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Abstract

Bulgarian Solitaire, originally a recreational mathematics topic about pile sizes of
various objects under a rearrangement procedure, is now studied as an operation
on the integer partitions of a fixed number. Martin Gardner popularized the math-
ematical puzzle in one of his late Scientific American columns, but the unusual
name comes from an earlier article by Henrik Eriksson in the Swedish language
journal Elementa. That article ends with a variant game which does not yet seem
to have been fully analyzed. Here we provide a thorough study of Henrik Eriksson’s
Bulgarian Solitaire variant and its immediate generalizations, also placing these in
the context of several broad generalizations of Bulgarian Solitaire developed in the
past ten years. Of particular interest, characterizing and enumerating the Garden of
Eden states (those with no predecessors under the operation) uses a new “stretched”
version of Dyson’s rank statistic for integer partitions.

– In memory of Henrik Eriksson (1942–2017)

1. Bulgarian Solitaire

Given an integer n ≥ 0, we say λ = (λ1, . . . , λs) is a partition of n if each λi is

a positive integer,
∑
λi = n, and λ1 ≥ λ2 ≥ · · · ≥ λs (there is also one empty

partition of n = 0). The number of parts s is called the length of λ. We will

also use the frequency notation λ = 1m12m2 · · ·nmn which indicates that λ has m1

parts 1, m2 parts 2, etc. Write P (n) for the set of partitions of n and p(n) for the

number of partitions of n. (In the last section, we will expand the definition to

allow partitions with certain positive rational parts.)

Definition 1. Given n ≥ 1 and λ = (λ1, . . . , λs) ∈ P (n), the Bulgarian Solitaire

operation B : P (n)→ P (n) is determined by

B(λ) = (s, λ1 − 1, . . . , λs − 1)
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Figure 1: The image of (5, 2, 1) under B is (4, 3, 1).

where any zeros are removed and the parts may need to be reordered to be in

nonincreasing order.

This operation can be visualized using the Ferrers diagram of a partition where

each part corresponds to a column of dots. A move in Bulgarian Solitaire removes

one dot from each column; it is helpful to think of removing the bottom row of the

diagram. See Figure 1 for an example.

Applying B to all partitions of a fixed n creates a finite dynamical system; see

Figure 2 showing the n = 4 case. Note that the resulting directed graph with vertices

P (4) has one (weakly) connected component with a 3-cycle and one partition with

no preimage.

What became known as Bulgarian Solitaire dates to Moscow in 1980 and spread

in mathematical circles around Europe. Henrik Eriksson heard of it from a colleague

who had attended a conference in Sofia, thus his article “Bulgarisk Patiens” in

the Swedish language journal Elementa [6]. He soon traveled to California and

communicated the puzzle with the name Bulgarian Solitaire; from Donald Knuth

and Ron Graham it passed to Martin Gardner who included it in a 1983 article

[9]. See [11] for a more detailed history including Eriksson’s declaration, “The silly

name is my invention, silly because it is neither Bulgarian nor a solitaire.”

The compelling question of Bulgarian Solitaire concerns longterm behavior, es-
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Figure 2: The Bulgarian Solitaire operation B on the partitions of 4. Parentheses
and commas are omitted, and exponents are used to denote repetition.
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pecially for certain numbers of objects (e.g., Gardner’s 45 playing cards). As a

dynamical system on a finite set, B applied to P (n) for any n must eventually form

cycles: Given λ ∈ P (n), the partitions λ,B(λ), B2(λ) = B(B(λ)), B3(λ), . . . cannot

all be distinct. Call a partition λ cyclic if λ = Bj(λ) for some j. The following de-

scription of cyclic partitions was found independently by Bojanov [2], Eriksson [6],

and Toom [17], all in problems sections of journals primarily intended for students,

and by Brandt [3] in the Proceedings of the American Mathematical Society. Let

Tm be the mth triangular number m(m+ 1)/2.

Theorem 1. Given n ≥ 1, write n uniquely as Tm +m′ for some integer m′ with

0 ≤ m′ ≤ m. The cyclic partitions of n under the operation B have the form

(m+ rm,m− 1 + rm−1, . . . , 1 + r1, r0)

where each integer ri satisfies 0 ≤ ri ≤ 1 and
∑
i ri = m′. Therefore, there are(

m+1
m′

)
cyclic partitions. In particular, n has a unique cyclic partition (a 1-cycle,

also known as a fixed point) when each ri = 0 and n = Tm.

It is clear that the described partitions are closed under the operation B. See

Drensky [4] for an expository account of the necessity part of the proof, using a

“cradle” model attributed to Björner. In Figure 2, the cyclic partitions of 4 for B

are (3, 1), (2, 2), and (2, 1, 1), which can be thought of as (2, 1) with an additional

dot in the first, second, or third column, respectively. In general, the ri all occupy

the (m + 1)st diagonal above the m full diagonals corresponding to the triangular

partition (m, . . . , 1). Combinatorially, the ri correspond to a necklace of m + 1

white and black beads with m′ being black, or a circular/cyclic weak composition

of m′ having m+ 1 parts each 0 or 1.

Brandt also applied Pólya enumeration to determine the number of connected

components which is the same as the number of disjoint cycles [3, Theorem 5].

Theorem 2. Given n ≥ 1, write n uniquely as Tm +m′ for some integer m′ with

0 ≤ m′ ≤ m. The number of connected components in P (n) under the operation B

is
1

m+ 1

∑
d|(m+1,m′)

ϕ(d)

(
(m+ 1)/d

m′/d

)
where (m+ 1,m′) denotes the greatest common divisor of m+ 1 and m′, and ϕ(d)

is the Euler phi function.

The smallest n for which Bulgarian Solitaire disconnects P (n) into multiple com-

ponents is n = 8. However, there is a single connected components only when n is

within one of a triangular number.

Other distinguished partitions in these dynamical systems are those without a

preimage, such as (1, 1, 1, 1) in Figure 2. These are known as Garden of Eden (GE)

partitions.
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The most succinct characterization of GE partitions uses a partition statistic

defined by Dyson [5]: The rank of λ = (λ1, . . . , λs) is λ1 − s. For instance,

rank((5, 2, 1)) = 5− 3 = 2.

Write N(m,n) for the number of partitions λ of n with rank(λ) = m. We will

need the following two generating functions, given with standard q-series notation

such as the q-Pochhammer symbol (a; q)n =
∏n−1
i=0 (1− aqi) for n > 0.

Proposition 3. Given an integer m, two generating functions for N(m,n) are∑
n≥0

N(m,n)qn =
1

(q; q)∞

∑
n≥1

(−1)n−1q
1
2n(3n−1)+mn(1− qn), (1)

∑
n≥0

∑
m∈Z

N(m,n)wmqn =
∑
n≥0

qn
2

(wq; q)n(w−1q; q)n
. (2)

Proof. Equation (1) was stated by Dyson [5] and proven by Atkin and Swinnerton-

Dyer [1].

Equation (2) makes use of the Durfee square of a partition, the largest possible

square starting from the lower left corner of the Ferrers diagram (as we draw them

here). The subpartition above an n× n Durfee square has at most n parts and the

subpartition to the right of the Durfee square has largest part at most n which gives

Jacobi’s result ∑
n≥0

p(n)qn =
∑
n≥0

qn
2

(q; q)2n
.

Inside the Durfee square, there are an equal number of dots in the left column and

in the bottom row, so they are not necessary for the rank computation. In order

for the exponent of w to record the rank, the dots above the Durfee square in the

left column each have weight w while the dots to the right of the Durfee square in

the bottom row each have weight w−1.

See Figure 3 for the partition (5, 2, 1), its Durfee square size 2×2, and the weights

w and w−1 contributing to its rank, 2.

The following characterization of Garden of Eden partitions was given by the

author and Jones [12] soon followed by the description using rank and enumeration

results by the author and Sellers [14]. Write ge(n) for the number of GE partitions

of n under B.

Theorem 4. The Garden of Eden partitions of n under B are exactly the λ ∈ P (n)

for which rank(λ) ≤ −2.

A generating function for ge(n) is∑
n≥0

ge(n)qn =
∑
m≤−2

1

(q; q)∞

∑
r≥1

(−1)r−1
(
q(3r

2−r)/2 + q(3r
2+r)/2

)
q|m|r (3)
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Figure 3: The Durfee square of (5, 2, 1) and the weights on some dots.

and ge(n) satisfies

ge(n) = p(n− 3)− p(n− 9) + p(n− 18)− · · · =
∑
j≥1

(−1)j+1p(n− 3Tj). (4)

The expression in Equation (3) comes from Equation (1) and the rank symme-

try N(m,n) = N(−m,n). This simplifies nicely to an expression that gives the

expression in Equation (4).

See Equation (8) in Section 3 for another generating function for ge(n).

Note that a GE partition for B must have length at least 3 since any two-

part partition λ has rank((λ1, λ2)) = λ1 − 2 ≥ −1 and any one-part partition has

nonnegative rank.

The next section introduces Henrik Eriksson’s variant of Bulgarian Solitaire and

its immediate generalizations, the family of operations Hk. We also place these in

the context of several broad generalizations of Bulgarian Solitaire. The last section

gives analogues of the Bulgarian Solitaire results in this section for the Hk.

2. Henrik Eriksson’s Variant and Its Generalizations

At the end of his 1981 article, Henrik Eriksson offered a modification of Bulgarian

Solitaire. “As a variation on the rules, one may choose to take two cards from each

pile and let them form a new pile. (From a one-card pile, you only take the card

that is available.)” [6]

To define this and related operations symbolically, we use the partition frequency

notation.

Definition 2. Given integers k ≥ 1 and n ≥ 1 with λ = (λ1, . . . , λs) ∈ P (n) and

λ = 1m12m2 · · ·nmn , the generalized Henrik Eriksson operation Hk : P (n) → P (n)
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Figure 4: Representations of H2((5, 2, 1)) = (5, 3) and H3((5, 2, 1)) = (6, 2).

is determined by

Hk(λ) = (ks− (k − 1)m1 − (k − 2)m2 − · · · −mk−1, λ1 − k, . . . , λs − k)

where any zeros and negative values are removed and the parts may need to be

reordered to be in nonincreasing order.

Examples on (5, 2, 1) ∼ 112151 include H2((5, 2, 1)) = (2 · 3 − 1, 5 − 2) = (5, 3)

and H3((5, 2, 1)) = (3 · 3− 2− 1, 5− 3) = (6, 2). The operations Hk are more easily

understood graphically; see Figure 4 for the same examples.

Note that H1 = B so that Hk is a generalization of Bulgarian Solitaire. At the

other extreme, Hn on P (n) sends every partition to (n) giving a single component

with p(n)− 1 Garden of Eden partitions each leading to the 1-cycle (n). Note that

for k ≥ 2, this means that there are GE partitions under Hk of length 2 (such as

(1, 1)) in contrast to Bulgarian Solitaire.

In the remainder of this section, we consider the Hk operations in terms of broad

generalizations of Bulgarian Solitaire considered by Jeffrey Olson [15] and the team

of Kimmo Eriksson (Henrik’s son), Markus Jonsson, and Jonas Sjöstrand [7, 8]. We

consider these in order of increasing generality. As appropriate, we mention results

from these authors that address the analysis of the Hk operations.

In 2018, Kimmo Eriksson, Jonsson, and Sjöstrand introduced q-proportional Soli-

taire [7]: Given real q ∈ (0, 1], dots from rows {1, 1+b1/qc, 1+b2/qc, . . .} (counting

from the bottom) are removed from each column (b·c indicates the integer floor).

Given n, Bulgarian Solitaire corresponds to q = 1/n. Also, q = 1 removes dots from

every row, matching Hn. For no other k, however, is Hk a q-proportional Solitaire.

The choice q = 2/n, for instance, removes dots from rows 1 and 1 + bn/2c which is

not in general the bottom two rows.

In 2020, the same authors defined L-Solitaire [8]: For a positive integer n and a

set L ⊆ {1, . . . , n}, dots in the rows given by L are removed from each column. Bul-

garian Solitaire corresponds to L = {1}. The generalized Henrik Eriksson operation

Hk corresponds to L = {1, . . . , k}. Also, each q-Solitaire is an L-Solitaire.
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An L-Solitaire result relevant here is that, for each choice of n and L, there is

at most one 1-cycle on P (n) under that L-Solitaire [8, Theorem 3(b)]. For the Hk

operations, this will also follow from Theorem 5 below.

In 2016, Olson defined a very general σ-Solitaire which only requires that the

same number of dots be removed from columns of the same height [15]: Given a

positive integer n, λ = (λ1, . . . , λs) ∈ P (n), and rule

σ : {1, . . . , n} → {0, . . . , n− 1}

with σ(i) < i for each 1 ≤ i ≤ n, the operation σ̄ : P (n)→ P (n) is determined by

σ̄(λ) =

(
σ(λ1), . . . , σ(λs), n−

s∑
i=1

σ(λi)

)
where any zeros are removed and the parts may need to be reordered. Every L-

Solitaire (and thus every q-proportional Solitaire and each Hk) is a σ-Solitaire. In

particular, the rule σ for Hk is

σ =

(
1 2 · · · k k + 1 k + 2 · · ·
0 0 · · · 0 1 2 · · ·

)
.

One σ-Solitaire result is that, for every rule σ, any partition λ = (λ1, . . . , λs)

with λ1 < s − 1 is a Garden of Eden partition [15, Corollary 6]. By Theorem 4,

this condition is necessary and sufficient for Bulgarian Solitaire. Theorem 8 below

characterizes the GE partitions for each Hk.

There is another family of operations on P (n) related to the Hk operations.

Note that all the operations discussed so far create one new part/column with each

application. The author and Kolitsch considered operations that remove k rows and

create k columns in each step, matching Bulgarian Solitaire at k = 1 and partition

conjugation at k = n (and k = n− 1) [10, 13].

3. Analysis of the Hk Operations

There are significant differences between the dynamical system behavior of B = H1

and the generalized Henrik Eriksson operations Hk for different k. Contrast, for

example, Figure 2 with P (4) under Bulgarian Solitaire and Figure 5 with the same

partitions under H2: Figure 5 shows two components, one with a 2-cycle and two

Garden of Eden partitions, the other an isolated 1-cycle. (Note that (3, 1) is its own

predecessor, so it is not a GE partition for H2.)

In this final section, we provide the analogues of Theorems 1, 2, and 4 for the

Hk, fully characterizing the cyclic partitions and GE partitions, and counting the

number of connected components. We also introduce and study a generalization of

Dyson’s rank statistic on partitions.
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Figure 5: Henrik Eriksson’s operation H2 on the partitions of 4.

For the cyclic partitions under Hk, the partition (m,m − 1, . . . , 1) ∈ P (Tm) of

Theorem 1 is replaced by (km, k(m− 1), . . . , k) ∈ P (kTm), a scaled triangular par-

tition. The enumeration uses Euler’s polynomial coefficient or generalized binomial

coefficient
(
n
k

)
`
, the coefficient of xk in (1 + x+ · · ·+ x`−1)n (so that the standard

binomial coefficient is
(
n
k

)
2
).

Theorem 5. Given positive integers k and n, write n uniquely as kTm + m′ for

some integer m′ with 0 ≤ m′ ≤ k(m+ 1)− 1. The cyclic partitions of n under the

operation Hk have the form

(km+ rm, k(m− 1) + rm−1, . . . , k + r1, r0)

where each integer ri satisfies 0 ≤ ri ≤ k and
∑
i ri = m′. There are

(
m+1
m′

)
k+1

cyclic partitions. In particular, n has a 1-cycle when the ri are equal which occurs

when n = kTm + `(m+ 1) for 0 ≤ ` ≤ k − 1.

The core ideas of the proof were given by Henrik Eriksson:

The analysis [of H2] is surprisingly almost as simple [as that of B]. One

first notices that in each step the newly formed pile always has an even

number of cards, unless one or more one-card piles disappear at the same

time. The number of odd piles can therefore only decrease and reaches

its minimum in the final cycle. Now replace each card with half a brick!

The previous reasoning [about Bulgarian Solitaire] can be applied and

shows as before that all levels are filled except possibly the top one and

that all odd half-bricks must be on the top level. [6]

See Figure 6 for a vertical compression by 1/2 applied to the partition (5, 2, 1).

The H2 operation then becomes the B operation applied to partitions allowed to

have parts in 1
2Z

+, the positive half-integers. Also, notice in Figures 5 and 6 that

the number of odd parts weakly decreases when H2 is applied.

Proof. First, the bound on m′ comes from each of the m+ 1 columns having up to

k additional dots but avoiding the case where ri = k for all i since that would give

n = kTm+1.
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Figure 6: The compressed version of H2((5, 2, 1)) = (5, 3) shown as Bulgarian Soli-
taire on half-integers with B((2 1

2 , 1,
1
2 )) = (21

2 , 1
1
2 ).

For sufficiency of the cyclic partitions,

Hk((km+ rm, k(m− 1) + rm−1, . . . , k + r1, r0))

= (km+ r0, k(m− 1) + rm, k(m− 2) + rm−1, . . . , r1)

since the first m parts are reduced by k and the operation also removes r0 to make

a new first part km+ r0.

For necessity, use vertical compression by 1/k to apply the Bulgarian Solitaire

analysis to partitions with parts in 1
kZ

+. Each application of Hk removes all parts

strictly less than k to make one new part, so that the number of nonmultiples of k

is weakly decreasing. Equivalently, each application of B on partitions with parts

in 1
kZ

+ removes all parts less than 1 to make one new part, so that the number

of noninteger parts is weakly decreasing. Eventually, by the reasoning supporting

Theorem 1 for standard Bulgarian Solitaire, each application of Hk involves at most

one nonmultiple of k so that, in the compressed system, the first m diagonals are

filled with “complete bricks” and any partial bricks are in the (m + 1)st diagonal

which corresponds to the ri.

For the enumeration, the ri correspond to a weak composition of m′ with m+ 1

parts each satisfying 0 ≤ ri ≤ k. Adding one to each part gives a standard integer

composition of m′ + m + 1 with m + 1 positive integer parts each at most k + 1;

these are counted by
(
m+1
m′

)
k+1

[16, p. 124].

The statements about 1-cycles and the n for which they occur follow directly.

For example, P (4) under the operation H2 has 4 = 2T1 + 2 and
(
2
2

)
3

cyclic

partitions. Indeed, the coefficient of x2 in (1 + x+ x2)2 = 1 + 2x+ 3x2 + 2x3 + x4

is 3, matching the cyclic partitions shown in Figure 5.

For another example of the result that the number of nonmultiples of k is weakly

decreasing under Hk, Figure 7 shows a subset of P (8) under H3 where nonmultiples

of 3 are marked; note that both partitions in the cycle have one nonmultiple of 3.

The same Pólya enumeration approach used by Brandt for Theorem 2 applies

for the generalized Eriksson operations.

Theorem 6. Given positive integers k and n, write n uniquely as kTm + m′ for

some integer m′ with 0 ≤ m′ ≤ k(m+ 1)− 1. The number of connected components
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Figure 7: A subset of P (8) under H3 with nonmultiples of 3 marked.

in P (n) under the operation Hk is

1

m+ 1

∑
d|(m+1,m′)

ϕ(d)

(
(m+ 1)/d

m′/d

)
k+1

where (m+ 1,m′) denotes the greatest common divisor of m+ 1 and m′, and ϕ(d)

is the Euler phi function.

The only difference from the proof of Theorem 2 is in the polynomial coefficient

for counting compositions with a greater bound on their parts. For example, P (4)

under the operation H2 with 4 = 2T1 + 2 has

1

2

∑
d|(2,2)

ϕ(d)

(
2/d

2/d

)
3

=
1

2

(
1 ·
(

2

2

)
3

+ 1 ·
(

1

1

)
3

)
=

1

2
(3 + 1) = 2

components, matching the state diagram of Figure 5.

The analysis of the Garden of Eden partitions for the Hk operations requires a

new generalization of Dyson’s rank statistic that we call the k-stretched rank.

Definition 3. Given a positive integer k and a partition λ = (λ1, . . . , λs), define

the k-stretched rank as rankk(λ) = λ1 − ks.

For example, rank2((5, 2, 1)) = 5 − 2 · 3 = −1. The k = 1 case is the standard

rank.

Let Nk(m,n) be the number of partitions λ of n with rankk(λ) = m. Analogous

to Proposition 3, we determine two generating functions for Nk(m,n).

Proposition 7. Given an integer m, two generating functions for Nk(m,n) are

∑
n≥0

Nk(m,n)qn =
1

(q; q)∞

∑
n≥1

(−1)n−1q
1
2n((2k+1)n−1)+mn

kn∏
s=n

(1− qs), (5)

∑
n≥0

∑
m∈Z

Nk(m,n)wmqn =
∑
n≥0

qn
2

w(1−k)n

(wq; q)n(w−kq; q)n
. (6)
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Proof. To show Equation (5), we modify the Atkin–Swinnerton-Dyer proof of Equa-

tion (1) [1, Lemma 1].

A partition λ = (λ1, . . . , λs) ∈ P (n) with rankk(λ) = m has λ1 = ks + m.

The number of such partitions equals the number of partitions of n− ks−m with

exactly s− 1 parts, none of which exceeds ks+m. It is therefore the coefficient of

xn−ks−mzs−1 in
ks+m∏
u=1

(1− zxu)−1

which, following their application of two identities of Hardy and Wright, is the

coefficient of xn in

x(k+1)s+m−1
s−1∑
u=0

(−1)ux
1
2u(u+1)+u(ks+m−1)

u∏
r=1

(1− xr)−1
s−u−1∏
t=1

(1− xt)−1.

This gives∑
n≥0

Nk(m,n)xn
∏
u≥1

(1− xu)

=
∑
u≥1

(−1)u−1x
1
2u(u−1)+mu(1− xu)

∑
s≥u

xksu+s−u
s−u∏
t=1

(1− xt)−1
 ∏
r≥u+1

(1− xr)

=
∑
u≥1

(−1)u−1x
1
2u(u−1)+mu

xku2 ∏
r≥ku+1

(1− xr)−1
 (1− xu)

∏
r≥u+1

(1− xr)

=
∑
u≥1

(−1)u−1x
1
2u((2k+1)u−1)+mu

ku∏
r=u

(1− xr)

from which Equation (5) follows.

For Equation (6), the proof of Equation (2) is modified by the dots in the bottom

row each having weight w−k rather than w−1. Also, the dots in the left column and

bottom row of the n×n Durfee square no longer cancel out, rather they contribute

the factor wnw−kn = w(1−k)n.

See Figure 8 for the weights showing rank2((5, 2, 1)) = −1. Notice that the

bottom left dot, being in both the left column and bottom row, has weight w ·w−2 =

w−1. The dots in the 2×2 Durfee square have combined weight w−2, matching the

factor in the numerator of Equation (6). All the weights combine to w−1, matching

the 2-stretched rank of (5, 2, 1).

Our last results use the q-binomial coefficient or Gaussian polynomial
[
m+n
n

]
which gives the number of partitions that fit inside an m × n rectangle. More

specifically, the coefficient of q` in the polynomial gives the number of partitions of

` with at most n parts each at most m.
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Figure 8: The weights on some dots of (5, 2, 1) for the 2-stretched rank.

Write gek(n) for the number of Garden of Eden partitions of n under the oper-

ation Hk.

Theorem 8. Given an integer k ≥ 2, the Garden of Eden partitions of n under

Hk are exactly the λ ∈ P (n) for which rankk(λ) ≤ −k − 1. A generating function

for gek(n) is ∑
n≥0

gek(n)qn =
∑
s≥2

qs
[
(k + 1)(s− 1)− 1

s

]
. (7)

Proof. A partition λ = (λ1, . . . , λs) ∈ P (n) has preimages under Hk for each part

λi large enough to contribute at least k dots to each of the other s − 1 parts. For

example, if λi ≥ k(s− 1), then

Hk((λ1 + k, . . . , λi−1 + k, λi+1 + k, . . . , λs + k, 1λi−k(s−1))) = λ.

Therefore a partition λ with no preimage has no λi ≥ k(s − 1). In particular,

λ1 ≤ k(s− 1)− 1 which is equivalent to rankk(λ) ≤ −k − 1.

To establish Equation (7), suppose a Garden of Eden partition λ of n under Hk

has s parts. As noted in the previous section, we know s ≥ 2. We have seen that

the k-stretched rank condition is equivalent to λ1 ≤ k(s− 1)− 1 which implies that

the subpartition of λ above the bottom row has at most s parts with each part at

most k(s− 1)− 2. That is, the remainder of λ fits in an (ks− k− 2)× s rectangle.

Therefore the GE partition corresponds to the product of qs (the bottom row) and

the given q-binomial coefficient (the remainder).

Note that the GE condition for k = 1 is rank1(λ) ≤ −2, matching the Bulgarian

Solitaire GE condition in Theorem 4. The expression analogous to Equation (7) for

k = 1 varies only by starting with s = 3 since, as noted in the first section, a GE
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partition under B has length at least 3. Thus we have another generating function

for the number of GE partitions under B, namely∑
n≥0

ge(n)qn =
∑
s≥3

qs
[
2s− 3

s

]
. (8)

The number of partitions of n that have at least one preimage under Hk is clearly

given by p(n) − gek(n). With the techniques of the previous proof, we can give a

direct generating function for this count.

Proposition 9. Given a positive integer k, the partitions of n under Hk with at least

one preimage are exactly those λ ∈ P (n) for which rankk(λ) ≥ −k. A generating

function for the number of these partitions is∑
n≥0

(p(n)− gek(n))qn =
∑
t≥0

qt
[
t+ b tk c

t

]
. (9)

Proof. The first claim is the complement of the k-stretched rank characterization

of Theorem 8.

For the generating function, by the definition of the k-stretched rank, such par-

titions with λ1 = t have at most 1 + t/k parts. In other words, a partition with a

preimage under Hk and first part t is followed by a subpartition that fits inside a

t × bt/kc rectangle. Therefore the partition corresponds to the product of qt (the

bottom row) and the given q-binomial coefficient (the remainder).

Combining Equations (7), (8), and (9) gives unusual generating functions for

p(n) such as ∑
n≥0

p(n)qn =
∑
s≥3

qs
[
2s− 3

s

]
+
∑
t≥0

qt
[
2t

t

]
(10)

=
∑
s≥2

qs
[
3s− 4

s

]
+
∑
t≥0

qt
[
t+ b t2c

t

]
(11)

=
∑
s≥2

qs
[
4s− 5

s

]
+
∑
t≥0

qt
[
t+ b t3c

t

]
. (12)

Finally, we have yet to find a formula similar to Equation (4) for gek(n). Looking

at
∑
m≤−k−1Nk(m,n) with the expressions derived above has not been fruitful. One

complication is that, unlike Dyson’s rank, the k-stretched rank is not symmetric,

that is, Nk(m,n) 6= Nk(−m,n) in general.
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