be used to easily check the admissibility of

P and find all divisors of (P − δP)(δqP − δrD). However, this table would be very

space intensive. Instead, we opted for two incremental sieves. One sieve was used

to find admissible P and it always stored the factors of P − 1 and P + 1 so that the

factors of P − δP would be accessible. For any admissible P , another incremental

sieve was instantiated to factor integers in [1, 2P − 1] for the δqP − δrD term. This

approach uses only O(
√
X) space. If X is chosen as suggested in Section 6.1, this

is O(B1/6) space.

For the four tabulations with d = 5,−7,−11 and 13, we chose X = 6 · 106 >

264/3. For every P < X, we used either the CD method or the D∆ method.

The choice was made on a per D basis by choosing which inner loop would create

fewer candidates. The program computed all possible n = Pqr, and we used post-

processing to eliminate n > 264. Our choice of X means that there are no cases

for k = 3 that need to be accounted as large. We wrote nine distinct programs

for the large case (one for each 3 < k < 13). For k ≥ 13, tabulations would have

been empty for B = 264. We used a precomputed list of primes in the interval

[1,
√
B/X). If X > B1/3, this requires O(B1/3) storage. For each k > 3, we keep

track of k − 1 pointers in the array. At each level, we make sure that the implied

product is bounds admissible. And at the k−2 level, we also insure that the product

exceeds X.

The code and other supplementary information may be found at

https://github.com/Chelmreich/Absolute-Lucas-Pseudoprimes.

7.2. Statistics and Comparison to Carmichael Numbers

We let Cd(k,B) be the function that counts the number of absolute Lucas pseudo-

primes less than B, where d is the discriminant of the family of Lucas sequences

and k is the number of prime factors. There seems to be more absolute Lucas pseu-

doprimes than Carmichael numbers. The presence of the product of twin primes

plays a significant role in this count. Letting α = logB(Cd(B)), then the least order

of magnitude for which α > 1/3 is 15 for Carmichael numbers. But for the other

discriminants this threshold is crossed at 13, 8, 9, and 11 (ordered by discriminant).

We are not entirely sure why this is. Our expectation was that the exclusion

of primes dividing d from admissible preproducts would cause there to be fewer of

these numbers. Since the actual asymptotic behavior of Carmichael numbers is still

subject to many open questions (e.g., [11]), we believe the asymptotic counts of these

INTEGERS: 24A (2024) 13

numbers would be subject to the same problems. See Tables 1-8 in the Appendix

for information on the tabulations organized by the count of prime divisors.

One curious feature of absolute Lucas pseudoprimes is that they do not exhibit

uniform distribution of Jacobi symbols by their prime factorizations. For example,

with k = 3 and d = 5, there are eight possible ways the Jacobi symbols may

appear. The case δp1 = δp2 = δp3 = 1, which are also Carmichael numbers, had

32227 numbers in it. While the case corresponding to δp1 = δp2 = −δp3 = 1 only

had 1146 numbers in it.

7.3. Questions

In [1], the authors revisited the Baillie-PSW primality test with an aim of strength-

ening it. Could the unbalanced nature of the distribution of Jacobi symbols in

absolute Lucas pseudoprimes imply that there is a better choice of families of Lucas

sequences for this test?

It is always desirable to have sharper asymptotic estimates for algorithms. In our

case, this would require better bounds on λd(n). Does this generalized Carmichael

function have the same asymptotic behavior as λ1(n)? See Theorem 2 and Theorem

3 of [7] or Theorem 5 of [8] for asymptotic results on the Carmichael function.

Acknowledgements. We both thank Anthony Gurovski for his initial contribu-

tions, which included a tabulation up to 1017 for d = 5. We are grateful to Hugh

Williams’ encouragement and his comments on a preliminary draft of this work.

We are also thankful to the anonymous referee.

References

[1] R. Baillie, A. Fiori, and S. Wagstaff, Strengthening the Baillie-PSW primality test, Math.
Comp. 90 (330) (2021), 1931-1955.

[2] R. Baillie, and S. Wagstaff, Lucas pseudoprimes, Math. Comp. 35 (152) (1980), 1391-1417.

[3] R. Crandall and C. Pomerance, Prime Numbers: A Computational Perspective, Springer, New
York, 2005.

[4] H.G.W.H. Beeger, On composite numbers n for which an−1 ≡ 1 (mod n) for every a prime
to n, Scripta Math. 16 (1950), 133-135.

[5] H.J.A. Duparc, On Carmichael numbers, Simon Stevin 29 (1952), 21-24.

[6] P. Erdős, Some asymptotic formulas in number theory, J. Indian Math. Soc. 12 (1948), 75-78.

[7] P. Erdős, C. Pomerance, and E. Schmutz, Carmichael’s lambda function, Acta Arithmetica
58 (4) (1991), 365-385.

[8] J. Friedlander, C. Pomerance, and I. Shparlinski, Period of the power generator and small
values of the Carmichael function, Math. Comp. 70 (236) (2001), 1591–1605.

INTEGERS: 24A (2024) 14

[9] T. Granlund and the GMP development team, GNU MP: The GNU Multiple Precision
Arithmetic Library. http://gmplib.org/.

[10] J. Grantham, Frobenius pseudoprimes, Math. Comp. 70 (234) (2000), 873–891.

[11] A. Granville and C. Pomerance, Two contradictory conjectures concerning Carmichael num-
bers, Math. Comp. 71 (238) (2001), 883-908.

[12] G. Jaeschke, On strong pseudoprimes to several bases, Math. Comp. 61 (204) (1993), 915–926.

[13] M. Joye and J.-J. Quisquater, Efficient computation of full Lucas sequences, Electron. Lett.
32 (6) (1996), 537-538.

[14] D.H. Lehmer, An extended theory of Lucas’ functions, Ann. of Math. (2) 31 (1930), no. 3,
419-448.

[15] R. G. E. Pinch, The Carmichael numbers up to 1015, Math. Comp. 61 (203) (1993), 381-391.

[16] R. G. E. Pinch, The Carmichael numbers up to 1021, https://tinyurl.com/45w4ec2w.

[17] M. Rabin, Probabilistic algorithm for testing primality, J. Number Theory 12 (1980), 128-138.

[18] A. Shallue and J. Webster, Tabulating Carmichael numbers n = Pqr with small P , Res.
Number Theory 8 (2022) (4), Paper no. 84, 11 pp.

[19] J. Sorenson and J. Webster, Two algorithms to find primes in patterns, Math. Comp. 89
(324) (2020), 1953-1968.

[20] H. C. Williams, Édouard Lucas and Primality Testing, Wiley, New York, 1998.

[21] H. C. Williams, On numbers analogous to the Carmichael numbers, Canad. Math. Bull. 20
(1) (1977), 133-143.

INTEGERS: 24A (2024) 15

Appendix

B k = 2 3 4 5 6 7 C5(B) α
103 1 0 0 0 0 0 1 0
104 1 2 0 0 0 0 3 0.1193
105 1 7 0 0 0 0 8 0.1806
106 9 22 3 0 0 0 34 0.2552
107 24 50 24 2 0 0 100 0.2857
108 64 102 89 18 1 0 274 0.3047
109 159 189 249 106 7 0 710 0.3168
1010 414 356 512 358 71 0 1711 0.3233
1011 1053 633 1008 1040 316 17 4067 0.3281
1012 2734 1110 1857 2703 1268 180 9855 0.3328
1013 7301 2038 3344 6226 4174 966 24108 0.3371
1014 19674 3737 5649 13287 12078 4288 59209 0.3409
1015 53561 6754 9462 26821 31472 15721 146774 0.3444
1016 146953 12215 15639 51121 76397 50690 367518 0.3478
1017 407779 22004 25186 94748 173721 148482 933074 0.3512
1018 1142128 39974 40155 169243 376784 404815 2404810 0.3545
1019 3220913 73298 62991 293565 783905 1033279 6272286 0.3578
264 4247414 86227 70917 338435 946862 1313728 8111918 0.3586

Table 1: Values of C5(k,B) for 2 ≤ k ≤ 7 and C5(B)

B k = 8 9 10 11 12
1012 3 0 0 0 0
1013 59 0 0 0 0
1014 490 6 0 0 0
1015 2844 138 1 0 0
1016 13280 1201 22 0 0
1017 53529 7338 287 0 0
1018 191645 37528 2501 37 0
1019 621182 165609 17013 526 5
264 839626 240258 27437 1004 10

Table 2: Values C5(k,B) for 8 ≤ k ≤ 12

INTEGERS: 24A (2024) 16

B 2 3 4 5 6 7 C−7(B) α
103 0 0 0 0 0 0 0 0
104 1 4 0 0 0 0 5 0.1747
105 1 17 0 0 0 0 18 0.2511
106 4 53 10 0 0 0 67 0.3043
107 15 115 74 8 0 0 212 0.3323
108 37 249 267 61 0 0 614 0.3485
109 94 509 746 316 16 0 1684 0.3585
1010 239 965 1770 1272 168 0 4414 0.3645
1011 623 1773 3777 4565 1128 70 11936 0.3706
1012 1595 3248 7458 14516 5260 602 32684 0.3762
1013 4320 5863 14052 41215 19405 3696 88689 0.3806
1014 11756 10490 25389 99562 61541 18690 229020 0.3828
1015 32071 19211 44127 207979 175819 79626 570903 0.3838
1016 88111 34589 75146 390112 459693 291488 1410927 0.3843
1017 243992 62833 124996 684936 1127659 958164 3559042 0.3854
1018 684583 115274 203560 1154665 2609781 2870274 9183044 0.3868
1019 1930996 211336 326436 1902266 5763746 7969591 24136647 0.3686
264 2546823 248473 369654 2167587 7063176 10340609 31283689 0.3890

Table 3: Values of C−7(k,B) for 2 ≤ k ≤ 7 and C−7(B)

B 8 9 10 11 12
1012 5 0 0 0 0
1013 138 0 0 0 0
1014 1568 24 0 0 0
1015 11676 392 2 0 0
1016 67197 4544 47 0 0
1017 318930 36532 999 1 0
1018 1304962 227523 12309 113 0
1019 4752342 1173485 104118 2324 7
264 6595966 1770773 175859 4753 16

Table 4: Values of C−7(k,B) for 8 ≤ k ≤ 12

INTEGERS: 24A (2024) 17

B 2 3 4 5 6 7 C−11(B) α
103 1 1 0 0 0 0 2 0.1003
104 3 3 0 0 0 0 6 0.1945
105 6 6 3 0 0 0 15 0.2352
106 8 25 14 1 0 0 48 0.2802
107 15 63 51 7 1 0 137 0.3052
108 41 157 156 27 1 0 382 0.3228
109 108 317 421 155 15 0 1016 0.3341
1010 276 617 990 693 80 0 2656 0.3424
1011 694 1215 2157 2452 516 16 7050 0.3498
1012 1795 2292 4373 7798 2493 230 18981 0.3565
1013 4899 4171 8535 22623 9547 1575 51381 0.3624
1014 13183 7514 15701 56048 31758 8307 133036 0.3660
1015 35654 13667 27741 119135 92145 37187 329925 0.3679
1016 97750 24427 47899 226410 247963 143068 816901 0.3695
1017 271562 44398 80166 402574 618647 485980 2059048 0.3714
1018 760653 80786 131666 684709 1456771 1498393 5321599 0.3737
1019 2147345 149154 212589 1141736 3259866 4257511 14044816 0.3762
264 2831298 175235 241194 1305333 4007294 5554172 18225511 0.3767

Table 5: Values of C−11(k,B) for 2 ≤ k ≤ 7 and C−11(B)

B 8 9 10 11 12
1013 31 0 0 0 0
1014 520 5 0 0 0
1015 4299 97 0 0 0
1016 27953 1426 5 0 0
1017 142421 13079 221 0 0
1018 614240 90839 3524 18 0
1019 2332830 507737 35554 494 0
264 3268653 778688 62510 1132 2

Table 6: Values of C−11(k,B) for 8 ≤ k ≤ 12

INTEGERS: 24A (2024) 18

B 2 3 4 5 6 7 C13(B) α
103 2 0 0 0 0 0 2 0.1003
104 2 0 0 0 0 0 2 0.0753
105 5 4 1 0 0 0 10 0.2
106 10 16 8 0 0 0 34 0.2552
107 18 39 30 1 0 0 88 0.2778
108 59 87 95 20 0 0 261 0.3021
109 135 182 230 106 8 0 661 0.3134
1010 335 360 494 359 121 4 1673 0.3223
1011 861 669 1012 1175 2115 22 5854 0.3425
1012 2218 1213 1892 3358 12776 133 21590 0.3612
1013 5972 2190 3349 8860 44394 727 65492 0.3705
1014 15996 3921 5722 20351 116366 3207 165573 0.3728
1015 43387 7065 9512 40233 252535 12101 364973 0.3708
1016 119760 12767 15772 71695 483640 40779 745471 0.3670
1017 333122 22825 25616 119960 857358 125490 1491078 0.3631
1018 933600 41533 40764 191781 1434794 351699 3029748 0.3601
1019 2634300 76327 63903 300111 2326807 920304 6487389 0.3585
264 3473895 89688 71861 337321 2633462 1177125 8028538 0.3584

Table 7: Values of C13(k,B) for 2 ≤ k ≤ 7 and C13(B)

B 8 9 10 11 12
1014 10 0 0 0 0
1015 106 34 0 0 0
1016 587 469 2 0 0
1017 2782 3858 67 0 0
1018 11463 23179 932 3 0
1019 43598 113433 8493 113 0
264 61566 168929 14437 254 0

Table 8: Values of C13(k,B) for 8 ≤ k ≤ 12

