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Abstract

We consider the series of reciprocals of those positive integers with exactly k occur-
rences of a given b-ary digit d (Irwin series), and obtain geometrically convergent
representations for their sums. They are expressed in terms of the moments and
Stieltjes transforms of some measures on the unit interval. The moments obey linear
recurrences allowing straightforward numerical implementations. This framework
also allows to study the large k limit, and, in further works by the author, the large
b asymptotics.

1. Introduction

The Irwin series [22] are sub-series of the harmonic series with conditions on the
number of occurrences of digits in the denominators. For example, only those
positive integers having at most 77 occurrences of the digit 3, and/or at most 125
occurrences of the digit 5, are kept. Irwin showed that such series converge. This
generalized an earlier contribution by Kempner [23] where the convergence was
shown for those series whose terms have no occurrence of a given digit.

Hardy and Wright establish the Kempner result as Theorem 144 of [20]. Their
statement “The sum of the reciprocals of the numbers which miss a given digit is
convergent” is proven for an arbitrary radix r, whereas Kempner had considered
only decimal figures. It is found in the section “The representations of numbers as
decimals” which discusses topics such as sets of measure zero and the theorem of
Borel stating that almost every real number is normal in any base [20, Thm. 148].

The Kempner and Irwin series have been the object of various studies and gen-
eralizations [1-9, 17-19, 21-33]. A characteristic of Theorems 1 and 2 established
in the present work is that they provide theoretically ezact formulas which can
be converted straightforwardly into efficient numerical algorithms®. They are thus
an alternative to the (also efficient!) numerical algorithms of Baillie [8, 9]. In
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all examples computed by the author, the results matched those returned by the
Baillie algorithms for Kempner and Irwin series. In a later work [12], we started
the extension to counting occurrences of multi-digit strings d; ...d,. Here too, the
numerical results in the case of no occurrence matched what is provided by the
Schmelzer—Baillie [30] algorithm. For p = 2 and one occurrence, the approach of
[12] is currently the only published algorithm available.

We shall consider here, for any triple of integers (b,d, k) with b > 1, 0 < d < b,
and k > 0, the associated Irwin series, i.e., the subsum of the harmonic series where
only those terms are kept whose denominators have exactly k occurrences of the
b-ary digit d. The case b =2, d =1, k = 0 is special: it gives an empty series, and
the value of the sum is thus zero. We explain how to generalize our earlier work [11]
which handled k& = 0. Here as in [11], the core objects are moments and Stieltjes
transforms of suitable measures on the unit interval.

For b = 10, Farhi [17] proved that the limit as & — oo is 101log(10). We prove
that, in general, it equals blog(b). Farhi’s method could be extended to general
b > 1, but our approach is very different. We actually give two proofs, one a
corollary of the convergence of certain measures toward the Lebesgue measure. We
extend this latter method of proof in [16] to the case of counting occurrences of
a multi-digit string d; ...d,, recovering the recent theorem by Allouche, Hu, and
Morin [6], which says that the limit as k — oo in that case is b? log(b).

In further works, which were also based upon the present one, we obtained var-
ious new results on Kempner—Irwin series and their generalizations, in particular
regarding their large b asymptotics [13-15].

2. Notation and Terminology

Let b > 1 be an integer, which is kept fixed throughout the paper. The set N is
defined as Z> (i.e., it contains zero). We define b-imal numbers as the elements of
Ulzob_lZ. For such a b-imal number z, the smallest [ > 0 with = € b~'Z is called
its depth.

Let D = {0,...,b — 1} be the set of b-ary digits. We pick a d € D which will
be fixed throughout the paper. The case d = 0 has some specific features and
will require special consideration at some places. We let A = D\ {d}. We let
N =#A=b—1and N; = #(A\ {0}).

The space of strings D is defined to be the union of all Cartesian products D!
for I > 0. Notice that for [ = 0 one has D® = {(}, i.e., the set with one element.
We will call this special element the none-string. The length |X| = [ of a string
X is the integer I such that X € D!. For | = 1 a string is thus the same thing
as a digit, although for the sake of clarity it is better to treat them as separate
things. There is a map from strings to integers which to X = (dy,...,d;) assigns
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n(X) = d;b! +---+dy, and sends the none-string to zero. This map is many-to-one,
and each integer n has a unique minimal-length representation X (n) which is called
the (minimal) b-representation of n.

The length of an integer n is denoted I(n) = | X (n)|. Thus, I(n) is the smallest
non-negative integer such that n < b, Note that {(0) = 0, not 1. The letter
is also used to refer to a specific integer, e.g., we may say “let [ be an integer, and
consider the integers m such that I(m) = {”. We hope that this notation will not
create confusion.

Define, for £ > 0:

X®) = {X € D| X contains the digit d exactly k times}.

The set X*) contains the none-string if and only if k¥ = 0. We write Xl(k) for its
subsets of strings having length I, for I > 0. Let A®) be the set of non-negative
integers with minimal b-imal representation in X*), and Al(k) the subset of those
having length [. We obtain a partition N = Zs¢ = AO U AD U AR U, We
write kp ¢(n) (or often simply k(n)) for the number of occurrences of the digit d in
the minimal b-representation of the integer n. With this notation, the Irwin sums
considered in this paper are:

(k) _ 1
wi- oy L
n>0, kb,d(n)=k
As we are handling only positive terms, the order of summation is irrelevant. The

cardinality of the set of strings of [ b-ary digits, ¥ among them equal to d, is

(}i)(b — 1)!7k. Terms in H;kd) with denominators of the same length [ constitute

“blocks” S§*),:

k) 1
Sé,d;l - Z n’

l(’ﬂ):l, kbyd(n):k:

If k£ > [, no integer with [ digits can have k occurrences of d, and Sé,kd);l = 0. Note also

that H2(01) = 0 because the series is empty. Taking into account that each n=! with

b= < n < b’ contributes at most b=~V we see that Séfcd);l = 01500 (IF(1 = 1/b)Y).
So, HZEZ) < 0.

As the base b and the digit d are fixed throughout the paper, we shall usually
drop them from the subscripts and abbreviate H, 152 and Slg,kd); ; to, respectively, H (k)
and Sl(k). The notation Sl(gk) means » ooy, Sl(j), and Sl(<k) =2 0<j<k Sl(j).

Regarding integration against measures ,u_, we will usually write du_(x), and some-
times p(dz) with the same meaning. The letter d here is not a b-ary digit...
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3. The New Series Representing Irwin Sums

Here, we gather together the main results.

Theorem 1. Letb € N, b > 1, and d € {0,...,b — 1}. Define, for each j > 1,

Y =" aza @. Let ugo =b and let (uo,m)m>0 satisfy the recurrence
0<a<b

- m
m 2 1 = (bm+1 - b+ I)UO;m = Z <j >iju0;m—j-

j=1
Let wj.m (7> 1, m > 0) satisfy the recurrence
" /m " /m
m>0 = " = b+ Dujm =Y <j >7juj;mj + (j >djuj1;mj~
j=1 3=0

In particular uj,0 = uj_1,0 = -+ = Ug;0 = b.

Let k > 0 and | > 1. The Irwin sum H®) can be expressed using integers of
length at most | and having at most k occurrences of the digit d (as indicated below
by the superscript (SF) ):

0 — Z(k) % Tb- Z(sm % N i(_l)m Z(sm ukg:’b(:im _ )
0<n<bl—1 bl-1<n<bl m=1 bl —1<n<b!
The quantities wj., (j >0, m > 1) have the following properties:
e They are non-negative and vanish only if 7 =0 and b =2 and d = 1.
o They decrease (strictly if not zero) for increasing m.
e They increase strictly for increasing j and converge to b/(m + 1).

Proof. This uses most everything from the present paper. In brief: the validity of
the series is established in Proposition 5, which is a corollary to the integral formulas
du ’;’c(z) log-like
expression of Proposition 3. The coefficients u;;,, are the moments of measures p;

from Proposition 4, themselves being variants of the H®*) = f[b,l 1

which are the main topic of this paper. The recurrence relations are established in
Proposition 6. The bounds on the u;.,,, and their limits as j — 0o, are obtained in
Proposition 7. The b/(m + 1) limit for j — oo is also a corollary of Proposition 9
which establishes the convergence of the measures uy to bdzx. O

Remark 1. We examine when the alternating series in Equation (1) has only
vanishing contributions. The involved coefficients wu;.,,, must vanish, which can
happen only for (b,d,j) = (2,1,0). Assume thus b = 2 and d = 1. The contributing
n with [ digits are constrained by k(n) < k. If kK = 0, there is no such n, and
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the alternating series is empty. If k = 1, only k(n) = 1 is realized (as a positive
integer must have its leading digit equal to 1), and only by n = 2!=!. But then
Jj =k —k(n) = 0 and thus u;,, = 0 and the contribution vanishes. If £ > 1,
the contribution of n = 2171 is (—1)™up_ 1., /20" DD and is non-zero. The
alternating series is thus either identically vanishing (b = 2, d = 1, k < 1) or its
terms decrease strictly in absolute value.

For [ = 1 the series is built with inverse powers of the digits. If £ > 1 all digits
contribute. The first contributions to Equation (1) (left of the alternating series)
add up to b( + 3+ + b_%), which is thus an upper bound. Also with [ =1, if
k = 0 we have the same upper bound if d = 0, and if d > 0 we omit b/d as the integer
n = d gives no contribution. This upper bound b21<n<b% — blg=0,a>0(k, d)é is
strict, except with b = 2, d = 1, and £ < 1 all true, in which case the upper
bound is the exact value of H*). In all other cases, keeping only the first from the
alternating series in Equation (1), we obtain a strict lower bound of H®). See also
Propositions 1 and 2.

Remark 2. One can use the theorem with [ = 1, but if £ > 1, the one-digit number
n = 1 will then always contribute, and as all coefficients u;,,, are bounded below if
d#b—1by 1/(m+1) (see Proposition 7), we obtain for level 1, k > 1, d # b — 1,
a series as poorly converging as the one for log2 =1 — % + % — % +....

It is preferable for numerical implementations to use at least [ = 2. The finite sum
of the reciprocal powers 1/n™*2 is bounded above by b'/(b'~1)™*+2. Combined with
the 0 < ., < b/(m + 1) bounds this gives an upper bound b="(=D+3=1 /(1 4 2).
Hence, each additional term of the series will give about [ — 1 new places of precision,
in radix b representation, for the approximation of the Irwin sum. Using [ = 3
has the advantage of dividing by two the needed range of m for the same target
precision. It does induce additional cost in computing the inverse power sums,
as they have more contributions. In our initial SAGEMATH implementation from
20242 we observed for b = 10 and d = 9 that [ = 3 was beneficial at about 1200+
decimal digits for H(® and already at 600+ digits for H*) and 400+ digits for H?)
compared to using [ = 2. But this depends on the actual implementation and on
the numerical libraries used. For small bases, the benefit of choosing [ = 3 — and
even [ =4 in the cases b = 2 and b = 3 — becomes evident already at substantially
lower target precision.

Theorem 2 below writes H(*) as a series of non-negative terms that obey a linear

recurrence relation and decay geometrically to zero. The terms are positive except
for (b,d, k) = (2,1,0).

Theorem 2. Letb>0,d € {0,...,b—1}. For each j > 1, let v} be Y atp—1-d al.
0<a<d

2 Available at https://arxiv.org/src/2402.09083v1/anc. A more sophisticated version, ap-
plying parallelism to some extent, is now available at https://gitlab.com/burnolmath/irwin.
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Let (vo.m)m>0 satisfy the recurrence

m=>0 = (bm+1_b+1>U0m_bm+1+z(]>%v0m J

j=1
In particular, vo,o = b. Let vjm (j > 1, m > 0) satisfy the recurrence

m>0 = (bm+1 b+1) UJm_Z( >'ij]m ]+Z( )b lfd) Vj—1m—j-

In particular, vj,0 = vj_1,0 =+ = Vg0 = b for all j > 0.
Letl>1 and k> 0. One has

(k) 1 (k) v n
0= S L TS S

n
0<n<bli—1 bl=1<n<b! m=1 pl—=1<n<b!

(k) 1

The superscript (S%) means to restrict to integers n having in base b at most k
occurrences of the digit d.
The quantities vj., (7 >0, m > 1) have the following properties:

o They are positive and bounded above by b.

o They decrease strictly for increasing m, except forb=2,d=1, and j =0, in
which case vo., = 2 for all m.

e They decrease strictly for increasing j and converge to b/(m + 1).

Proof. The series are established in Proposition 5. The recurrences are Equations
(7) and (8). The value b/(m + 1) of the limit of (vj,m,);>0, and the monotonicity,
are proven in Proposition 10. Another proof follows from Proposition 9 about the
convergence p; — bdxr and the definition of the v;., as complementary power
moments. O

The next statement was proven by Farhi [17] for b = 10. We obtain it here for
all b> 1.

Proposition 1. With d # 0 the sequence (H®) is strictly decreasing for k > 1.
With d = 0 it is strictly decreasing already starting at k = 0. In both cases the
sequence converges to blogb.

Proof. We apply Theorem 2 with [ = 1. Starting with & = 1, there are no re-
strictions on the single-digit integers n intervening in the inverse power sums. The
theorem says in particular that the coefficients v;;,, decrease when j increases. This
gives the decrease (H (’f))kzl. The theorem also gives their limits as j — co. We
recognize after taking these limits term by term the Taylor series of —log(1l — h)
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evaluated at h = (n+ 1)~ for 1 < n < b. Adding up these logarithms gives a
telescopic finite sum:

1
(k) — —
lim HY" =b E —log(1 1) = blog(b).
1<n<bd

For d = 0 all non-zero digits contribute to the series already for k& = 0. So the
decrease starts already at k = 0. O

Proposition 2. Forb > 2 and d # 0 one has H® > blog(b) — blog(1+ ). Hence
HO > blog(b/2).

Proof. Same proof as for the previous proposition using [ = 1. The sole difference
is that only integers n in {1,...,b — 1} \ {d} contribute to the series. O

Remark 3. Hence, except for the sole case b =2, d = 1, k = 0, we have H*) >
min(3log(3/2),2log(2)) = 3log(3/2) > 1.2. This means that in a floating point
context, we can decide of how many terms to keep in the series, solely on the basis
of fixed point estimates, i.e., absolute comparison to 1.

4. Irwin Sums as Integrals

Recall that, given an enumerable subset {x1,z2,...} of the real line, and a se-
ries with non-negative terms ), ., ¢,, possibly diverging, one can define the set-
function g : P(R) — R U {+0o} which assigns to any subset G of the real line
the quantity u(G) = >~ ¢xla(xy,) € [0,00]. This set-function is o-additive and
is a (non-negative, discrete, possibly infinite) measure. Integrability of a complex-
Valued function f on the real line means in this context Y-, ¢,|f ()] < co. Then
Je f( is defined as > -, ¢, f(2y,), and is invariant under any permutation
of the mdexmg of the set {(zy,cn),n > 1}. We will make free use of the notation of
measures and integrals in the following. We write =3, 7
able index set Z does not have to be N. In this paper we consider only measures

¢idz,;, where the count-

supported in [0,1) and having finite total mass. The support is defined to be the
set {z;,¢; > 0} (not its closure in the usual topology). A Dirac mass is a measure
0y having a single real number x in its support. The weight is ¢ = p({z}) > 0.

Definition 1. The measure ugﬁ; or for short in the sequel py, is the (infinite)

sum of Dirac masses at the rational numbers 2 = n(X)/blXl for X € x®) with
respective weights 1/b1X1:

= > v mn
Xex®)

It is supported in [0, 1).
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Remark 4. In our previous work [11] of which the present paper is a continuation
in the single-digit case, we defined a measure on Ry but the proofs of the main
Theorem used only its restrictions to [0,1). We thus here define our measures
to only have support on [0,1) and leave aside considerations relative to what the
“correct” extension to R>q is.

Remark 5. Suppose d # 0. Then the strings with n(X) = 0, i.e., the none-string
and those containing only 0’s, belong to X*) if and only if k¥ = 0. For k = 0 there
is a total weight of 1 +b~1 4+ b2 + ... = b/(b — 1) assigned to the Dirac at the
origin. But for £ > 1 and d # 0, there is no such Dirac mass.

Ifd =0, n(X) =0 for X € X*) happens if and only if X is the string consisting
of k zeros. So, in this case, there is always a Dirac mass at the origin, which has
weight b=F.

In the following calculation displaying the binomial series, one has N = b — 1:

pe((0,1)) =D b #{X e xH D} => b (2) NIk

1>0 1>k

> e (k+p _ 1 b
= k=p P —pk = =
20 ("7 =07 =g = e =

Hence, the measure py, is finite for any k& > 0 and its total mass is b.
We can express Irwin numbers as log-like quantities. In the next proposition,

recall that py is short for uéﬁ% i.e., it also depends on b and d.

Proposition 3. For b > 2, d a b-ary digit, and k > 0, we have

k dpg ()
) = / dnlz)
-ty T

Proof. The integral is the sum of b~ 1X!/(n(X)/blX) = n(X)~"! over all strings X
containing the digit d exactly k times, and having a non-zero leading digit. Such
strings are in one-to-one correspondance with positive integers, so this is H®). [

We need some additional notation for the next proposition: for n > 0 of length
q > 1, we let 1d;(n) be the integer m of length [ which is “at start” of n, i.e., m is
the floor of n /bt

Proposition 4. Let n > 0 be an integer of length l. Let k > 0. One has

/ dpg(r) Z(k(nHk) 1
1) Nt m

1d; (m)=n
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Proof. The measure uy is defined as an infinite weighted sum of Dirac masses in-
dexed by strings X having exactly k occurrences of the digit d. We obtain

d,uk o 1
/[01 n—f—x Z b|X‘n+n X)/blXT) X;}g)n-bxhrn()()'

Xex k)

The set of denominators present in this last sum is exactly the set of positive integers
with 1d;(m) = n and k(m) = k(n) + k. O

If d # 0, the contributions of any « in the support of py, are of the type 1/m, 1/(bm),
1/(b*m), ..., as 0 can be appended as the trailing element of a string X without
modifying the number of occurrences of d nor the b-imal number = = n(X)/blXI. Tf
we index rather by the strings as done here, there is a one-to-one correspondance,
which proves more convenient. The explanations in our earlier work [11] would
have been a bit simplified by this language, which however requires the additional
notation defined here.

As the positive measure with support in the unit interval is finite, it has moments
of all orders and these moments are the key quantities in our analysis. We define,

for k>0 and m > 0:
Uy, = / ™ dpg ().
[0,1)

Except for the sole case of k = 0, b = 2, d = 1, for which pg is a Dirac mass of
weight 2 at the origin, and wg., = 0 for m > 1, (Ukum)m>0 is a strictly decreasing
sequence converging to zero. This follows by dominated convergence from py, being
supported in [0,1). One can also argue elementarily as in [11, Proof of Theorem 4].

Corollary 1. Let k > 0 and let n be a positive integer having k(n) < k occur-
rences of the digit d. The contribution to Hékd) from the denominators “starting
with (identical digits as in) n” can be computed as an alternating series:

*) 1 = Uk—k(n
Z *:Z )" kn:wi

1d; (m)=n m=

(=)

Proof. We use the formula of Proposition 4 with k — k(n). For n > 1, we have that
1/(n+x) = 1/n —x/n? + 22/n® — ... converges absolutely and uniformly with
respect to x € [0,1) (even inclusive of x = 1) and we can thus integrate term per
term. For n = 1, the remainders after integration will be, up to sign, the integrals
of 2™*1/(1 + x) and thus their absolute values are bounded by fi5_k(n);m+1, and
they converge to zero. Interchanging summation and integration is thus valid in
that case too. O

Remark 6. For k =0, b = 2, d = 1, there is no positive integer with 0 occurrence
of the digit 1, so the statement is empty.
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We define complementary moments vj,m = f[o 1)(1 — x)™dp;(x) for j, m non-
negative integers.

Corollary 2. Let k > 0 and let n be a positive integer of length | and having at
most k occurrences of the digit d, i.e., k(n) < k. Then

(k) 1
D

ldl(m):n

oo
Vg — Yk—k(n)ym

(n+ 1)m+1’

OM

The right-hand side is a positive series with geometric convergence.

Proof. This follows from

1 1 _ i (1—a)m
n+r n+l-—(1-z) (n+1)m+1”’
and term-by-term integration on [0, 1) against the measure puy. O

Proposition 5. Let k> 0 andl > 1. Then

H® = 3" s 4 ps=H i( TN ki Y an SN

1<j<l m=1 0<i<k I(n)=l
k(n)=t
Equivalently
K _ 5 o<k L N Uk—k(n)im
HO =3 SP 40550+ 3 (0™ >, —5
1<5<1 m=1 I(n)=l
k(n)<k

One has similarly

k) _ (k) - Vk—k(n);m
HO = >, 5746 3, =3 Zznﬂmﬂ-
1<j<l I(n)=l m=1 [(n)=
k(n)<k k(n)<

Proof. Just apply Corollary 1, or Corollary 2, to each integer n of length [ and
such that k(n) < k, then use ug_;;0 = b = vg_;0 to handle the contributions from
m = 0. [

5. Integral Identities, Recurrence, and Asymptotics of Moments

The next lemma will allow us to obtain recurrence formulas for the moments.
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Lemma 1. Let f be a bounded function on [0,b). Let k > 1. One has

1
f(bx) dpu (@) = o E a+z)dur(z) + 3 fld+ ) dpg—1(z),
[0,1) vy [0,1)

where the first summation is over all digits distinct from d. For k =0, one has

F(bx) dpo () Z fla+ ) dpo(z). (3)

[0,1) [0,1)

Remark 7. Equation (3) was already stated in [11, Lemma 7] except for b = 2
and d = 1: indeed, reference [11] has a set A C D of so-called admissible digits and
assumes that this set is not reduced to the singleton {0}, which is however what
happens for (b,d, k) = (2,1,0). As the measure p then equals twice the Dirac at
the origin, Equation (3) reads in that special case 2f(0) = f(0) + (2£(0)).

Proof of Lemma 1. Suppose k > 1. Each string X of length [ and having exactly k
occurrences of d contributes b= f(n(X)/b'~1). For [ = 0, X is the none-string and
does not contribute anything as we have supposed k > 1. For [ > 1 let a be the
leading digit of X. If a # d, then the [ — 1 remaining digits of X give a string Y
which again has exactly k occurrences of d. So the strings with initial digit a # d
contribute the sum of the b= 1b = f(a+n(Y)/b'~1) over all Y with k occurrences of
d. Thisis b~! f[o,l) fla+x)dug(x). If a = d, then Y (which may be the none-string)
has k — 1 occurrences of d. Hence, this contributes b~! f[o,l) fld+z)dug—1(x).
We also consider & = 0. Here the none-string contributes f(0) to the integral on
the left-hand side. The strings X of length [ > 1 in X(©) do not contain the digit
d. So here the possible a are distinct from d, and the tail string Y, possibly the
none-string, automatically also belongs to X(9). Hence, we have Equation (3. O

Recall from [11, Proposition 8] the recurrence (obtained as a corollary to Equation
(3)):
m21:>(bm+1_b+1)u0;mzz< )Za U0sm—j- (4)
j=1 a#d
We note that this formula requires m > 1. It also works in the k =0,b=2,d=1

case, as all moments for m > 1 then vanish and the power sum for j = m > 1 is
0™ = 0. We obtain recurrences for the moments of the measures ug, k£ > 1.

Proposition 6. Let k > 1. The moments uy.m, of the k-th measure pi, are related
to those of pi_1 via the recurrence

(bm+1—b+1)uk;m:2< ) O~ @ g ﬁi( )dﬂuk g (5)

j=1 a#d

One has up,o = b and the above identity also holds for m = 0.
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Proof. We apply Lemma 1 to the function f(z) = 2™, m > 1. After multipliying
by b we have on the left-hand side 5™ *!uy.,,,. On the right-hand side, we apply the
binomial formula (which requires the convention 0° = 1) and separate the j = 0
contribution from the first sum, obtaining

ZZ( >a Ulem — J+Z( >djuk Tim—j

a#d j=0
m
- (bl)uk;erZ( ) Zaﬂ T +Z< >djuk Lim—j-
j=1 J a#d
This gives the stated formula. O

The following result is important both for theory and practice.

Proposition 7. For each m > 1 the sequence (up,m)r>0 is strictly increasing and
converges to b/(m + 1):
< <0 K — 71)
UQ:m, Ul:m Uk;m
0; L oo m+1"
Let f = max(D \ {0,d}). The case f = 0 happens only if b = 2 and d = 1.
Suppose f >0, then for all m > 1 one has
1 f b f

e D L L D B

Ifb=2 and d =1 one has ug.,, = 0 for m > 1 and uy., = 2/(2™T1 —1) form > 0.

Proof. If b = 2 and d = 1 the measure pg is 26g. The values of ui,y, are directly
given by the recurrence from Equation (5) whose right-hand side in that case only
has a single non-zero contribution, which is ug,o = 2 hence the value for w.y,.

The estimate from Equation (6) of ug., (for either b > 2 or d # 1) is from [11,
Proposition 10].

We prove ., > Ug,m for all m > 1. This is already known for b = 2 with d =1
as ug.m = 0 so we exclude this case in the next paragraph.

We compare the recurrence of the (u1,,) sequence (Equation (5)) with the one
of the (ug.m) sequence (Equation (4)). They look the same apart from the fact
that £ = 1 has more contributions, all non-negative. So 1., > ., by induction
on m (as it is an equality for m = 0). Reexamining Equation (5) we see that
the second sum on its right-hand side always contains the j = 0 contribution g,
which is positive. So in fact in the previous argument we had (6™ — b+ 1)uy., >
(™ — b+ 1)ug.y, for m > 1, hence uy.m > ugm.

Let £ > 1 and suppose we have shown already wg;m > ug—1.m for all m > 1.



INTEGERS: 26 (2026) 13

We consider Equation (5) for k + 1. We can suppose inductively that w41, >
Ug;n for 0 < n < m as this holds for n = 0. And we know ug,, > ug—1,, for all
n. Using this we obtain a lower bound (b™*! — b + 1)ug,y, for the right-hand side
of Equation (5) with k + 1. Hence, %kt1.m > Ug;m. Thus, this holds for all m by
induction on m. Reexamining Equation (5) for & + 1 we see that the last sum has
the contribution for j = 0 which is ug,,, which is known to be greater than uy_j.p.
So in fact our lower bound is strict and up41;m > Uk for all m > 1. Hence, the
conclusion by induction on k.

So, for each m > 1, there holds ug,;, < U1;m < -+ < Ugym < .... Further,
all are bounded above by b as ug, < ugo = b. So, there exists a finite limit
Wy, = Mgy 00 U, Letting k& — oo in Equation (5) we obtain for all m > 0:

m b—1
(bM+1 —b+ Dw, = Z <m> (Z aj)wm,j + Wy,
j=1 J a=0
As upo = b for all k > 0, wg = limug,o = b. We prove by induction that w,, =
b/(m + 1) holds for all m > 0. Assume it is true up to m = M — 1 for some
M > 1. Substituting this into the recurrence relation above (after having removed
from both sides one copy of wys) leads to

(bM+1_b)wM:§:< )bz: _]+1

j=1
Note that
M b—1 M
M) M +1 M+1
> (M) > (M e
j—1<'7 a=0 M+1_J j=1 =
b—1

Z a—I—lM'|r1 aMl—l):bMH—b.

So (M +1)(bM*1 —b)wyy is equal to b(bBM 1 —b). Hence, wys = b/(M +1) and this
completes the proof. O

Remark 8. Defining for all £ > 0 and all m >0
Okym = (m + ]-)uk:;rru
we obtain from Equation (5) (k > 1)

m+1 = m+1 j " m+1 j
(b —b + I)Uk;m = Z . Za Ok;m—j + Z j d Ok—1;m—j-

=N o =0
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We note that this is a barycentric equality with non-negative coefficients:

> ("))

Jj=1 J a#d j=0

1
=Y (@+ ™ =@ —1) 1= -1

An alternative proof of +1 (bi) < Uk < mLH can be based upon this.

6. Convergence to Lebesgue Measure and Farhi Theorem

In terms of g(z) = f(bx), the integral formula of Lemma 1 becomes

1 d =
/[071) () dpk (@ 0 Z/o duk( )+ - 2 /[071)9(b + g)dﬂk—l(l‘).

a#d

This motivates a closer examination of the restrictions of ux to sub-intervals such
as [i/b, (i +1)/b) for 0 <i <b.

Lemma 2. Let z € [0,1) be a b-imal number of depth l. Let X be the string of
length 1 such that n(X)/b' = x. Let j be the number of occurrences of d in X. Let
U'>1. Setj =j5ifd>0,andj =j+1'—1ifd=0. Let U be any subset of the
open interval (z,x + b’l/). Finally, let k € N.

o if k< j' then up(U) =0,
o if k>4 then up(U) = b~V pp_j (VU — bV ).

Proof. If d > 0, j is also the number of occurrences of d in the integer b'z, but for
d =0, j will be greater than that if z < b~ (due to leading zeros in X).
Any string Y such that n(Y)/bY! € (z,2 +b~") has the shape

Y=X 0...0 Z,

~——

l"—1 zeros
where Z = 21 ...z, and at least one z; is not zero. The number of occurrences of
d in Y is the sum of j/ (which was defined depending on whether d > 0 or d = 0)
with the number of occurrences in Z. So if k < j’, then no such string Y has
exactly k occurrences of d and py, is restricted to the zero measure on (z,x + b_l/).
Suppose k > j'. Set y = n(Y)/bY! and z = n(Z)/bl?. Thus, y = = + z/b" with
0<z<l1l and z = bl/(y —z). Conversely, any string Z having at least one non-zero
digit can be extended as above to give Y such that n(Y)/b¥! is in (2,2 4+ b~")
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and k(Y) = k(Z) + j (k(T) is the number of occurrences of d in a string T).
Summing over all Y with n(Y)/b/¥| = y and having k occurrences of d (if d = 0,
there is only one such Y for each y), and over all Z giving the same z and having
k — j' occurrences of d, we get i ({y}) = b= pur_;:({z}). Finally, summing over all
strings Y such that n(Y)/bY1 € U € (2,2 +b"""), we obtain the stated formula for
pe(U). 0

For some half-open intervals, a simple formula showing the behavior of puy is
obtained next.

Proposition 8. Let x € [0,1) be of depth | and let j be defined as in the previous
lemma. Fork < j the restriction of uy to the half-open interval [z, x+b~") vanishes.
For k > j and any subset U C [z,z +b~") one has up(U) = b~ pp—; (U — blz)).

Proof. We use the Lemma 2 with I’ =1, j' = j. For k < j one thus has ux((z,x +
b)) = 0. And pg({z}) is also zero because there are already j > k occurrences of
the digit d in x (this includes leading zeros located after the radix separator). So
pe([z, 2 4+ 071)) = 0.

Suppose k > j. We know from Lemma 2 that for any U C (z,z +b7%), u(U) =
b*lﬂk,j(blU — b'z). There remains to examine what happens for the singleton
{x}. Let c¢(k — j) = pr—;({0}). We need to check that ui({z}) = b~le(k — j).
The value of py({z}) depends on whether d = 0 or d > 0. In the former case,
pe({z}) = o719 (recall k > j). In the latter case, it is equal to b=*(1 — 1/b)~*
if k = 7, and vanishes if £ > j. Using Remark 5, we obtain uz{z} = b~!c(k — j) in
all cases, which completes the proof. O

Remark 9. In particular the total mass p([z,z + b7!)) is 0 for k < j and b*~
(i.e., b times Lebesgue measure) for j > k. The sequence (yux([z,z + b7)))i>0 is
thus non-decreasing.

This is compatible with the moments being increasing as k increases (cf. Propo-
sition 7). But the sequences (ux([t, u))k>0 associated with half-open intervals [t, u)
can not possibly all be non-decreasing: if they were, Equation 3 from Proposition 3
expressing H®) as a log-like integral would cause (H (k)) to also be a non-decreasing
sequence. But as first proven by Farhi [17] for b = 10, and generally here in Propo-
sition 1, they actually decrease strictly for & > 1.

This apparent paradox is explained by the fact that for I > I, g ([z,z +b~"))
has a less simple behavior when k varies, than the one which is valid for I’ = [
and described in Proposition 8. The details can be deduced from Lemma 2. We
will only need that starting with k = j, the sequence (ug([z,z + b)) becomes
constant, equal to b=V, This follows from the next lemma.

Lemma 3. Let x € [0,1) be a b-imal number of depth | for some l € N. Let ' > 1
and let j and j' be defined as in Lemma 2. Let k > j'. Let U be any subset of the
half-open interval [z, +b~"). Then up(U) = b= pp_jr (' U — bV ).
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Proof. We know this already from Lemma 2 if U does not contain x. It remains to
consider the case of U = {z}.

e If d =0: for k > j, there is only one string X containing k£ occurrences of the
digit 0 and such that n(X)/b/X! = . Tt is obtained by adding k — j trailing
zeros to the string of length I representing b'x. So ug({z}) = b==(*=7), On
the other hand 7/ = j+10' —lso k—j =k —j+ 1 —1' and the weight of &g
in pp_jo is =% =9 by Remark 5. So b~V g/ ({0}) = b=V k" = pk+i-
which matches p({z}).

e Ifd # 0: for k = j, strings with trailing zeros contribute to the weight at =, and
the total weight is b= 3", b~%. On the other hand j' = jsok—j =k—j =0
and the weight of J§y in /;0 is Y ;50b " Multiplying this by b=" we obtain
indeed p;({z}). For k > j, uk({x]j) = 0. And also b= u;({0}) = 0. Again
the values match. O

Proposition 9. Let t < u be any two b-imal numbers in [0,1]. Let I’ be large
enough for W't and b u to be integers. For k > 1’ there holds

i ([t,u)) = bu — bt.

Let generally I be any sub-interval of [0,1). Then (with |I| defined as supI —inf I,
i.e., the Lebesgue measure of I)

lim py (1) = b|1).

Proof. Let t = n/bl/7 u = m/bl/ for some integers 0 < n < m < bTt s enough
to consider the case m = n + 1, by additivity. Lemma 3 says in particular that
([t t+071)) = b7V pg—+([0,1)) for k > 5. The quantity j is here some integer
at most equal to I’. And p;([0,1)) = b for all © € N. This gives the result for
wi([t,uw)). Note that here perhaps I’ > I, where [ is the smallest integer such that
b't € N, and Proposition 8 would not have been enough to conclude in that case.
Let I be any sub-interval of [0,1). If I is a singleton the statement is known from
evaluations of ug(x) (which is zero if x is not b-imal). If I is not a singleton, then
lim inf gy (1) > lim pg([t, w)) = bu — bt for any choice of b-imal numbers ¢ < u in the
interior I. So liminf yy (1) > b|I| and the upper bound for limsup (1) is shown
similarly. O

Theorem 3. Let n > 0 be an integer. Then

(k) 1 1
li — =blog(l+ —).
kiﬂ;om stal%:with n m ’ og( i n)

Proof. The condition on m is 1d;(m) = n, where [ is the number of digits in n.
Using Proposition 4, we are thus looking at

d
lim () .
k—oo Jlg1y N+ @
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According to the previous proposition and familiar arguments from measure theory
this limit exists and its value is

bd 1
/ T —pblog(1+ -). O
0.1) n

n—+x

Remark 10. Adding these formulas for n = 1 to b — 1 we recover Farhi theorem
[17]: lim H®) = blogb. This can also be obtained from taking the limit in Equation
(3). Expanding using the power series for the logarithm function we obtain a series
which is the limit term per term of the one from Corollary 1.

7. Complementary Moments

Let Ey(t) = f[o 1 e duy () be the exponential generating function of the moments.
Using Lemma 1, one obtains:

Ey(bt) = {11’ (Za;ﬁd e B (t) + ethk—l(t)) (k> 0),
L+ 5 2ra e Eo(t) (k = 0).

Define Fj(t) = e'Ej(—t). This is the exponential generating function of the v,
(m > 0) which are defined right before Corollary 2. Setting d’ = b— 1 —d, one has:

> e Fi(t) + e Fioa(t) |

a#d’
1
Fo(bt) = e + i Z e Fo(t)
a#d’

Thus, vg;m obey for k > 1 the same recurrences stated in Proposition 6 for w.m,,
except for the replacement of d by d = b — 1 — d. In other terms, setting ’y} =

j .
Za;ﬁd',oga@ a’, we have:

(™t — b4 1) vkm—Z( >7Jvkm j+2( ) IOk —1m—j- (7)

And for £ = 0 we get:

(bm+1_b+1)v0m—bm+1+z(])%vo,n e (8)

Jj=1
The previous formula is also valid for m = 0: it gives vg,0 = b.

Proposition 10. For each m > 1, the sequence (Vg,m)ken (which is bounded above
by b = vg,0 = uky0) is strictly decreasing and converges to b/(m + 1).
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Proof. First of all, vy, = f[o 1) " dug(z) < vk = b with equality possible
for m > 1 only if all the mass of uy is concentrated at the origin. This happens if
and only if b =2 and d = 1 and k£ = 0. Using the inequality we get

Z( )(d/) Vk—1im— J<Z< )b_lab_bm+1

7=0

For d’ = 0, the left-hand side is v_1.y, and it is less than o™ for m > 1. For d’ > 0,
we are not in the case b =2 and d = 1, s0 vp_1,m—; < b for j < m. Consequently,
and looking in particular at the j = 0 contribution, we have, if m > 1, a strict
inequality in the above equation.

Hence, for k > 1, and m > 1, from Equation (7):

(O™ — b+ Dogn < Z (J)’ijkm e

j=1

If we had equality here, this would be the same recurrence with the same starting
point as for vg.,,. As we have an inequality, we get by induction on m vi.m < Vom.-
But then, the right-hand side is < (6™ — b+ 1)vg.m, 50 We get Vg.m < vo.m for
m > 1.

Let k = 2. We obtain, from Equation (7), the upper bound

s S ()55 () e

Jj=1

If the less-than-or-equal sign was replaced with an equality, it would be the re-
currence which applies to (v1,,). As the two sequences have the same m = 0
value we get va., < U1, for all m. But in the second sum in Equation (7) with
k = 2 we have the j = 0 term which is v1,,, and it is known to be less than
Vo;m if m > 1. So the above displayed inequality is strict for m > 1. Then us-
ing vo,m—; < V1;m—j, and Equation (7) with k£ = 1, in the right-hand side, we get
(" — b+ 1vay, < (B — b+ 1)v1,, and hence va., < vy, for all m > 1.

This argument can be repeated inductively and establishes that (Vi )k>0 is
strictly decreasing for each fixed m > 1.

The value of the limit as k — oo can be established as in the proof of Proposition
7. Alternatively, the second paragraph of Proposition 9 says that the sequence of
probability measures (b~!u)r>0 converges weakly to the Lebesgue measure on the
interval [0,1). This implies the convergence of the complementary moments to those
of the Lebesgue measure: limy_o0 b~ v = (m +1)71. O

Remark 11. For the notion of weak convergence of measures, especially of proba-
bility measures on the real line or some interval, see [10, Section 25].
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