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Abstract
The purpose of these notes is to give an overview of part of number theory which
grew out of the uniqueness of expansions. We present a number of elementary but
powerful proofs and we illustrate the theorems by many examples. Some results
and proofs are published here for the first time. We end the paper with a list of
open problems.

1. Introduction

The familiar integer base expansions were extended to noninteger bases in a sem-
inal paper of Rényi [58] more than fifty years ago. Since then many surprising
phenomena were discovered and a great number of papers were devoted to unex-
pected connections with probability and ergodic theory, combinatorics, symbolic
dynamics, measure theory, topology and number theory.

It was generally believed that for any given 1 < q < 2 there are infinitely many
expansions of the form

1 =
c1

q
+

c2

q2
+

c3

q3
+ · · ·

with digits ci ∈ {0, 1}. Twenty years ago, Erdős, Horváth and Joó [24] made the
startling discovery that for a continuum of bases 1 < q < 2 there is only one such
expansion. This result gave a new impetus to this research field.

For a complementary approach based on ergodic theory we refer to a recent
survey of Sidorov [63].

The author thanks S. Akiyama, C. Baiocchi, M. de Vries, A. C. Lai, P. Loreti,
M. Pedicini and A. Pethő for their collaboration in this field.

1Dedicated to the memory of P. Erdős and I. Joó
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2. Number of Expansions

Given an integer q ≥ 2, it is well known that every real number x ∈ [0, 1] has an
expansion of the form

x =
c1

q
+

c2

q2
+

c3

q3
+ · · · (1)

with digits ci ∈ {0, 1, . . . ,m := q − 1}. If x = 0, 1 or if none of the numbers
x, qx, q2x, . . . is integer, then this expansion is unique. Otherwise x have exactly
two different expansions, ending with 0∞ and m∞, respectively.

We extend this notion to arbitrary real bases q > 1:

Definition 1. Let q > 1 be a real number and let us denote by m the greatest
integer < q. By an expansion of a real number x in base q we mean a sequence of
integers ci ∈ {0, 1, . . . ,m} satisfying (1).

In order to have an expansion, x has to belong to the interval

Jq :=

[
0,

∞∑

i=1

m

qi

]
=

[
0,

m

q − 1

]
.

(Note that [0, 1] ⊂ Jq with equality if and only if q is integer.) Conversely, every
x ∈ Jq has at least one expansion:

Theorem 2. (Rényi [58]) Given q > 1 and x ∈ Jq, we define a sequence of integers
(bi) = (bi(q, x)) by the greedy algorithm: if b1, . . . , bn−1 have already been defined
(no assumption if n = 1), then let bn be the largest integer < q satisfying the
inequality

b1

q
+ · · · + bn

qn
≤ x. (2)

Then (bi) is an expansion of x.

Definition 3. The expansion (bi) of Theorem 2 is called the greedy expansion or
the β-expansion of x in base q.

Remark 4. It follows from the definition that the greedy expansion (bi(q, x)) is
the lexicographically largest expansion of x in base q.

Proof of Theorem 2. The definition is meaningful because x ≥ 0. If there are infin-
itely many digits bn < m, then

b1

q
+ · · · + bn

qn
+

1
qn

> x (3)

for all such indices by construction, and we conclude by letting n → ∞ in (2) and
(3).
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Furthermore, letting n→∞ in (2) and using the assumption x ∈ Jq we get

∞∑

i=1

bi

qi
≤ x ≤

∞∑

i=1

m

qi
. (4)

If all digits are equal to m, then we conclude again that (bi) is an expansion of x.
We complete the proof by showing there there cannot be a last digit bn < m.

Indeed, in such a case we would have

x <

(
n∑

i=1

bi

qi

)
+

1
qn
≤

(
n∑

i=1

bi

qi

)
+

( ∞∑

i=n+1

m

qi

)
=

∞∑

i=1

bi

qi
,

contradicting (4).

Remark 5. Given a sequence (pi) of positive numbers satisfying pn → 0 and

pn ≤ pn+1 + pn+2 + · · · for all n = 1, 2, . . . ,

the adaptation of the above proof yields the following classical theorem of Kakeya
[38], [39] (see also [57], Part 1, Exercise 131): every real number x satisfying the
inequalities

0 ≤ x ≤ p1 + p2 + · · ·

has an expansion

x =
∞∑

n=1

cnpn

with coefficients cn ∈ {0, 1}.

Contrary to the integer case, in noninteger bases most numbers have infinitely
many different expansions. In the following theorem, as in many other results in the
sequel, the Golden ratio (1+

√
5)/2 ≈ 1.618 plays an important role. For brevity the

Golden ratio will be denoted in this paper by the letter G. We recall the well-known
relations

1 =
1
G

+
1

G2
=

1
G

+
1

G3
+

1
G5

+ · · · . (5)

Theorem 6. Fix a base q > 1.

(a) (Erdős, Horváth, Joó [24]; [26]) If q < G, then each interior point of Jq has
a continuum of distinct expansions.2

(b) (Sidorov [59], Dajani, de Vries [10]) If q is not integer, then (Lebesgue-)almost
every x ∈ Jq has a continuum of distinct expansions.

2The expansions 0∞ and m∞ of the endpoints of Jq are unique in all bases q > 1. Theorem 6
(a) improved an earlier result of Eggan and Vanden Eynden [23].
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Proof. (a) Since

0 < x <
1
q

+
1
q2

+ · · · , and 1 <
1
q2

+
1
q3

+ · · ·

because q < G, we may fix a large integer k such that

1
qk

+
1

q2k
+ · · · ≤ x ≤

∑

k # | j

1
qj

(6)

(j runs over the positive integers which are not multiples of k) and

1 ≤ 1
q2

+ · · · + 1
qk

. (7)

Since there are continuum many choices of the digits ck, c2k, c3k, . . . ∈ {0, 1}, the
proof will be completed if we show that for each such choice we can find suitable
digits cj ∈ {0, 1} for all k * | j such that

x−
(

ck

qk
+

c2k

q2k
+

c3k

q3k
+ · · ·

)
=

∑

k # | j

cj

qj
.

This follows by applying Kakeya’s above mentioned theorem with (pi) = (q−j)k # | j .
This is possible because pn → 0,

pn ≤ pn+1 + · · · + pn+k, n = 1, 2, . . .

by (7), and

0 ≤ x−
(

ck

qk
+

c2k

q2k
+

c3k

q3k
+ · · ·

)
≤ p1 + p2 + · · ·

by (6).

(b) See the original papers for the ergodic theoretical proofs, and Sidorov [61]
for several related theorems.

The assumption q < G in the above theorem is essential:

Proposition 7. (Erdős, Horváth, Joó [24]) If q = G, then x = 1 has countably
many distinct expansions: a periodic one

1 =
1
q

+
1
q3

+
1
q5

+
1
q7

+ · · · ,

and for each N = 0, 1, . . . the two expansions

1 =

(
N∑

i=1

1
q2i−1

)
+

1
q2N+1

+
1

q2N+2
=

(
N∑

i=1

1
q2i−1

)
+

( ∞∑

i=2N+2

1
qi

)
.
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Remark 8. Sidorov and Vershik [64] also proved that in base G the numbers
x = nG mod 1 have ℵ0 expansions, while the other elements of JG have 2ℵ0

expansions.

A simple proof of Proposition 7 is based on the following elementary lemma3:

Lemma 9. Consider an expansion (1) and a positive integer n. There exists an-
other expansion

x =
d1

q
+

d2

q2
+

d3

q3
+ · · · (8)

of x satisfying ci = di for all i < n and cn *= dn if and only if

dn − cn ≤
cn+1

q
+

cn+2

q2
+ · · · if dn > cn (9)

and

cn − dn ≤
m− cn+1

q
+

m− cn+2

q2
+ · · · if dn < cn. (10)

Moreover, if equality holds in (9) or (10), then the expansion (8) is unique:
di = 0 for all i > n in the first case, and di = m for all i > n in the second case.

Proof. If there exists such an expansion (8), then we deduce from the equality

d1

q
+

d2

q2
+

d3

q3
+ · · · =

c1

q
+

c2

q2
+

c3

q3
+ · · · (11)

that

dn − cn =
cn+1 − dn+1

q
+

cn+2 − dn+1

q2
+ · · · ≤ cn+1

q
+

cn+2

q2
+ · · ·

and

cn − dn =
dn+1 − cn+1

q
+

dn+2 − cn+1

q2
+ · · · ≤ m− cn+1

q
+

m− cn+2

q2
+ · · · ,

proving the necessity of the conditions (9)-(10).
Conversely, if (9) is satisfied for some n ≥ 1 and dn ∈ {cn + 1, . . . ,m}, or if (10)

is satisfied for some n ≥ 1 and dn ∈ {0, . . . , cn − 1}, then

cn − dn +
cn+1

q
+

cn+2

q2
+ · · · (12)

3This lemma has not been formulated before. As we will see, its application simplifies a number
of proofs.
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belongs to Jq. Applying Theorem 2 we get an expansion

dn+1

q
+

dn+2

q2
+ · · · = cn − dn +

cn+1

q
+

cn+2

q2
+ · · ·

which implies (11) and hence (8).
If equality holds in (9) or (10), then the expression (12) is equal to 0 or to

m

q
+

m

q2
+ · · · ,

so that we have necessarily di = 0 for all i > n or di = m for all i > n.

Proof of Proposition 7. We recall from (5) that (ci) := (10)∞ is an expansion of
x = 1. Hence

1 =
cn+1

q
+

cn+2

q2
+ · · · if cn = 0

and

1 =
1− cn+1

q
+

1− cn+2

q2
+ · · · if cn = 1.

Applying Lemma 9 it follows that for each n = 1, 2, . . . there is exactly one expansion
(di) of x = 1 such that dn *= cn and di = ci for all i < n: dn = 1 and di = 0 for all
i > n if cn = 0, and dn = 0 and di = 1 for all i > n if cn = 1.

In the rest of this section we investigate the exceptional cases to Theorem 6 (b).

Theorem 10. We have

(a) (Erdős, Horváth, Joó [24]) Let (ci) = 1(10)∞. If 1 < q < 2 is defined by the
equation

1 =
c1

q
+

c2

q2
+

c3

q3
+ · · · , (13)

then (ci) is the unique expansion of x = 1 in base q.

(b) (Erdős, Joó [25]) Let N be a positive integer and (ci) = 19(091)N−1(041)∞.
If 1 < q < 2 is defined by (13), then there are exactly N distinct expansions
of x = 1 in base q.

(c) ([27]) Let N be a positive integer and (ci) = (1001 0000)N (1001)∞. For each
j = 1, . . . , N there exists 1 < q < 2 such that the number

x :=
c1

q
+

c2

q2
+

c3

q3
+ · · ·

has exactly j expansions in base q.
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Proof. (a) None of the conditions (9) and (10) of Lemma 9 is satisfied for any n.
(b) One can readily check that

• condition (9) is not satisfied for any n;

• condition (10) is satisfied with equality for n = 9 + 10i, i = 0, . . . , N − 2;

• condition (10) is not satisfied for any other n.

We conclude by applying Lemma 9.

(c) See the original paper.

Remarks 11.

(a) More results of this kind are given in [48].

(b) The existence of noninteger bases in which x = 1 has only one expansion was
discovered by Erdős, Horváth and Joó [24]. Theorem 10 (a) is a special case
of their results.

(c) It was proved in [47] that there is a smallest such univoque base q′ ≈ 1.787.
It is the positive solution of the equation

1 =
τ1

q
+

τ2

q2
+

τ3

q3
+ · · · (14)

where τ1, τ2, . . . is the truncated Thue–Morse sequence. We recall that the
Thue–Morse sequence τ0, τ1, τ2, . . . is defined by the recursive formulae

τ0 := 0 and τ! . . . τ2!−1 := τ0 . . . τ!−1, # = 1, 2, 4, 8, . . . , (15)

where we use the notation τ := 1− τ .

(d) Allouche and Cosnard [2] proved that q′ is transcendental.

(e) The second half of the present review is devoted to unique expansions.

The constant q′ also appears in the description of the size of the exceptional set:

Theorem 12. (Sidorov [60]) Let 1 < q ≤ 2. The set of numbers x ∈ Jq having less
than a continuum of distinct expansions is

• the two-point set of the endpoints of Jq if q < G;

• countably infinite if G ≤ q < q′;

• a continuum of Hausdorff dimension 0 if q = q′;

• a continuum of Hausdorff dimension strictly between 0 and 1 if q′ < q < 2;

• the complementer of a countable set in [0, 1] if q = 2.
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3. Universal Expansions

We start with Borel’s theorem on “normal numbers”:

Theorem 13. (Borel [6]) Fix an integer q ≥ 2. For almost all expansions of the
form (1),

(a) each digit has frequency 1/q;

(b) more generally, every finite block of digits of length k has frequency 1/qk.

Proof. Since the digits are independent, we may apply the law of large numbers;
see, e.g., Kac [37] or Dajani and Kraaikamp [13].

When extending this theorem to noninteger bases, we need to specify which kind
of expansions are considered among the infinitely many possibilities.

Theorem 14. (Rényi [58]) Consider the β-expansions of the numbers x ∈ Jq in
some base q > 1. The greedy expansion of almost every x ∈ Jq has the following
properties:

(a) each digit c ∈ {0, 1, . . . ,m} has a positive frequency;

(b) each finite block of digits has a frequency.

For example, the digits 0 and 1 have frequencies (5 +
√

5)/10 and (5 −
√

5)/10
in base G, respectively.

Proof. The digits are not independent any more, but we may still apply Birkhoff’s
ergodic theorem instead; see, e.g., Dajani and Kraaikamp [13].

Remarks 15.

(a) In base G the block 011 has frequency zero because it never occurs in greedy
expansions: it can be replaced by 100.

(b) More generally, forbidden finite blocks exist in all noninteger bases. Indeed,
since m > q − 1, there exists a positive integer k such that

1 ≤ m

q
+ · · · + m

qk
.

If cn . . . cn+k = 0mk for some expansion (1), then the inequalities

c1

q
+ · · · + cn−1

qn−1
+

1
qn
≤ c1

q
+ · · · + cn−1

qn−1
+

0
qn

+
m

qn+1
+ · · · + m

qn+k

=
c1

q
+ · · · + cn+k

qn+k

≤ x
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show that cn = 0 cannot be defined by the greedy algorithm. Hence the block
0mk cannot occur in any β-expansion.

In view of the last remark we may ask whether there exist expansions in nonin-
teger bases which contain all finite blocks of digits.

Definition 16. An expansion (ci) is universal if it contains all finite blocks of
digits.

Example 17. In base G the number x = 1 has no universal expansion by Propos-
ition 7 because periodic or ultimately periodic expansions are never universal.

There is an interesting connection between universal expansions and Diophantine
approximation. In order to state this result we fix a base q > 1 and we consider the
numbers of the form

y = c0 + c1q + · · · + cnqn, n = 0, 1, . . .

with ci ∈ {0, 1, . . . ,m}. They can be arranged into a strictly increasing sequence

y0 < y1 < y2 < · · · ,

tending to infinity.

Examples 18.

(a) For q = 2, 3, . . . we have yk = k for all k.

(b) For 1 < q ≤ G the sequence (yi) begins with 0, 1, q, q2.

(c) For G ≤ q ≤ 2 the sequence (yi) begins with 0, 1, q, 1 + q.

Theorem 19. ([26], [30]) If yk+1 − yk → 0 for some q > 1, then every interior
point of Jq has a universal expansion in base q.

For the proof we need the following

Lemma 20. Assume that yk+1 − yk → 0 for some q > 1. Given 0 < x′ ≤ 1
and an arbitrary finite block of digits a1 . . . aN there exists another block of digits
b1 . . . bn+N , ending with a1 . . . aN and satisfying the inequalities

0 < x′ −
n+N∑

i=1

bi

qi
<

1
qn+N

.

Proof. Set A =
∑N

i=1 aiq−i and choose a large n such that qnx′ > A. Then

yk < qnx′ −A ≤ yk+1
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for some k. Choosing n large enough we also have 0 < yk+1 − yk < q−N and
therefore

0 < qnx′ − yk −A <
1

qN
,

i.e.,

0 < x′ − yk + A

qn
<

1
qn+N

.

Since x′ ≤ 1, we have yk < qn and therefore

yk + A

qn
=

n+N∑

i=1

bi

qi

with bn+i = ai for i = 1, . . . , N .

Proof of Theorem 19. Let B1, B2, . . . be an enumeration of all finite blocks of digits.
Given 0 < x < m/(q − 1) arbitrarily, we construct a sequence (ci) of digits and a
sequence n0 < n1 < n2 < · · · of indices such that for each k = 1, 2, . . . , the initial
sequence c1 . . . cnk ends with Bk, and

0 < x−
nk∑

i=1

ci

qi
<

1
qnk

. (16)

Then letting k →∞ in (16) we obtain that (ci) an expansion of x, and it contains
all possible finite blocks of digits by construction.

First we choose a finite block of digits c1 . . . cn0 satisfying (16) for k = 0.4 Pro-
ceeding by induction, if c1 . . . cnk has already been defined for some k ≥ 0, then we
apply the lemma with

x′ := x−
nk∑

i=1

ci

qi
and a1 . . . an := Bk+1.

We obtain a sequence b1 . . . bnk+1 ending with Bk+1 and satisfying

0 < x′ −
nk+1∑

i=1

bi

qi
<

1
qnk+1

.

Since x′ < q−nk , we have bi = 0 for all i ≤ nk. Therefore, setting ci := bi for all
nk < i ≤ nk+1 and using (16) we obtain (16) with k + 1 in place of k.

Now we give some sufficient conditions ensuring the relation yk+1 − yk → 0.

Theorem 21. The relation yk+1 − yk → 0 holds in the following cases:
4For example, if bn0 < m for some index n0, where (bi) is the greedy expansion of x, then we

may choose c1 . . . cn0 = b1 . . . bn0 .
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(a) ([28]) q =
√

2;

(b) ([28]) 1 < q <
√

2 is transcendental;

(c) ([30],[1]) 1 < q ≤ 21/3 ≈ 1.2599.

Consequently, in all these bases, every interior point of Jq has a universal expansion
in base q.

Remarks 22.

(a) Part (b) was proved in [28] under the weaker condition that 1 < q <
√

2 and
q2 is not a root of any polynomial with coefficients ∈ {−1, 0, 1}. More general
results were obtained recently by Sidorov and Solomyak [62].

(b) Part (c) was proved in [30] for all 1 < q ≤ 21/4 ≈ 1.1892 with the possible
exception of the square root of the second Pisot number. The exceptional case
was solved in collaboration with S. Akiyama during the present workshop; see
[1].

Proof of Theorem 21. (a) Fix δ > 0 and choose an integer N > 1/δ. By the
pigeonhole principle there exist two integers 0 ≤ k < # ≤ N such that the fractional
part of #

√
2−k

√
2 is in (0, 1/N) or in (1/N, 1). Taking integer multiples of (#−k)

√
2

it follows that there exists a finite sequence of integers k1 < · · · < kN such that
every interval of length δ contains at least one number having the same fractional
part as one of the numbers ki

√
2, 1 ≤ i ≤ N .

It follows that every interval (x, x + δ), x > kN

√
2, contains at least one yk.

Indeed, let x < x′ < x + δ and 1 ≤ i ≤ N such that x′ and ki

√
2 have the same

fractional part. Then # := x′ − ki

√
2 is a positive integer and hence x′ = # + ki

√
2

is in the sequence (yk).

For proofs of (b) and (c), we refer to the original papers.

The above strategy does not work for q ≥ G:

Proposition 23. ([26], [28]) If q ≥ G, then yk+1 − yk = 1 for infinitely many
indices k, so that yk+1 − yk *→ 0.

Proof. It suffices to show that none of the open intervals

In := (q2 + · · · + q2n, 1 + q2 + · · · + q2n), n = 0, 1, . . .

contains any yk. This is true for I0 = (0, 1) because y0 = 0 and y1 = 1.
Assume on the contrary that some of the intervals In contains some yk. Let n

be the smallest such integer (then n ≥ 1). We have thus

q2 + · · · + q2n < yk < 1 + q2 + · · · + q2n.
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Since q ≥ G, using (5) we see that

q2n+1 > 1 + q2 + · · · + q2n and 1 + q + q2 + · · · + q2n−1 ≤ q2 + · · · + q2n;

hence yk has the form yk = c0+c1q+· · ·+c2n−1q2n−1+q2n with suitable coefficients
ci ∈ {0, 1}. But then

c0 + c1q + · · · + c2n−1q
2n−1 = yk − q2n ∈ In−1,

contradicting the minimality of n.

Nevertheless, an ergodic theoretical approach yielded the following result:

Theorem 24. (Sidorov [60]) Let 1 < q < 2. Almost every x ∈ Jq has a universal
expansion in base q.

4. Spectra of Polynomials

Theorem 19 shows the usefulness of the sequence (yk) in the study of expansions.
In this section we investigate these sequences more closely.

Fix a base q > 1. For each positive integer5 m, let

ym
0 < ym

1 < ym
2 < · · ·

be the strictly increasing sequence of the numbers of the form

y = c0 + c1q + · · · + cnqn, n = 0, 1, . . .

with coefficients ci ∈ {0, 1, . . . ,m}.

Proposition 25. ([26], [30]) We have

(a) If q ≤ m + 1, then ym
k+1 − ym

k ≤ 1 for all k.

(b) If q ≥ m + 1, then ym
k+1 − ym

k ≥ 1 for all k.

Proof. Set xk := c0 + c1q + c2q2 + · · · where k = c0 + c1(m + 1) + c2(m + 1)2 + · · ·
is the representation of k = 0, 1, . . . in base m + 1. Since x0 = 0, and (xk) and (yk)
run over the same set, it suffices to show that xk+1 − xk ≤ 1 for all k.

Let
xk+1 = c′0 + c′1q + c′2q

2 + · · · .

5In this section m denotes an arbitrary positive integer, not necessarily the greatest integer
< q.
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If j is the smallest index for which c′j > cj , then

xk+1 − xk = qj −m(qj−1 + · · · + q + 1) =
qj(q − 1−m) + m

q − 1
.

If q ≤ m + 1, then

qj(q − 1−m) + m

q − 1
≤ q0(q − 1−m) + m

q − 1
= 1;

if q ≥ m + 1, then

qj(q − 1−m) + m

q − 1
≥ q0(q − 1−m) + m

q − 1
= 1.

Next we are going to investigate the quantities

#m(q) := lim inf(ym
k+1 − ym

k ) and Lm(q) := lim sup(ym
k+1 − ym

k ).

Remarks 26.

(a) We have #1(q) ≥ #2(q) ≥ · · · ≥ 0 and L1(q) ≥ L2(q) ≥ · · · ≥ 0.

(b) We have
#m(q) = inf(ym

k+1 − ym
k ). (17)

The inequality ≥ being obvious, it suffices to prove that #m(q) ≤ ym
k+1 − ym

k

for each fixed index k. For every integer n satisfying qn > ym
k+1 there exist

two indices s > r > k such that qn + ym
k = ym

r and qn + ym
k+1 = ym

s . Hence

ym
r+1 − ym

r ≤ ym
s − ym

r = ym
k+1 − ym

k .

Since n→∞ implies that r →∞, we conclude that #m(q) ≤ ym
k+1 − ym

k .

The behavior of the sequence (ym
k ) is intimately related to an algebraic property

of the base q.

Definition 27. A Pisot number is an algebraic integer > 1 all of whose conjugates
have modulus < 1.

Examples 28.

(a) The rational integers 2, 3, . . . are Pisot numbers.

(b) The Golden ratio is a Pisot number because it is an algebraic integer (its
minimal polynomial is x2 − x − 1) and its conjugate (1 −

√
5)/2 belongs to

(−1, 0).
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Proposition 29. The following hold:

(a) (Drobot [21], Drobot and McDonald [22]) If q < m + 1 does not satisfy any
algebraic equation with integer coefficients ai satisfying |ai| ≤ m, then #m(q) =
0.

(b) (Garsia [34]) If q is a Pisot number, then #m(q) > 0 for all m.

Proof (see [28]). (a) For each fixed n = 1, 2, . . . , the expression c0 + c1q + · · · +
cn−1qn−1, where the digits run over the set {0, 1, . . . ,m}, gives (m + 1)n different
elements of the sequence (ym

k ) in the interval [0, 1 + q + · · · + qn−1], so that

inf(ym
k+1 − ym

k ) ≤ 1 + q + · · · + qn−1

(m + 1)n − 1
=

1
q − 1

· qn − 1
(m + 1)n − 1

.

Letting n→∞ we get inf(ym
k+1 − ym

k ) = 0. We conclude by applying (17).

(b) Denoting by q1, . . . , qd the algebraic conjugates of q, the sums of powers
qn + qn

1 + · · ·+ qn
d are integers by Viète’s formula for all n = 1, 2, . . . . Since |qj | < 1

for all j, it follows that

∞∑

n=0

dist (qn, Z) ≤
∞∑

n=0

(|q1|n + · · · + |qj |n) <∞.

We may thus choose a positive integer N such that

∞∑

n=N

dist (qn, Z) <
1

(q + 1)m
.

Then
dist (qNym

n − qNym
k , Z) <

1
q + 1

for all n and k. (18)

Assume on the contrary that #m(q) = 0 for some m. Then we have also
qN#m(q) = 0, so that there exist two indices n′, k′ such that 0 < |qNym

n′ − qNym
k′ | <

1/(q + 1). There exists a positive integer M such that

1
q + 1

≤ |qN+Mym
n′ − qN+Mym

k′ | <
q

q + 1
= 1− 1

q + 1
.

Since qMym
n′ = ym

n and qMym
k′ = ym

k for suitable indices n and k, this contradicts
(18).

In the rest of this section we state some deeper results; we refer to the original
papers for proof. The following two theorems improve several earlier results of
Erdős, Joó and Schnitzer [29], Bugeaud [9] and of [30]:
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Theorem 30. ([1]) If q > 1 is not a Pisot number, then #2k(q) = L3k(q) = 0 for
all integers k > q − 1.

For 1 < q < 2 we have stronger results6:

Theorem 31. ([1]) The following hold:

(i) If 1 < q ≤ 3
√

2 ≈ 1.2599 is not a Pisot number, then L1(q) = 0.

(ii) If 1 < q ≤
√

2 ≈ 1.4142 is not a Pisot number, then #1(q) = L2(q) = 0.

(iii) If 1 < q < 2 is not a Pisot number, then #2(q) = L3(q) = 0.

Corollary 32. Let q > 1.

(a) If q is integer, then #m(q) = 1 for all m.

(b) If q is not integer, then #m(q)→ 0 as m→∞.

Proof. (a) This follows from Proposition 25 because ym
k+1 − ym

k = 1 for all k and
m.

(b) This is true by Theorem 30 and Remark 26 (a) if q is not Pisot. If q is a
noninteger Pisot number, then it is irrational. Choose two sequences ki, ni → ∞
of nonzero integers satisfying ki − niq → 0. Since ki − niq *= 0 is the difference of
two elements of the sequence (ym

k ) if m ≥ max{ki, ni}, applying (17) it follows that
#m(q) ≤ |ki − niq| if m ≥ max{ki, ni}. We conclude by letting i→∞.

Extensive numerical experiments revealed a regular character of the sequences
(#m(q)) for many Pisot numbers. For example, the initial sequence for the Golden
ratio q = G is given by the following table:

#m(q) = |q − 1| ≈ 0.6180 for m = 1
#m(q) = |2q − 3| ≈ 0.2361 for m = 2
#m(q) = |3q − 5| ≈ 0.1459 for m = 3, 4
#m(q) = |5q − 8| ≈ 0.0902 for m = 5, 6
#m(q) = |8q − 13| ≈ 0.0557 for m = 7, . . . , 11
. . .

#m(q) = |377q − 610| ≈ 0.0012 for m = 322, . . . , 521
#m(q) = |610q − 987| ≈ 0.0007 for m = 522, . . . , 842.

This is contained in the following theorem where we use the Fibonacci sequence

F0 = 0, F1 = 1, F2 = 1, F3 = 2, . . . .
6Only part (ii) is new here: Part (i) is a reformulation of Theorem 21 (c), while Part (iii) is

the case k = 1 of the preceding theorem.
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Theorem 33. ([53]) If q = G and m is a positive integer, then

#m(q) = |Fkq − Fk+1|

where k is the smallest integer satisfying qk−1 ≥ m.

Remarks 34.

(a) Using the theory of continued fractions, the theorem was extended to a class
of quadratic Pisot numbers by Borwein and Hare [8], and by Komatsu [43].

(b) Borwein and Hare [7] and Feng and Wen [32] devised an efficient algorithm
for the determination of #m(q) for any specific value of m and q.

5. Lexicographic Characterizations

In order to generalize Rényi’s Theorem 14 on the distribution of digits to arbitrary
bases, Parry [55] gave a lexicographic characterization of the β-expansions. This
became an excellent tool in investigating the combinatorial and topological nature
of such expansions.

In order to formulate the results in an elegant way, we slightly modify, following
Daróczy and Kátai [16], the greedy expansions.

Definition 35. (Daróczy and Kátai [16]; [5]) Given q > 1 and x ∈ Jq we define the
sequence (ai) = (ai(q, x)) by induction as follows.7 For x = 0 we set (ai) := 0∞.
For x > 0, if a1, . . . , an−1 have already been defined (no assumption if n = 1), then
let an be the largest integer ≤ m satisfying

a1

q
+ · · · + an

qn
< x.

Remarks 36. Fix q > 1, x ∈ Jq, and write for brevity (ai), (bi) instead of
(ai(q, x)), (bi(q, x)), and (αi), (βi) instead of (ai(q, 1)), (bi(q, 1)).

(a) If (bi) has a last nonzero digit bk, then (ai) = b1 . . . bk−1b
−
k (αi) with b−k =

bk − 1. Otherwise we have (ai) = (bi).

(b) It follows from (a) that (ai) is an expansion of x in base q. It is called the
quasi-greedy expansion of x in base q.

(c) It follows (b) and from the definition that the quasi-greedy expansion (ai(q, x))
is the lexicographically largest infinite expansion of x in base q. Here and in
the sequel a sequence or an expansion (ci) is called infinite, if it does not have

7Henceforth the letter m denotes again the largest integer < q.
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a last nonzero digit ck, i.e., either it has infinitely many nonzero digits or
(ci) = 0∞.8

(d) It follows from (a) that if (βi) has a last nonzero digit βk, then (αi) is purely
periodic, and its smallest period is β1 . . .βk−1β

−
k with β−k = βk−1. Otherwise

(αi) = (βi).

Examples 37.

(a) For q = 2, 3, . . . we have (αi) = (βi) = m∞.

(b) If q is a Multinacci number, i.e., the positive solution of qn = qn−1 + · · ·+q+1
for some n = 2, 3, . . . , then (αi) = (1n−10)∞ and (βi) = 1n0∞.

(c) In particular, for q = G we have (αi) = (10)∞ and (βi) = 110∞.

Using the quasi-greedy expansion (αi) := (ai(q, 1)) of x = 1 we can give elegant
lexicographic characterizations of the greedy and quasi-greedy expansions.

Theorem 38. The following hold:

(a) (Parry [55], Daróczy and Kátai [16]) Fix q > 1. A sequence (bi) on the
alphabet {0, 1, . . . ,m} is the greedy expansion of some x ∈ Jq if and only if

(bn+i) < (αi) whenever bn < m.

(b) ([26], [49]) A sequence (βi) on the alphabet {0, 1, . . . ,m} is the greedy expan-
sion of x = 1 in some base q > 1 if and only if

(βn+i) < (βi) whenever βn < m.

In this case we have necessarily m < q ≤ m + 1.

(c) ([5]) Fix q > 1. An infinite sequence (ai) on the alphabet {0, 1, . . . ,m} is the
quasi-greedy expansion of some x ∈ Jq if and only if

(an+i) ≤ (αi) whenever an < m.

(d) ([5]) An infinite sequence (αi) on the alphabet {0, 1, . . . ,m} is the quasi-greedy
expansion of x = 1 in some base q > 1 if and only if

(αn+i) ≤ (αi) whenever αn < m. (19)

In this case we have necessarily m < q ≤ m + 1.

Remark 39. Parry’s theorem describes the forbidden blocks in greedy expansions.
For example, it provides a simple new proof of the results in Remark 15.

8By considering the zero sequence to be infinite we simplify many statements in the present
theory.
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6. Univoque Bases

We start with an easy consequence of Parry’s theorem. As before we denote by
(αi) := (ai(q, 1)) the quasi-greedy expansion of x = 1 in base q.

Corollary 40. Fix q > 1 and x ∈ Jq. An expansion (1) is the unique possible
expansion of x if and only if the following two conditions are satisfied:

(cn+i) < (αi) whenever cn < m; (20)
(m− cn+i) < (αi) whenever cn > 0. (21)

Proof. If (ci) is the unique expansion of x, then it coincides with the β-expansion,
so that (20) is satisfied by Parry’s theorem. Furthermore, since (ci) is an expansion
of x if and only if (m−ci) is an expansion of (m/(q−1))−x, the expansion (m−ci)
of (m/(q − 1))− x is also unique; this yields (21).

Conversely, since by construction the β-expansion of x is the lexicographically
largest expansion of x, the conditions (20)-(21) imply that (ci) is at the same time
the lexicographically largest and smallest expansion of x; hence it is the only one.

Examples 41.

(a) If q is integer, then (αi) = m∞ and the conditions (20)-(21) simply mean that,
apart from the trivial expansions 0∞ and m∞, an expansion is unique if and
only if it does not end with 0∞ or m∞.

(b) If q = G, then (αi) = (10)∞, and the conditions (20)-(21) are satisfied only
by the trivial expansions 0∞ and m∞.

(c) If q < q′, then (αi(q)) < (αi(q′)) lexicographically, and therefore the condi-
tions (20)-(21) are more strict for smaller bases. Hence the conclusion of (b)
remains valid for all bases 1 < q < G, too.

The rest of this review is mainly devoted to unique expansions. For the proofs
we usually refer to the original papers.

In this section, mostly following [50], we investigate the bases in which the ex-
pansion of x = 1 is unique.

Definition 42. We write q ∈ U if q > 1 and x = 1 has a unique expansion in base
q. The elements of U are called univoque bases.

Examples 43.

(a) The integers q = 2, 3, . . . belong to U because the only expansion of x = 1 is
m∞.
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(b) We have already encountered noninteger univoque bases in Remark 11.

The univoque set U has interesting properties. Parts (a), (b) and (c) of the next
theorem are due to Erdős, Horváth and Joó [24]; Part (d) was obtained by Daróczy
and Kátai [16].

Theorem 44. We have

(a) U has zero Lebesgue measure;

(b) U has the power of continuum;

(c) U is of the first category;

(d) U has Hausdorff dimension one.

We have the following variant of Corollary 40:

Theorem 45. ([26]) An expansion

1 =
c1

q
+

c2

q2
+

c3

q3
+ · · ·

is unique if and only if

(cn+i) < c1c2 . . . whenever cn < m (22)

and

(m− cn+i) < c1c2 . . . whenever cn > 0. (23)

Example 46. Using Theorem 45 we may reprove the results of Remark 11.

The following results were obtained with the help of Theorem 45:

Theorem 47. The following hold:

(a) ([47]) There exists a smallest univoque base q′ ≈ 1.787 (see (14)-(15)).

(b) ([54]) The formula

(ci) := τ1 . . . τ!−1 (τ0τ1 . . . τ!−1)
∞ , # = 2, 4, 8, 16, . . . ,

where τ0τ1 . . . is the Thue–Morse sequence and τ = 1−τ , defines a decreasing
sequence of univoque bases, converging to q′ ≈ 1.787 (see (14)-(15)).

For example, for n = 1, 2, 3 we get (ci) = 1(10)∞, (ci) = 110(1001)∞ and
(ci) = 110 1001 (1001 0110)∞.
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Next we describe the topological properties of the univoque set. We recall that
a Cantor set is a nonempty closed set having no interior or isolated points.

Theorem 48. ([50]) The following hold:

(a) A base q > 1 belongs to the closure U of U if and only if the sequence (αi) of
Definition 35 satisfies the following lexicographic condition:

(m− αn+i) < (αi) whenever αn > 0; (24)

(b) U is closed from above: if qn ∈ U and qn ↘ q, then q ∈ U ;

(c) U \ U is countable and dense in U ;

(d) U is a Cantor set of zero Lebesgue measure;

(e) U is nowhere dense.

Idea of the proof. The innocently-looking Part (a) is the key result. Although sim-
ilar to Theorem 45 on the characterization of U , its proof is sensibly more intricate.
(Observe the asymetry between the conditions (19) and (24).) Parts (b), (c) fol-
low from (a), and (d), (e) are easy consequences of (c) and of Theorem 44 (a) and
(c).

Examples 49.

(a) The Multinacci numbers (see Example 37) belong to U \ U for n = 3, 4, . . .
because (ci) := (αi) = (1n−10)∞ satisfies (24) but not (22).

(b) The Golden ratio is not in U because (αi) = (10)∞ does not satisfy (24).

We remove the asymmetry between (19) and (24) by introducing the following

Definition 50. We write q ∈ V if

(m− αn+i) ≤ (αi) whenever αn > 0. (25)

Theorem 51. ([50])

(a) We have U ⊂ U ⊂ V.

(b) V is a closed set and its smallest element is the Golden ratio.

(c) V \ U is a discrete (hence countable), dense subset of V.



INTEGERS: 11B (2011) 21

Remarks 52.

(a) The proofs of Theorems 48 and 51 show that the greedy expansion of x = 1
is finite in each base q ∈ V \ U . Hence the elements of V \ U are algebraic
integers. A theorem of Parry [55] implies that all algebraic conjugates of these
bases have modulus < 2.

(b) If q ∈ V \ U , than x = 1 has exactly ℵ0 expansions. All these expansions are
given explicitly in [50]: the lists are different for q ∈ V \ U and for q ∈ U \ U .

The following theorem exhibits an analogy between U and the triadic Cantor set.

Theorem 53. ([19]) Let us write (1,∞) \ U = ∪∗(p1, p2) with pairwise disjoint
open intervals.

(a) The closed intervals [p1, p2] are also pairwise disjoint.

(b) The set of left endpoints p1 is {1, 2, . . .} ∪ (U \ U).

(c) The set of right endpoints p2 is a countable dense subset U∗ of U .

(d) In each (p1, p2), the elements of V form a strictly increasing sequence tending
to p2.

Examples 54. For each fixed interval (p1, p2) let us denote by v1 < v2 < · · · the
increasing sequence of the elements of V∩(p1, p2). We describe them more precisely.
Let m denote here the integer part of p1.

(a) If p1 = m is a positive integer, then starting with c1c2 = m1 we define a
sequence (ci) by the recurrence relations

c!+1 . . . c2!−1 := c1 . . . c!−1 and c2! := c! + 1, # = 2, 4, 8, . . . ,

with the notation ci := m − ci. Then the greedy expansion of x = 1 in base
vn is c1 . . . c2n , n = 1, 2, . . . .

One may check that (ci) = (τi + (m− 1)τ2i−1) where (τi) is the Thue–Morse
sequence.

For instance, for m = 1 we have (p1, p2) = (1, q′) with q′ ≈ 1.787 defined in
Remark 11 (b), and (ci) = (τi) is the Thue–Morse sequence. The greedy ex-
pansions of x = 1 in bases v1(−G), v2, v3 are given by 11, 1101 and 1101 0011,
respectively.

(b) If p1 is not a positive integer, then starting with the finite greedy expansion
c1 . . . ck of x = 1 in base p1 where ck > 0 (observe that c1 = m), we define a
Thue–Morse type sequence sequence (ci) by the recurrence relations

c!+1 . . . c2!−1 := c1 . . . c!−1 and c2! := c! + 1, # = 2k, 4k, 8k, . . . ,
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with the notation ci := m − ci. Then the greedy expansion of x = 1 in base
vn is c1 . . . c2nk.The unique expansion of x = 1 in base p2 is (ci).

(c) We describe the finite greedy expansions c1 . . . ck occurring in the construction
of (b). It follows from Theorems 45, 48 (a) and Remark 36 (d) that a finite se-
quence c1 . . . ck with c1 ≥ ck > 0 is the finite greedy expansion of x = 1 in some
base p1 ∈ U \ U if and only if the periodic sequence (αi) := (c1 . . . ck−1c

−
k )∞

with c−k := ck − 1 satisfies (19) and (24) with m = c1.

7. Univoque Sets

In this section, following mostly [19] and [20], we investigate the unique expansions
in a given base.

Definition 55. For each q > 1 we denote by Uq the set of numbers x ∈ Jq whose
expansion is unique in base q.

Remarks 56.

(a) If q is integer, then Uq is a non-closed dense set of full Lebesgue measure in
Jq = [0, 1] because [0, 1] \ Uq is countable.

(b) If q is not integer, then Uq is a Lebesgue null set by Theorem 6 (b).

Next we investigate the Hausdorff dimension dimH Uq of Uq. Daróczy, Kátai and
Kallós [15], [42], [40], [41] developed a strategy for the computation of dimH Uq for
any given q. Here we state only some weaker results:

Theorem 57. (Glendinning–Sidorov [35]; [20]) Let q > 1.

(a) dimH Uq = 1 if q is integer.

(b) dimH Uq < 1 if q is not integer.

(c) If q ↗ 2, then dimH Uq → 1.

Proof 9of (b) for 1 < q < 2. Fix q > 1, and denote by K the largest positive integer
satisfying

1
q

+ · · · + 1
qK

< 1

so that (αi(q)) begins with 1K0. Let us denote by F ′
q the set of sequences of the

form 1n10n21n30n4 . . . where all exponents n1, n2, . . . belong to the {1, . . . ,K}, and
set

Fq :=
{ ∞∑

i=1

ci

qi
: (ci) ∈ F ′

q

}
.

9This proof has not been published before.
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It follows from Corollary 40 that every x ∈ Uq \ {0, 1/(q − 1)} has the form

x =
y

qm
or x =

1
q

+ · · · + 1
qm

+
y

qm

for some nonnegative integer m and for some y ∈ Fq. This shows that Uq may be
covered by countably many sets, similar to Fq. Since the union of countable many
sets of Hausdorff dimension s is still of Hausdorff dimension s, it suffices to prove
that dimH Fq < 1.

Let us introduce the similarities Sj,k : Jq → Jq by

Sj,k(x) :=
1
q

+ · · · + 1
qj

+
x

qj+k
, j, k = 1, . . . ,K, x ∈ Jq.

It follows from the definition of Fq that

Fq =
K⋃

j,k=1

Sj,k(Fq)

and hence that its closure Fq is the (nonempty compact) invariant set of this system
of similarities. Applying Proposition 9.6 in [31] we conclude that

dimH Fq ≤ dimH Fq ≤ s

where s is the solution of the equation

K∑

j=1

K∑

k=1

q−(j+k)s = 1.

Since
K∑

j=1

K∑

k=1

q−(j+k) =
(

1
q

+ · · · + 1
qK

)2

< 1,

we have s < 1.

In order to describe the size of Uq we need, beside the constants G ≈ 1.618 and
q′ ≈ 1.787, the smallest element q′′ ≈ 2.536 of U ∩ (2, 3), determined in [49].10

Theorem 58. Let q > 1 be a real number.

(a) If q ∈ (1, G), then Uq consists merely of the endpoints of Jq.

(b) If q ∈ (G, q′) ∪ (2, q′′), then |Uq| = ℵ0.

(c) If q ∈ [q′, 2] ∪ [q′′,∞), then |Uq| = 2ℵ0 .

10It is interesting to compare the following result with Theorem 12.
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Remark 59.

(a) Part (a) follows from Theorem 6 (a).

(b) Parts (b) and (c) were proved by Glendinning and Sidorov [35] for 1 < q ≤ 2
and in [19] for all q > 1.

(c) Much more precise results were proved by de Vries [18].

The topological properties of Uq depend essentially on whether q belongs to N,
U , U or V. For example we have the following unexpected result:

Theorem 60. ([19]) Uq is closed if and only if q /∈ U .

In order to describe the closure Uq of Uq for q ∈ U , we introduce an analogue Vq

of the set V of the preceding section.11

Definition 61. Let q > 1, x ∈ Jq, and consider the quasi-greedy expansions
(ai) = (ai(q, x)) and (αi) := (ai(q, 1)). We write x ∈ Vq if

(m− an+i) ≤ (αi) whenever an > 0.

Analogously to the inclusions U ⊂ U ⊂ V, we have Uq ⊂ Uq ⊂ Vq for each q > 1.
However, while the three sets U , U and V are different, among Uq, Uq and Vq at
least two always coincide. The following theorem clarifies the situation.

Theorem 62. ([19]) Let q > 1.

(a) The set Vq is always closed, and Uq ⊂ Uq ⊂ Vq.

(b) If q ∈ U , then Uq ! Uq = Vq.

(c) If q ∈ V \ U , then Uq = Uq ! Vq.

(d) If q ∈ (1,∞) \ V, then Uq = Uq = Vq.

Remarks 63. Let q ∈ V, so that Uq ! Vq. We recall some further results from
[19].

(a) Analogously to Theorem 51 (c), Vq \ Uq is a countable dense subset of Vq.

(b) If q ∈ U , then each x ∈ Vq \ Uq has exactly two expansions.

(c) If q ∈ V \ U , then each x ∈ Vq \ Uq has exactly ℵ0 expansions.

All the expansions in (b), (c) are given implicitly in [19] and explicitly in [45]. See
also [4] for the changes in integer bases q if the digit q is also allowed.

11See Definition 50.
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Next we discuss the Cantor property of Uq and Uq:

Theorem 64. ([19]) Let q > 1.

(a) If q is integer, then neither Uq nor Uq is a Cantor set.

(b) If q ∈ U \ N, then Uq is not a Cantor set, but Uq is a Cantor set.

(c) If p1 < q ≤ v1, where (p1, p2) is one of the open intervals in Theorem 53,
except (1, q′) and (2, q′′), and v1 is the smallest element of V ∩ (p1, p2), then
Uq is a Cantor set. Otherwise Uq is not a Cantor set.

We finish this section by investigating the two-dimensional univoque set

U = {(x, q) ∈ R× (1,∞) : x ∈ Uq}

and its closure U.

Theorem 65. ([20]) We have

(a) U is not closed, U is a Cantor set;

(b) U and U are two-dimensional Lebesgue null sets;

(c) U and U have Hausdorff dimension two.

8. General Alphabets

Many results exposed until now may be extended to general finite alphabets A =
{a1 < · · · < an} of real numbers.

Definition 66. By an expansion of a real number x in some base q > 1 on the
alphabet A we mean a sequence (ci) of elements of A satisfying the equality (1).

Remarks 67.

(a) In order to have an expansion, x must belong to JA,q := [a1/(q−1), an/(q−1)].

(b) (Pedicini [56]) Conversely, every x ∈ JA,q has at least one expansion in base
q if and only if

q ≤ 1 +
an − a1

max{a2 − a1, a3 − a2, . . . , an − an−1}
.

(c) The expansions of the endpoints of JA,q are always unique.
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(d) The dynamical properties of such expansions have been investigated by Dajani
and Kalle [11].

The Golden ratio admits the following analogue (see Theorem 58 (a), (b)):

Proposition 68. ([46]) For each finite alphabet A of real numbers there exists a
number GA > 1 such that

(a) for 1 < q < GA only the endpoints of JA,q have unique expansions in base q;

(b) for q > GA there are also other numbers x having unique expansions in base
q.

The critical base GA has been determined for all ternary alphabets. In order to
state this result we assume by a scaling argument that A = {0, 1, n} with n ≥ 2.

Theorem 69. ([46]) Let us denote by Gn the critical base for the alphabet A =
{0, 1, n} with n ≥ 2.

(a) The function n 1→ Gn is continuous and

2 ≤ Gn ≤ Pn := 1 +
√

n

n− 1

for all n.

(b) We have Gn = 2 if and only if n = 2k for some positive integer k.

(c) The set C := {n ≥ 2 : Gn = Pn} is a Cantor set; its smallest element is
1 + x ≈ 2.3247 where x is the first Pisot number, i.e., the positive root of the
equation x3 = x + 1;

(d) Each connected component (nd, Nd) of [2,∞) \ C has a point νd such that
n 1→ Gn is strictly decreasing in [nd, νd] and strictly increasing in [νd, Nd].

Remark 70. We refer to [46] for the explicit determination of Gn, nd, Nd, νd and
for the determination of those n for which there exist nontrivial univoque sequences
in the critical base Gn, too.

9. Open Problems

We end this paper with a list of some open questions.

1. ([28], [44]) Is it true that #1(q) = 0 for all non-Pisot numbers 1 < q < 2?
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2. ([28], [44]) Is it true that L1(q) = 0 for all non-Pisot numbers 1 < q < G?12

3. ([26]) Theorem 38 (b) gives an intrinsic characterization of the set of sequences
which are greedy expansions of x = 1 in some base q. Find a similar intrinsic
characterization of the set of sequences which are lazy expansions of x = 1
in some base q.13 A sufficient but not necessary condition is given in [27],
Proposition 2.5.

4. Similarly, Theorem 38 (d) gives an intrinsic characterization of the set of
sequences which are quasi-greedy expansions of x = 1 in some base q. Find a
similar intrinsic characterization of the set of sequences which are quasi-lazy
expansions of x = 1 in some base q.14

5. ([48]) Investigate (and if possible, characterize) the set of bases q > 1 in which
x = 1 has exactly two expansions. 15

6. ([44]) More generally, investigate for each 2 ≤ N ≤ ℵ0 the set of bases q > 1
in which x = 1 has exactly N expansions.

7. Given 2 ≤ N ≤ ℵ0 and a noninteger number q > 1, investigate the set of
numbers x having exactly N expansions in base q.16

8. ([44]) Do there exist rational but noninteger univoque bases?17

9. Extend the results of this review to the case of nonpositive (negative or com-
plex) bases.18

Acknowledgements The present review corresponds to a series of talks given at
the Workshop on Numeration at the Lorentz Center in Leiden, in June 7–11, 2010.
The author thanks the organizers for their kind invitations and for the excellent
working conditions there. He also thanks the referee for several helpful comments
and suggestions.

12No q >
√

2 is known for which L1(q) = 0.
13The lazy expansion of x is by definition the lexicographically smallest expansion of x.
14The quasi-lazy expansion of x is by definition (m−ci) where (ci) is the quasi-greedy expansion

of m
q−1 − x.

15Denoting by q0 the base in which 111(100)∞ is an expansion of x = 1, no such base is known
below q0, and q0 is shown to be an accumulation point of such bases in [48].

16Sidorov [61] proved that the positive solution q ≈ 1.71064 of q4 = 2q2 + q + 1 is the smallest
base in which there exists x ∈ Jq having exactly two expansions.

17Univoque Pisot bases exist: see Allouche, Frougny and Hare [3].
18A few papers are available on this subject: Daróczy and Kátai [14], Ito and Sadahiro [36],

Frougny and Lai [33], Dajani and Kalle [12], and [51], [52].
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