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Abstract

We consider the series of reciprocals of those positive integers with exactly k occur-
rences of a given b-ary digit d (Irwin series), and obtain geometrically convergent
representations for their sums. They are expressed in terms of the moments and
Stieltjes transforms of some measures on the unit interval. The moments obey linear
recurrences allowing straightforward numerical implementations. This framework
also allows to study the large k limit, and, in further works by the author, the large
b asymptotics.

1. Introduction

The Irwin series [22] are sub-series of the harmonic series with conditions on the

number of occurrences of digits in the denominators. For example, only those

positive integers having at most 77 occurrences of the digit 3, and/or at most 125

occurrences of the digit 5, are kept. Irwin showed that such series converge. This

generalized an earlier contribution by Kempner [23] where the convergence was

shown for those series whose terms have no occurrence of a given digit.

Hardy and Wright establish the Kempner result as Theorem 144 of [20]. Their

statement “The sum of the reciprocals of the numbers which miss a given digit is

convergent” is proven for an arbitrary radix r, whereas Kempner had considered

only decimal figures. It is found in the section “The representations of numbers as

decimals” which discusses topics such as sets of measure zero and the theorem of

Borel stating that almost every real number is normal in any base [20, Thm. 148].

The Kempner and Irwin series have been the object of various studies and gen-

eralizations [1–9, 17–19, 21–33]. A characteristic of Theorems 1 and 2 established

in the present work is that they provide theoretically exact formulas which can

be converted straightforwardly into efficient numerical algorithms1. They are thus

an alternative to the (also efficient!) numerical algorithms of Baillie [8, 9]. In

DOI: 10.5281/zenodo.18154150
1See https://burnolmath.gitlab.io/irwin/#sagemath-implementation.

https://burnolmath.gitlab.io/irwin/#sagemath-implementation
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all examples computed by the author, the results matched those returned by the

Baillie algorithms for Kempner and Irwin series. In a later work [12], we started

the extension to counting occurrences of multi-digit strings d1 . . . dp. Here too, the

numerical results in the case of no occurrence matched what is provided by the

Schmelzer–Baillie [30] algorithm. For p = 2 and one occurrence, the approach of

[12] is currently the only published algorithm available.

We shall consider here, for any triple of integers (b, d, k) with b > 1, 0 ≤ d < b,

and k ≥ 0, the associated Irwin series, i.e., the subsum of the harmonic series where

only those terms are kept whose denominators have exactly k occurrences of the

b-ary digit d. The case b = 2, d = 1, k = 0 is special: it gives an empty series, and

the value of the sum is thus zero. We explain how to generalize our earlier work [11]

which handled k = 0. Here as in [11], the core objects are moments and Stieltjes

transforms of suitable measures on the unit interval.

For b = 10, Farhi [17] proved that the limit as k → ∞ is 10 log(10). We prove

that, in general, it equals b log(b). Farhi’s method could be extended to general

b > 1, but our approach is very different. We actually give two proofs, one a

corollary of the convergence of certain measures toward the Lebesgue measure. We

extend this latter method of proof in [16] to the case of counting occurrences of

a multi-digit string d1 . . . dp, recovering the recent theorem by Allouche, Hu, and

Morin [6], which says that the limit as k → ∞ in that case is bp log(b).

In further works, which were also based upon the present one, we obtained var-

ious new results on Kempner–Irwin series and their generalizations, in particular

regarding their large b asymptotics [13–15].

2. Notation and Terminology

Let b > 1 be an integer, which is kept fixed throughout the paper. The set N is

defined as Z≥0 (i.e., it contains zero). We define b-imal numbers as the elements of

∪l≥0b
−lZ. For such a b-imal number x, the smallest l ≥ 0 with x ∈ b−lZ is called

its depth.

Let D = {0, . . . , b − 1} be the set of b-ary digits. We pick a d ∈ D which will

be fixed throughout the paper. The case d = 0 has some specific features and

will require special consideration at some places. We let A = D \ {d}. We let

N = #A = b− 1 and N1 = #(A \ {0}).
The space of strings D is defined to be the union of all Cartesian products Dl

for l ≥ 0. Notice that for l = 0 one has D0 = {∅}, i.e., the set with one element.

We will call this special element the none-string. The length |X| = l of a string

X is the integer l such that X ∈ Dl. For l = 1 a string is thus the same thing

as a digit, although for the sake of clarity it is better to treat them as separate

things. There is a map from strings to integers which to X = (dl, . . . , d1) assigns
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n(X) = dlb
l+ · · ·+d1, and sends the none-string to zero. This map is many-to-one,

and each integer n has a unique minimal-length representation X(n) which is called

the (minimal) b-representation of n.

The length of an integer n is denoted l(n) = |X(n)|. Thus, l(n) is the smallest

non-negative integer such that n < bl(n). Note that l(0) = 0, not 1. The letter l

is also used to refer to a specific integer, e.g., we may say “let l be an integer, and

consider the integers m such that l(m) = l”. We hope that this notation will not

create confusion.

Define, for k ≥ 0:

X (k) = {X ∈ D | X contains the digit d exactly k times}.

The set X (k) contains the none-string if and only if k = 0. We write X (k)
l for its

subsets of strings having length l, for l ≥ 0. Let A(k) be the set of non-negative

integers with minimal b-imal representation in X (k), and A(k)
l the subset of those

having length l. We obtain a partition N = Z≥0 = A(0) ∪ A(1) ∪ A(2) ∪ . . . . We

write kb,d(n) (or often simply k(n)) for the number of occurrences of the digit d in

the minimal b-representation of the integer n. With this notation, the Irwin sums

considered in this paper are:

H
(k)
b,d =

∑
n>0, kb,d(n)=k

1

n
.

As we are handling only positive terms, the order of summation is irrelevant. The

cardinality of the set of strings of l b-ary digits, k among them equal to d, is(
l
k

)
(b − 1)l−k. Terms in H

(k)
b,d with denominators of the same length l constitute

“blocks” S
(k)
b,d;l:

S
(k)
b,d;l =

∑
l(n)=l, kb,d(n)=k

1

n
.

If k > l, no integer with l digits can have k occurrences of d, and S
(k)
b,d;l = 0. Note also

that H
(0)
2,1 = 0 because the series is empty. Taking into account that each n−1 with

bl−1 ≤ n < bl contributes at most b−(l−1), we see that S
(k)
b,d;l = Ol→∞(lk(1− 1/b)l).

So, H
(k)
b,d < ∞.

As the base b and the digit d are fixed throughout the paper, we shall usually

drop them from the subscripts and abbreviate H
(k)
b,d and S

(k)
b,d;l to, respectively, H

(k)

and S
(k)
l . The notation S

(≤k)
l means

∑
0≤j≤k S

(j)
l , and S

(<k)
l =

∑
0≤j<k S

(j)
l .

Regarding integration against measures µ, we will usually write dµ(x), and some-

times µ(dx) with the same meaning. The letter d here is not a b-ary digit...
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3. The New Series Representing Irwin Sums

Here, we gather together the main results.

Theorem 1. Let b ∈ N, b > 1, and d ∈ {0, . . . , b − 1}. Define, for each j ≥ 1,

γj =
∑

a̸=d
0≤a<b

aj. Let u0;0 = b and let (u0;m)m≥0 satisfy the recurrence

m ≥ 1 =⇒ (bm+1 − b+ 1)u0;m =

m∑
j=1

(
m

j

)
γju0;m−j .

Let uj;m (j ≥ 1, m ≥ 0) satisfy the recurrence

m ≥ 0 =⇒ (bm+1 − b+ 1)uj;m =

m∑
j=1

(
m

j

)
γjuj;m−j +

m∑
j=0

(
m

j

)
djuj−1;m−j .

In particular uj;0 = uj−1;0 = · · · = u0;0 = b.

Let k ≥ 0 and l ≥ 1. The Irwin sum H(k) can be expressed using integers of

length at most l and having at most k occurrences of the digit d (as indicated below

by the superscript (≤k)):

H(k) =
∑(k)

0<n<bl−1

1

n
+ b ·

∑(≤k)

bl−1≤n<bl

1

n
+

∞∑
m=1

(−1)m
∑(≤k)

bl−1≤n<bl

uk−k(n);m

nm+1
. (1)

The quantities uj;m (j ≥ 0, m ≥ 1) have the following properties:

• They are non-negative and vanish only if j = 0 and b = 2 and d = 1.

• They decrease (strictly if not zero) for increasing m.

• They increase strictly for increasing j and converge to b/(m+ 1).

Proof. This uses most everything from the present paper. In brief: the validity of

the series is established in Proposition 5, which is a corollary to the integral formulas

from Proposition 4, themselves being variants of the H(k) =
∫
[b−1,1)

dµk(x)
x log-like

expression of Proposition 3. The coefficients uj;m are the moments of measures µj

which are the main topic of this paper. The recurrence relations are established in

Proposition 6. The bounds on the uj;m, and their limits as j → ∞, are obtained in

Proposition 7. The b/(m + 1) limit for j → ∞ is also a corollary of Proposition 9

which establishes the convergence of the measures µk to b dx.

Remark 1. We examine when the alternating series in Equation (1) has only

vanishing contributions. The involved coefficients uj;m must vanish, which can

happen only for (b, d, j) = (2, 1, 0). Assume thus b = 2 and d = 1. The contributing

n with l digits are constrained by k(n) ≤ k. If k = 0, there is no such n, and
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the alternating series is empty. If k = 1, only k(n) = 1 is realized (as a positive

integer must have its leading digit equal to 1), and only by n = 2l−1. But then

j = k − k(n) = 0 and thus uj;m = 0 and the contribution vanishes. If k > 1,

the contribution of n = 2l−1 is (−1)muk−1;m/2(l−1)(m+1) and is non-zero. The

alternating series is thus either identically vanishing (b = 2, d = 1, k ≤ 1) or its

terms decrease strictly in absolute value.

For l = 1 the series is built with inverse powers of the digits. If k ≥ 1 all digits

contribute. The first contributions to Equation (1) (left of the alternating series)

add up to b( 11 + 1
2 + · · ·+ 1

b−1 ), which is thus an upper bound. Also with l = 1, if

k = 0 we have the same upper bound if d = 0, and if d > 0 we omit b/d as the integer

n = d gives no contribution. This upper bound b
∑

1≤n<b
1
n − b1k=0,d>0(k, d)

1
d is

strict, except with b = 2, d = 1, and k ≤ 1 all true, in which case the upper

bound is the exact value of H(k). In all other cases, keeping only the first from the

alternating series in Equation (1), we obtain a strict lower bound of H(k). See also

Propositions 1 and 2.

Remark 2. One can use the theorem with l = 1, but if k ≥ 1, the one-digit number

n = 1 will then always contribute, and as all coefficients uj;m are bounded below if

d ̸= b− 1 by 1/(m+ 1) (see Proposition 7), we obtain for level 1, k ≥ 1, d ̸= b− 1,

a series as poorly converging as the one for log 2 = 1− 1
2 + 1

3 − 1
4 + . . . .

It is preferable for numerical implementations to use at least l = 2. The finite sum

of the reciprocal powers 1/nm+2 is bounded above by bl/(bl−1)m+2. Combined with

the 0 ≤ ul;m ≤ b/(m+ 1) bounds this gives an upper bound b−m(l−1)+3−l/(m+ 2).

Hence, each additional term of the series will give about l−1 new places of precision,

in radix b representation, for the approximation of the Irwin sum. Using l = 3

has the advantage of dividing by two the needed range of m for the same target

precision. It does induce additional cost in computing the inverse power sums,

as they have more contributions. In our initial SageMath implementation from

20242 we observed for b = 10 and d = 9 that l = 3 was beneficial at about 1200+

decimal digits for H(0) and already at 600+ digits for H(1) and 400+ digits for H(2)

compared to using l = 2. But this depends on the actual implementation and on

the numerical libraries used. For small bases, the benefit of choosing l = 3 — and

even l = 4 in the cases b = 2 and b = 3 — becomes evident already at substantially

lower target precision.

Theorem 2 below writes H(k) as a series of non-negative terms that obey a linear

recurrence relation and decay geometrically to zero. The terms are positive except

for (b, d, k) = (2, 1, 0).

Theorem 2. Let b > 0, d ∈ {0, . . . , b− 1}. For each j ≥ 1, let γ′
j be

∑
a̸=b−1−d
0≤a<b

aj.

2Available at https://arxiv.org/src/2402.09083v1/anc. A more sophisticated version, ap-
plying parallelism to some extent, is now available at https://gitlab.com/burnolmath/irwin.

https://www.sagemath.org
https://arxiv.org/src/2402.09083v1/anc
https://gitlab.com/burnolmath/irwin
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Let (v0;m)m≥0 satisfy the recurrence

m ≥ 0 =⇒ (bm+1 − b+ 1)v0;m = bm+1 +

m∑
j=1

(
m

j

)
γ′
jv0;m−j .

In particular, v0;0 = b. Let vj;m (j ≥ 1, m ≥ 0) satisfy the recurrence

m ≥ 0 =⇒ (bm+1−b+1)vj;m =

m∑
j=1

(
m

j

)
γ′
jvj;m−j +

m∑
j=0

(
m

j

)
(b−1−d)jvj−1;m−j .

In particular, vj;0 = vj−1;0 = · · · = v0;0 = b for all j ≥ 0.

Let l ≥ 1 and k ≥ 0. One has

H(k) =
∑(k)

0<n<bl−1

1

n
+ b ·

∑(≤k)

bl−1≤n<bl

1

n+ 1
+

∞∑
m=1

∑(≤k)

bl−1≤n<bl

vk−k(n);m

(n+ 1)m+1
.

The superscript (≤k) means to restrict to integers n having in base b at most k

occurrences of the digit d.

The quantities vj;m (j ≥ 0, m ≥ 1) have the following properties:

• They are positive and bounded above by b.

• They decrease strictly for increasing m, except for b = 2, d = 1, and j = 0, in

which case v0;m = 2 for all m.

• They decrease strictly for increasing j and converge to b/(m+ 1).

Proof. The series are established in Proposition 5. The recurrences are Equations

(7) and (8). The value b/(m + 1) of the limit of (vj;m)j≥0, and the monotonicity,

are proven in Proposition 10. Another proof follows from Proposition 9 about the

convergence µj → b dx and the definition of the vj;m as complementary power

moments.

The next statement was proven by Farhi [17] for b = 10. We obtain it here for

all b > 1.

Proposition 1. With d ̸= 0 the sequence (H(k)) is strictly decreasing for k ≥ 1.

With d = 0 it is strictly decreasing already starting at k = 0. In both cases the

sequence converges to b log b.

Proof. We apply Theorem 2 with l = 1. Starting with k = 1, there are no re-

strictions on the single-digit integers n intervening in the inverse power sums. The

theorem says in particular that the coefficients vj;m decrease when j increases. This

gives the decrease (H(k))k≥1. The theorem also gives their limits as j → ∞. We

recognize after taking these limits term by term the Taylor series of − log(1 − h)
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evaluated at h = (n + 1)−1, for 1 ≤ n < b. Adding up these logarithms gives a

telescopic finite sum:

limH(k) = b
∑

1≤n<b

− log(1− 1

n+ 1
) = b log(b).

For d = 0 all non-zero digits contribute to the series already for k = 0. So the

decrease starts already at k = 0.

Proposition 2. For b > 2 and d ̸= 0 one has H(0) > b log(b)− b log(1+ 1
d ). Hence

H(0) > b log(b/2).

Proof. Same proof as for the previous proposition using l = 1. The sole difference

is that only integers n in {1, . . . , b− 1} \ {d} contribute to the series.

Remark 3. Hence, except for the sole case b = 2, d = 1, k = 0, we have H(k) >

min(3 log(3/2), 2 log(2)) = 3 log(3/2) > 1.2. This means that in a floating point

context, we can decide of how many terms to keep in the series, solely on the basis

of fixed point estimates, i.e., absolute comparison to 1.

4. Irwin Sums as Integrals

Recall that, given an enumerable subset {x1, x2, . . . } of the real line, and a se-

ries with non-negative terms
∑

n≥1 cn, possibly diverging, one can define the set-

function µ : P(R) → R≥0 ∪ {+∞} which assigns to any subset G of the real line

the quantity µ(G) =
∑∞

n=1 cn1G(xn) ∈ [0,∞]. This set-function is σ-additive and

is a (non-negative, discrete, possibly infinite) measure. Integrability of a complex-

valued function f on the real line means in this context
∑∞

n=1 cn|f(xn)| < ∞. Then∫
R f(x) dµ(x) is defined as

∑∞
n=1 cnf(xn), and is invariant under any permutation

of the indexing of the set {(xn, cn), n ≥ 1}. We will make free use of the notation of

measures and integrals in the following. We write µ =
∑

i∈I ciδxi
, where the count-

able index set I does not have to be N. In this paper we consider only measures

supported in [0, 1) and having finite total mass. The support is defined to be the

set {xi, ci > 0} (not its closure in the usual topology). A Dirac mass is a measure

cδx having a single real number x in its support. The weight is c = µ({x}) > 0.

Definition 1. The measure µ
(k)
b,d , or for short in the sequel µk, is the (infinite)

sum of Dirac masses at the rational numbers x = n(X)/b|X|, for X ∈ X (k), with

respective weights 1/b|X|:

µk =
∑

X∈X (k)

b−|X|δn(X)/b|X| .

It is supported in [0, 1).
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Remark 4. In our previous work [11] of which the present paper is a continuation

in the single-digit case, we defined a measure on R≥0 but the proofs of the main

Theorem used only its restrictions to [0, 1). We thus here define our measures

to only have support on [0, 1) and leave aside considerations relative to what the

“correct” extension to R≥0 is.

Remark 5. Suppose d ̸= 0. Then the strings with n(X) = 0, i.e., the none-string

and those containing only 0’s, belong to X (k) if and only if k = 0. For k = 0 there

is a total weight of 1 + b−1 + b−2 + · · · = b/(b − 1) assigned to the Dirac at the

origin. But for k ≥ 1 and d ̸= 0, there is no such Dirac mass.

If d = 0, n(X) = 0 for X ∈ X (k) happens if and only if X is the string consisting

of k zeros. So, in this case, there is always a Dirac mass at the origin, which has

weight b−k.

In the following calculation displaying the binomial series, one has N = b− 1:

µk([0, 1)) =
∑
l≥0

b−l#{X ∈ X (k) ∩ Dl} =
∑
l≥k

b−l

(
l

k

)
N l−k

=

∞∑
p=0

b−k−p

(
k + p

k

)
Np = b−k 1

(1−N/b)k+1
=

b

(b−N)k+1
= b.

Hence, the measure µk is finite for any k ≥ 0 and its total mass is b.

We can express Irwin numbers as log-like quantities. In the next proposition,

recall that µk is short for µ
(k)
b,d , i.e., it also depends on b and d.

Proposition 3. For b ≥ 2, d a b-ary digit, and k ≥ 0, we have

H
(k)
b,d =

∫
[b−1,1)

dµk(x)

x
.

Proof. The integral is the sum of b−|X|/(n(X)/b|X|) = n(X)−1 over all strings X

containing the digit d exactly k times, and having a non-zero leading digit. Such

strings are in one-to-one correspondance with positive integers, so this is H(k).

We need some additional notation for the next proposition: for n > 0 of length

q ≥ l, we let ldl(n) be the integer m of length l which is “at start” of n, i.e., m is

the floor of n/bq−l.

Proposition 4. Let n > 0 be an integer of length l. Let k ≥ 0. One has∫
[0,1)

dµk(x)

n+ x
=

∑(k(n)+k)

ldl(m)=n

1

m
.
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Proof. The measure µk is defined as an infinite weighted sum of Dirac masses in-

dexed by strings X having exactly k occurrences of the digit d. We obtain∫
[0,1)

dµk(x)

n+ x
=

∑
X∈X (k)

1

b|X|(n+ n(X)/b|X|)
=

∑
X∈X (k)

1

n · b|X| + n(X)
.

The set of denominators present in this last sum is exactly the set of positive integers

with ldl(m) = n and k(m) = k(n) + k.

If d ̸= 0, the contributions of any x in the support of µk are of the type 1/m, 1/(bm),

1/(b2m), . . . , as 0 can be appended as the trailing element of a string X without

modifying the number of occurrences of d nor the b-imal number x = n(X)/b|X|. If

we index rather by the strings as done here, there is a one-to-one correspondance,

which proves more convenient. The explanations in our earlier work [11] would

have been a bit simplified by this language, which however requires the additional

notation defined here.

As the positive measure with support in the unit interval is finite, it has moments

of all orders and these moments are the key quantities in our analysis. We define,

for k ≥ 0 and m ≥ 0:

uk;m =

∫
[0,1)

xm dµk(x).

Except for the sole case of k = 0, b = 2, d = 1, for which µ0 is a Dirac mass of

weight 2 at the origin, and u0;m = 0 for m ≥ 1, (uk;m)m≥0 is a strictly decreasing

sequence converging to zero. This follows by dominated convergence from µk being

supported in [0, 1). One can also argue elementarily as in [11, Proof of Theorem 4].

Corollary 1. Let k ≥ 0 and let n be a positive integer having k(n) ≤ k occur-

rences of the digit d. The contribution to H
(k)
b,d from the denominators “starting

with (identical digits as in) n” can be computed as an alternating series:

∑(k)

ldl(m)=n

1

m
=

∞∑
m=0

(−1)m
uk−k(n);m

nm+1
.

Proof. We use the formula of Proposition 4 with k− k(n). For n > 1, we have that

1/(n + x) = 1/n − x/n2 + x2/n3 − . . . converges absolutely and uniformly with

respect to x ∈ [0, 1) (even inclusive of x = 1) and we can thus integrate term per

term. For n = 1, the remainders after integration will be, up to sign, the integrals

of xm+1/(1 + x) and thus their absolute values are bounded by µk−k(n);m+1, and

they converge to zero. Interchanging summation and integration is thus valid in

that case too.

Remark 6. For k = 0, b = 2, d = 1, there is no positive integer with 0 occurrence

of the digit 1, so the statement is empty.
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We define complementary moments vj;m =
∫
[0,1)

(1 − x)m dµj(x) for j, m non-

negative integers.

Corollary 2. Let k ≥ 0 and let n be a positive integer of length l and having at

most k occurrences of the digit d, i.e., k(n) ≤ k. Then

∑(k)

ldl(m)=n

1

m
=

∞∑
m=0

vk−k(n);m

(n+ 1)m+1
.

The right-hand side is a positive series with geometric convergence.

Proof. This follows from

1

n+ x
=

1

n+ 1− (1− x)
=

∞∑
m=0

(1− x)m

(n+ 1)m+1
,

and term-by-term integration on [0, 1) against the measure µk.

Proposition 5. Let k ≥ 0 and l ≥ 1. Then

H(k) =
∑

1≤j<l

S
(k)
j + bS

(≤k)
l +

∞∑
m=1

(−1)m
∑

0≤i≤k

uk−i;m

∑
l(n)=l
k(n)=i

1

nm+1
. (2)

Equivalently

H(k) =
∑

1≤j<l

S
(k)
j + bS

(≤k)
l +

∞∑
m=1

(−1)m
∑

l(n)=l
k(n)≤k

uk−k(n);m

nm+1
.

One has similarly

H(k) =
∑

1≤j<l

S
(k)
j + b

∑
l(n)=l
k(n)≤k

1

n+ 1
+

∞∑
m=1

∑
l(n)=l
k(n)≤k

vk−k(n);m

(n+ 1)m+1
.

Proof. Just apply Corollary 1, or Corollary 2, to each integer n of length l and

such that k(n) ≤ k, then use uk−i;0 = b = vk−i;0 to handle the contributions from

m = 0.

5. Integral Identities, Recurrence, and Asymptotics of Moments

The next lemma will allow us to obtain recurrence formulas for the moments.
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Lemma 1. Let f be a bounded function on [0, b). Let k ≥ 1. One has∫
[0,1)

f(bx) dµk(x) =
1

b

∑
a̸=d

∫
[0,1)

f(a+ x) dµk(x) +
1

b

∫
[0,1)

f(d+ x) dµk−1(x),

where the first summation is over all digits distinct from d. For k = 0, one has∫
[0,1)

f(bx) dµ0(x) = f(0) +
1

b

∑
a̸=d

∫
[0,1)

f(a+ x) dµ0(x). (3)

Remark 7. Equation (3) was already stated in [11, Lemma 7] except for b = 2

and d = 1: indeed, reference [11] has a set A ⊂ D of so-called admissible digits and

assumes that this set is not reduced to the singleton {0}, which is however what

happens for (b, d, k) = (2, 1, 0). As the measure µ0 then equals twice the Dirac at

the origin, Equation (3) reads in that special case 2f(0) = f(0) + 1
2 (2f(0)).

Proof of Lemma 1. Suppose k ≥ 1. Each string X of length l and having exactly k

occurrences of d contributes b−lf(n(X)/bl−1). For l = 0, X is the none-string and

does not contribute anything as we have supposed k ≥ 1. For l ≥ 1 let a be the

leading digit of X. If a ̸= d, then the l − 1 remaining digits of X give a string Y

which again has exactly k occurrences of d. So the strings with initial digit a ̸= d

contribute the sum of the b−1b1−lf(a+n(Y )/bl−1) over all Y with k occurrences of

d. This is b−1
∫
[0,1)

f(a+x) dµk(x). If a = d, then Y (which may be the none-string)

has k − 1 occurrences of d. Hence, this contributes b−1
∫
[0,1)

f(d+ x) dµk−1(x).

We also consider k = 0. Here the none-string contributes f(0) to the integral on

the left-hand side. The strings X of length l ≥ 1 in X (0) do not contain the digit

d. So here the possible a are distinct from d, and the tail string Y , possibly the

none-string, automatically also belongs to X (0). Hence, we have Equation (3).

Recall from [11, Proposition 8] the recurrence (obtained as a corollary to Equation

(3)):

m ≥ 1 =⇒ (bm+1 − b+ 1)u0;m =

m∑
j=1

(
m

j

)
(
∑
a̸=d

aj)u0;m−j . (4)

We note that this formula requires m ≥ 1. It also works in the k = 0, b = 2, d = 1

case, as all moments for m ≥ 1 then vanish and the power sum for j = m ≥ 1 is

0m = 0. We obtain recurrences for the moments of the measures µk, k ≥ 1.

Proposition 6. Let k ≥ 1. The moments uk;m of the k-th measure µk are related

to those of µk−1 via the recurrence

(bm+1 − b+ 1)uk;m =

m∑
j=1

(
m

j

)
(
∑
a̸=d

aj)uk;m−j +

m∑
j=0

(
m

j

)
djuk−1;m−j . (5)

One has uk;0 = b and the above identity also holds for m = 0.
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Proof. We apply Lemma 1 to the function f(x) = xm, m ≥ 1. After multipliying

by b we have on the left-hand side bm+1uk;m. On the right-hand side, we apply the

binomial formula (which requires the convention 00 = 1) and separate the j = 0

contribution from the first sum, obtaining

∑
a̸=d

m∑
j=0

(
m

j

)
ajuk;m−j +

m∑
j=0

(
m

j

)
djuk−1;m−j

= (b− 1)uk;m +

m∑
j=1

(
m

j

)
(
∑
a̸=d

aj)uk;m−j +

m∑
j=0

(
m

j

)
djuk−1;m−j .

This gives the stated formula.

The following result is important both for theory and practice.

Proposition 7. For each m ≥ 1 the sequence (uk;m)k≥0 is strictly increasing and

converges to b/(m+ 1):

u0;m < u1;m < · · · < uk;m −→
k→∞

b

m+ 1
.

Let f = max(D \ {0, d}). The case f = 0 happens only if b = 2 and d = 1.

Suppose f > 0, then for all m ≥ 1 one has

1

m+ 1
(

f

b− 1
)m < u0;m <

b

m+ 1
(

f

b− 1
)m. (6)

If b = 2 and d = 1 one has u0;m = 0 for m ≥ 1 and u1;m = 2/(2m+1−1) for m ≥ 0.

Proof. If b = 2 and d = 1 the measure µ0 is 2δ0. The values of u1;m are directly

given by the recurrence from Equation (5) whose right-hand side in that case only

has a single non-zero contribution, which is u0;0 = 2 hence the value for u1;m.

The estimate from Equation (6) of u0;m (for either b > 2 or d ̸= 1) is from [11,

Proposition 10].

We prove u1;m > u0;m for all m ≥ 1. This is already known for b = 2 with d = 1

as u0;m = 0 so we exclude this case in the next paragraph.

We compare the recurrence of the (u1;m) sequence (Equation (5)) with the one

of the (u0;m) sequence (Equation (4)). They look the same apart from the fact

that k = 1 has more contributions, all non-negative. So u1;m ≥ u0;m by induction

on m (as it is an equality for m = 0). Reexamining Equation (5) we see that

the second sum on its right-hand side always contains the j = 0 contribution u0;m

which is positive. So in fact in the previous argument we had (bm+1 − b+1)u1;m >

(bm+1 − b+ 1)u0;m for m ≥ 1, hence u1;m > u0;m.

Let k ≥ 1 and suppose we have shown already uk;m > uk−1;m for all m ≥ 1.
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We consider Equation (5) for k + 1. We can suppose inductively that uk+1;n ≥
uk;n for 0 ≤ n < m as this holds for n = 0. And we know uk;n ≥ uk−1;n for all

n. Using this we obtain a lower bound (bm+1 − b + 1)uk;m for the right-hand side

of Equation (5) with k + 1. Hence, uk+1;m ≥ uk;m. Thus, this holds for all m by

induction on m. Reexamining Equation (5) for k + 1 we see that the last sum has

the contribution for j = 0 which is uk;m which is known to be greater than uk−1;m.

So in fact our lower bound is strict and uk+1;m > uk;m for all m ≥ 1. Hence, the

conclusion by induction on k.

So, for each m ≥ 1, there holds u0;m < u1;m < · · · < uk;m < . . . . Further,

all are bounded above by b as uk;m ≤ uk;0 = b. So, there exists a finite limit

wm = limk→∞ uk;m. Letting k → ∞ in Equation (5) we obtain for all m ≥ 0:

(bm+1 − b+ 1)wm =

m∑
j=1

(
m

j

)
(

b−1∑
a=0

aj)wm−j + wm.

As uk;0 = b for all k ≥ 0, w0 = limuk;0 = b. We prove by induction that wm =

b/(m + 1) holds for all m ≥ 0. Assume it is true up to m = M − 1 for some

M ≥ 1. Substituting this into the recurrence relation above (after having removed

from both sides one copy of wM ) leads to

(bM+1 − b)wM =

M∑
j=1

(
M

j

)
(

b−1∑
a=0

aj)
b

M − j + 1
.

Note that

M∑
j=1

(
M

j

)
(

b−1∑
a=0

aj)
M + 1

M + 1− j
=

M∑
j=1

(
M + 1

j

)
(

b−1∑
a=0

aj)

=

b−1∑
a=0

(
(a+ 1)M+1 − aM+1 − 1

)
= bM+1 − b.

So (M +1)(bM+1− b)wM is equal to b(bM+1− b). Hence, wM = b/(M +1) and this

completes the proof.

Remark 8. Defining for all k ≥ 0 and all m ≥ 0

σk;m = (m+ 1)uk;m,

we obtain from Equation (5) (k ≥ 1)

(bm+1 − b+ 1)σk;m =

m∑
j=1

(
m+ 1

j

)∑
a̸=d

ajσk;m−j +

m∑
j=0

(
m+ 1

j

)
djσk−1;m−j .
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We note that this is a barycentric equality with non-negative coefficients:

m∑
j=1

(
m+ 1

j

)
(
∑
a̸=d

aj) +

m∑
j=0

(
m+ 1

j

)
dj

=

b−1∑
a=0

(
(a+ 1)m+1 − am+1 − 1

)
+ 1 = bm+1 − b+ 1.

An alternative proof of 1
m+1 (

f
b−1 )

m < uk;m < b
m+1 can be based upon this.

6. Convergence to Lebesgue Measure and Farhi Theorem

In terms of g(x) = f(bx), the integral formula of Lemma 1 becomes∫
[0,1)

g(x) dµk(x) =
1

b

∑
a̸=d

∫
[0,1)

g(
a

b
+

x

b
) dµk(x) +

1

b

∫
[0,1)

g(
d

b
+

x

b
) dµk−1(x).

This motivates a closer examination of the restrictions of µk to sub-intervals such

as [i/b, (i+ 1)/b) for 0 ≤ i < b.

Lemma 2. Let x ∈ [0, 1) be a b-imal number of depth l. Let X be the string of

length l such that n(X)/bl = x. Let j be the number of occurrences of d in X. Let

l′ ≥ l. Set j′ = j if d > 0, and j′ = j + l′ − l if d = 0. Let U be any subset of the

open interval (x, x+ b−l′). Finally, let k ∈ N.

• if k < j′ then µk(U) = 0,

• if k ≥ j′ then µk(U) = b−l′µk−j′(b
l′U − bl

′
x).

Proof. If d > 0, j is also the number of occurrences of d in the integer blx, but for

d = 0, j will be greater than that if x < b−1 (due to leading zeros in X).

Any string Y such that n(Y )/b|Y | ∈ (x, x+ b−l′) has the shape

Y = X 0 . . . 0︸ ︷︷ ︸
l′−l zeros

Z,

where Z = z1 . . . zp and at least one zi is not zero. The number of occurrences of

d in Y is the sum of j′ (which was defined depending on whether d > 0 or d = 0)

with the number of occurrences in Z. So if k < j′, then no such string Y has

exactly k occurrences of d and µk is restricted to the zero measure on (x, x+ b−l′).

Suppose k ≥ j′. Set y = n(Y )/b|Y | and z = n(Z)/b|Z|. Thus, y = x + z/bl
′
with

0 < z < 1, and z = bl
′
(y−x). Conversely, any string Z having at least one non-zero

digit can be extended as above to give Y such that n(Y )/b|Y | is in (x, x + b−l′)
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and k(Y ) = k(Z) + j′ (k(T ) is the number of occurrences of d in a string T ).

Summing over all Y with n(Y )/b|Y | = y and having k occurrences of d (if d = 0,

there is only one such Y for each y), and over all Z giving the same z and having

k− j′ occurrences of d, we get µk({y}) = b−l′µk−j′({z}). Finally, summing over all

strings Y such that n(Y )/b|Y | ∈ U ⊂ (x, x+ b−l′), we obtain the stated formula for

µk(U).

For some half-open intervals, a simple formula showing the behavior of µk is

obtained next.

Proposition 8. Let x ∈ [0, 1) be of depth l and let j be defined as in the previous

lemma. For k < j the restriction of µk to the half-open interval [x, x+b−l) vanishes.

For k ≥ j and any subset U ⊂ [x, x+ b−l) one has µk(U) = b−lµk−j([b
lU − blx)).

Proof. We use the Lemma 2 with l′ = l, j′ = j. For k < j one thus has µk((x, x+

b−l)) = 0. And µk({x}) is also zero because there are already j > k occurrences of

the digit d in x (this includes leading zeros located after the radix separator). So

µk([x, x+ b−l)) = 0.

Suppose k ≥ j. We know from Lemma 2 that for any U ⊂ (x, x+ b−l), µk(U) =

b−lµk−j(b
lU − blx). There remains to examine what happens for the singleton

{x}. Let c(k − j) = µk−j({0}). We need to check that µk({x}) = b−lc(k − j).

The value of µk({x}) depends on whether d = 0 or d > 0. In the former case,

µk({x}) = b−l−(k−j) (recall k ≥ j). In the latter case, it is equal to b−l(1− 1/b)−1

if k = j, and vanishes if k > j. Using Remark 5, we obtain µk{x} = b−lc(k − j) in

all cases, which completes the proof.

Remark 9. In particular the total mass µk([x, x + b−l)) is 0 for k < j and b1−l

(i.e., b times Lebesgue measure) for j ≥ k. The sequence (µk([x, x + b−l)))k≥0 is

thus non-decreasing.

This is compatible with the moments being increasing as k increases (cf. Propo-

sition 7). But the sequences (µk([t, u))k≥0 associated with half-open intervals [t, u)

can not possibly all be non-decreasing: if they were, Equation 3 from Proposition 3

expressing H(k) as a log-like integral would cause (H(k)) to also be a non-decreasing

sequence. But as first proven by Farhi [17] for b = 10, and generally here in Propo-

sition 1, they actually decrease strictly for k ≥ 1.

This apparent paradox is explained by the fact that for l′ > l, µk([x, x + b−l′))

has a less simple behavior when k varies, than the one which is valid for l′ = l

and described in Proposition 8. The details can be deduced from Lemma 2. We

will only need that starting with k = j′, the sequence (µk([x, x + b−l′)) becomes

constant, equal to b1−l′ . This follows from the next lemma.

Lemma 3. Let x ∈ [0, 1) be a b-imal number of depth l for some l ∈ N. Let l′ ≥ l

and let j and j′ be defined as in Lemma 2. Let k ≥ j′. Let U be any subset of the

half-open interval [x, x+ b−l′). Then µk(U) = b−l′µk−j′(b
l′U − bl

′
x).



INTEGERS: 26 (2026) 16

Proof. We know this already from Lemma 2 if U does not contain x. It remains to

consider the case of U = {x}.

• If d = 0: for k ≥ j, there is only one string X containing k occurrences of the

digit 0 and such that n(X)/b|X| = x. It is obtained by adding k − j trailing

zeros to the string of length l representing blx. So µk({x}) = b−l−(k−j). On

the other hand j′ = j + l′ − l so k − j′ = k − j + l − l′ and the weight of δ0
in µk−j′ is b−(k−j′) by Remark 5. So b−l′µk−j′({0}) = b−l′−k+j′ = b−k+j−l

which matches µk({x}).

• If d ̸= 0: for k = j, strings with trailing zeros contribute to the weight at x, and

the total weight is b−l
∑

i≥0 b
−i. On the other hand j′ = j so k−j′ = k−j = 0

and the weight of δ0 in µ0 is
∑

i≥0 b
−i. Multiplying this by b−l′ we obtain

indeed µj({x}). For k > j, µk({x}) = 0. And also b−l′µk−j({0}) = 0. Again

the values match.

Proposition 9. Let t < u be any two b-imal numbers in [0, 1]. Let l′ be large

enough for bl
′
t and bl

′
u to be integers. For k ≥ l′ there holds

µk([t, u)) = bu− bt.

Let generally I be any sub-interval of [0, 1). Then (with |I| defined as sup I − inf I,

i.e., the Lebesgue measure of I)

limµk(I) = b|I|.

Proof. Let t = n/bl
′
, u = m/bl

′
for some integers 0 ≤ n < m ≤ bl

′
. It is enough

to consider the case m = n + 1, by additivity. Lemma 3 says in particular that

µk([t, t + b−l′)) = b−l′µk−j′([0, 1)) for k ≥ j′. The quantity j′ is here some integer

at most equal to l′. And µi([0, 1)) = b for all i ∈ N. This gives the result for

µk([t, u)). Note that here perhaps l′ > l, where l is the smallest integer such that

blt ∈ N, and Proposition 8 would not have been enough to conclude in that case.

Let I be any sub-interval of [0, 1). If I is a singleton the statement is known from

evaluations of µk(x) (which is zero if x is not b-imal). If I is not a singleton, then

lim inf µk(I) ≥ limµk([t, u)) = bu− bt for any choice of b-imal numbers t < u in the

interior I̊. So lim inf µk(I) ≥ b|I| and the upper bound for lim supµk(I) is shown

similarly.

Theorem 3. Let n > 0 be an integer. Then

lim
k→∞

∑(k)

m starts with n

1

m
= b log(1 +

1

n
).

Proof. The condition on m is ldl(m) = n, where l is the number of digits in n.

Using Proposition 4, we are thus looking at

lim
k→∞

∫
[0,1)

µk(dx)

n+ x
.
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According to the previous proposition and familiar arguments from measure theory

this limit exists and its value is∫
[0,1)

b dx

n+ x
= b log(1 +

1

n
).

Remark 10. Adding these formulas for n = 1 to b − 1 we recover Farhi theorem

[17]: limH(k) = b log b. This can also be obtained from taking the limit in Equation

(3). Expanding using the power series for the logarithm function we obtain a series

which is the limit term per term of the one from Corollary 1.

7. Complementary Moments

Let Ek(t) =
∫
[0,1)

etx dµk(x) be the exponential generating function of the moments.

Using Lemma 1, one obtains:

Ek(bt) =

{
1
b

(∑
a̸=d e

atEk(t) + edtEk−1(t)
)

(k > 0),

1 + 1
b

∑
a̸=d e

atE0(t) (k = 0).

Define Fk(t) = etEk(−t). This is the exponential generating function of the vk;m
(m ≥ 0) which are defined right before Corollary 2. Setting d′ = b− 1− d, one has:

Fk(bt) =
1

b

∑
a̸=d′

eatFk(t) + ed
′tFk−1(t)

 ,

F0(bt) = ebt +
1

b

∑
a̸=d′

eatF0(t).

Thus, vk;m obey for k ≥ 1 the same recurrences stated in Proposition 6 for uk;m,

except for the replacement of d by d′ = b − 1 − d. In other terms, setting γ′
j =∑

a̸=d′,0≤a<b a
j , we have:

(bm+1 − b+ 1)vk;m =

m∑
j=1

(
m

j

)
γ′
jvk;m−j +

m∑
j=0

(
m

j

)
(d′)jvk−1;m−j . (7)

And for k = 0 we get:

(bm+1 − b+ 1)v0;m = bm+1 +

m∑
j=1

(
m

j

)
γ′
jv0;m−j . (8)

The previous formula is also valid for m = 0: it gives vk;0 = b.

Proposition 10. For each m ≥ 1, the sequence (vk;m)k∈N (which is bounded above

by b = vk;0 = uk;0) is strictly decreasing and converges to b/(m+ 1).
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Proof. First of all, vk;m =
∫
[0,1)

(1 − x)m dµk(x) ≤ vk;0 = b with equality possible

for m ≥ 1 only if all the mass of µk is concentrated at the origin. This happens if

and only if b = 2 and d = 1 and k = 0. Using the inequality we get

m∑
j=0

(
m

j

)
(d′)jvk−1;m−j ≤

m∑
j=0

(
m

j

)
(b− 1)jb = bm+1.

For d′ = 0, the left-hand side is vk−1;m and it is less than bm+1 form ≥ 1. For d′ > 0,

we are not in the case b = 2 and d = 1, so vk−1;m−j < b for j < m. Consequently,

and looking in particular at the j = 0 contribution, we have, if m ≥ 1, a strict

inequality in the above equation.

Hence, for k ≥ 1, and m ≥ 1, from Equation (7):

(bm+1 − b+ 1)vk;m <

m∑
j=1

(
m

j

)
γ′
jvk;m−j + bm+1.

If we had equality here, this would be the same recurrence with the same starting

point as for v0;m. As we have an inequality, we get by induction on m vk;m ≤ v0;m.

But then, the right-hand side is ≤ (bm+1 − b + 1)v0;m, so we get vk;m < v0;m for

m ≥ 1.

Let k = 2. We obtain, from Equation (7), the upper bound

(bm+1 − b+ 1)v2;m ≤
m∑
j=1

(
m

j

)
γ′
jv2;m−j +

m∑
j=0

(
m

j

)
(d′)jv0;m−j .

If the less-than-or-equal sign was replaced with an equality, it would be the re-

currence which applies to (v1,m). As the two sequences have the same m = 0

value we get v2;m ≤ v1;m for all m. But in the second sum in Equation (7) with

k = 2 we have the j = 0 term which is v1;m, and it is known to be less than

v0;m if m ≥ 1. So the above displayed inequality is strict for m ≥ 1. Then us-

ing v2;m−j ≤ v1;m−j , and Equation (7) with k = 1, in the right-hand side, we get

(bm+1 − b+ 1)v2;m < (bm+1 − b+ 1)v1;m, and hence v2;m < v1;m for all m ≥ 1.

This argument can be repeated inductively and establishes that (vk;m)k≥0 is

strictly decreasing for each fixed m ≥ 1.

The value of the limit as k → ∞ can be established as in the proof of Proposition

7. Alternatively, the second paragraph of Proposition 9 says that the sequence of

probability measures (b−1µk)k≥0 converges weakly to the Lebesgue measure on the

interval [0, 1). This implies the convergence of the complementary moments to those

of the Lebesgue measure: limk→∞ b−1vk;m = (m+ 1)−1.

Remark 11. For the notion of weak convergence of measures, especially of proba-

bility measures on the real line or some interval, see [10, Section 25].
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Besançon Algèbre Théorie Nr., to appear.

[14] J.-F. Burnol, Digamma function and general Fischer series in the theory of Kempner sums,
Expo. Math. 42 (6) (2024), 125604.
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