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Abstract
Plane partition diamonds were introduced by Andrews, Paule, and Riese (2001)
as part of their study of MacMahon’s Ω-operator in search of integer partition
identities. More recently, Dockery, Jameson, Sellers, and Wilson (2024) extended
this concept to d-fold partition diamonds and found their generating function in
a recursive form. We approach d-fold partition diamonds via Stanley’s (1972)
theory of P -partitions and give a closed formula for a bivariate generalization of
the Dockery–Jameson–Sellers–Wilson generating function; its main ingredient is the
Euler–Mahonian polynomial encoding descent statistics of permutations.

1. Introduction
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Figure 1: A plane partition diamond.

A plane partition diamond is an integer partition a1 + a2 + · · ·+ ak whose parts

satisfy the inequalities given by Figure 1, where each directed edge represents ≥.
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Plane partition diamonds were introduced by Andrews, Paule, and Riese [1], who

found their generating function as∏
n≥1

1 + q3n−1

1− qn
.

They proved this result as part of an impressive series of papers on partition identities

via MacMahon’s Ω-operator; indeed MacMahon himself used it for the case of a

single diamond ⋄ [4, Volume 2, Section IX, Chapter II].
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Figure 2: A d-fold partition diamond.

Dockery, Jameson, Sellers, and Wilson [3] recently generalized the above concept

to a d-fold partition diamond, whose parts now follow the inequalities stipulated by

Figure 2. They proved that their generating function equals∏
n≥1

Fd

(
q(n−1)(d+1)+1, q

)
1− qn

where Fd(q0, w) ∈ Z[q0, w] is recursively defined via F1(q0, w) = 1 and

Fd(q0, w) =
(1− q0w

d)Fd−1(q0, w)− w(1− q0)Fd−1(q0w,w)

1− w
. (1)

Once more the proof in [3] uses MacMahon’s Ω-operator.

Our goal is to view the above results via Stanley’s theory of P -partitions [5,6].

Our first result gives a closed formula for the generating function for d-fold partition

diamonds. In a charming twist of fate, its main ingredient turns out to be the

Euler–Mahonian polynomial

Ed(x, y) :=
∑
τ∈Sd

xdes(τ)ymaj(τ)

which first appeared in a completely separate part of MacMahon’s vast body of

work [4, Volume 2, Chapter IV, Section 462]; here Des(τ) := {j : τ(j) > τ(j + 1)}
records the descent positions of a given permutation τ ∈ Sd, with the statistics

des(τ) := |Des(τ)| and maj(τ) :=
∑

j∈Des(τ) j.
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Theorem 1. The Dockery–Jameson–Sellers–Wilson polynomial Fd(x, y) equals the

Euler–Mahonian polynomial Ed(x, y).

This theorem consequently implies that Equation (1) defines the Euler–Mahonian

polynomials recursively. We suspect that this recursion is known but could not find

it in the literature.
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Figure 3: The d-fold partition diamond poset of length M , with c = M(d+ 1) + 1.

Theorem 1 is actually a corollary of our main result, which gives a 2-variable

refinement as follows. Let M be the number of ⋄s in a finite version of the d-fold

partition diamond depicted in Figure 3; we call M the length of the diamond. We

define σd,M (a, b) to be the generating function of d-fold partition diamonds of length

M , where a encodes the parts in the “folds” of the diamond, and b encodes the parts

in the links connecting the ⋄s. That is,

σd,M (a, b) :=
∑

aa2+···+ad+1+ad+3+···+a2d+2+a2d+4+···+aM(d+1) ba1+ad+2+···+aM(d+1)+1

(2)

where the sum is over all d-fold partition diamonds a1 + a2 + · · ·+ aM(d+1)+1.

Theorem 2. For positive integers d and M ,

σd,M (a, b) =

∏M
n=1 Ed

(
a(n−1)dbn, a

)
(1− aMdbM+1)

∏M
n=1

∏d
j=0 (1− and−jbn)

.

Naturally, Theorem 1 follows with a = b = q and M → ∞. Another special

evaluation (a = 1) gives the generating function, already discovered by Dockery–

Jameson–Sellers–Wilson [3], of Schmidt type d-fold partition diamonds, in which we

sum only the links a1 + ad+2 + a2(d+1)+1 + · · · .

Corollary 1 ( [3]). The generating function for Schmidt type d-fold partition

diamonds is given by ∏
n≥1

Ed(q
n, 1)

(1− qn)d+1
.
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The polynomial Ed(x, 1) =
∑

τ∈Sd
xdes(τ) is known as an Eulerian polynomial.

Section 2 contains our proof of Theorem 2. As we will see, it can be applied to

more general situations, e.g., allowing folds within the diamond of different heights.

We will outline this in Section 3.

2. Proofs

We now briefly review Stanley’s theory of P -partitions [5,6]. Fix a finite partially

ordered set (P,⪯). We may assume that P = [c] := {1, 2, . . . , c} and that j ⪯ k

implies j ≤ k; i.e., (P,⪯) is naturally labelled. A linear extension of (P,⪯) is an

order-preserving bijection (P,⪯) → ([c],≤). It is a short step to think about a linear

extension as a permutation in Sc; accordingly we define the Jordan–Hölder set of

(P,⪯) as

JH(P,⪯) := {τ ∈ Sc : ⪯τ refines ⪯}

where ⪯τ refers to the (total) order given by the linear extension corresponding to τ .

A P -partition is a composition m1 +m2 + · · · +mc such that m : P → Z≥0 is

order preserving:1

j ⪯ k =⇒ mj ≤ mk .

It comes with the multivariate generating function

σP (z1, z2, . . . , zc) :=
∑

zm1
1 zm2

2 · · · zmc
c

where the sum is over all P -partitions. The standard q-series for the P -partitions is,

naturally, the specialization σP (q, q, . . . , q).

One of Stanley’s fundamental results, given here in the form of [2, Corollary 6.4.4],

is that

σP (z1, z2, . . . , zc) =
∑

τ∈JH(P,⪯)

∏
j∈Des(τ) zτ(j+1)zτ(j+2) · · · zτ(c)∏c−1

j=0

(
1− zτ(j+1)zτ(j+2) · · · zτ(c)

) . (3)

We will apply Equation (3) to the poset depicted in Figure 3. This poset has a

natural additive structure, and so we first review how to compute Equation (3) for

P = Q0 ⊕Q1 ⊕ · · · ⊕QM ,

where the linear sum A ⊕ B of two posets A and B is defined on the ground set

A ⊎B, with the relations inherited among elements of A and those of B, together

with a ⪯ b for any a ∈ A and b ∈ B. Assuming that Qj has ground set [qj ], let

1Stanley defines P -partitions in an order-reversing fashion.
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s0 := 0 and sj := q0 + q1 + · · ·+ qj−1. Each element τ ∈ JH(P ) is uniquely given via

τ(j) =



τ0(j) if j ∈ Q0,

τ1(j − s1) + s1 if j ∈ Q′
1,

τ2(j − s2) + s2 if j ∈ Q′
2,

...

τM (j − sM ) + sM if j ∈ Q′
M ,

for some τj ∈ JH(Qj), where 0 ≤ j ≤ M . Here Q′
k := {sk + 1, sk + 2, . . . , sk + qk} ,

with the relations induced by those in Qk. Subsequently,

Des(τ) =

M⊎
k=0

{j + sk : j ∈ Des(τk)}

and so the numerator in Equation (3) becomes∏
j∈Des(τ)

zτ(j+1)zτ(j+2) · · · zτ(c)

=

M∏
k=0

∏
j∈Des(τk)

zτk(j+1)+skzτk(j+2)+sk · · · zτk(qk)+skzτk+1(1)+sk+1
· · · zτM (qM )+sM ,

(4)

with an analogous form for the denominator. We now apply these concepts to the

partition diamond poset P in Figure 3.

Proof of Theorem 2. We have

P = {1} ⊕Qd ⊕Qd ⊕ · · · ⊕Qd︸ ︷︷ ︸
M copies

,

where Qd is the poset in Figure 4, an antichain with d elements plus one more

element that sits above the others.

d+ 1

d

1

2

3
...

Figure 4: The poset Qd.

The generating function σd,M (a, b) defined in Equation (2) is the special evaluation

σd,M (a, b) = σP (z1, z2, . . . , zc) where zj =

{
a if j ̸≡ 1 mod d+ 1,

b if j ≡ 1 mod d+ 1.
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We now count how many a’s and b’s appear in Equation (4). Each τk(d+1) = d+1,

contributing a factor of bM−k+1 to Equation (4). The remaining variables contribute

ad−j for the index k and a(M−k)d for the indices greater than k. The denominator

in Equation (3) is computed analogously; note that, unlike the numerator, it has a

contribution stemming from the minimal element in P . In summary, this analysis

yields

σd,M (a, b) =
∑

τ∈JH(P )

∏M
k=1

∏
j∈Des(τk)

a(M−k+1)d−jbM−k+1

(1− aMdbM+1)
∏M

k=1

∏d
j=0

(
1− a(M−k+1)d−jbM−k+1

)

=

∏M
k=1

∑
τ∈Sd

∏
j∈Des(τ) a

(M−k+1)d−jbM−k+1

(1− aMdbM+1)
∏M

k=1

∏d
j=0

(
1− a(M−k+1)d−jbM−k+1

) , (5)

where the second equation follows from the fact that each τk stemming from some

τ ∈ JH(P ) fixes d+ 1, but can freely permute the remaining d elements.

By standard bijective arguments,∑
τ∈Sd

∏
j∈Des(τ)

a(M−k+1)d−jbM−k+1 =
∑
τ∈Sd

∏
j∈Asc(τ)

a(M−k+1)d−jbM−k+1

=
∑
τ∈Sd

∏
d−j∈Asc(τ)

a(M−k)d+jbM−k+1

=
∑
τ∈Sd

∏
j∈Des(τ)

a(M−k)d+jbM−k+1 ,

where Asc(τ) := {j : τ(j) < τ(j + 1)}. Substituting this back into Equation (5) and

making the change of parameters n := M − k gives

σd,M (a, b) =

∏M−1
n=0

∑
τ∈Sd

∏
j∈Des(τ) a

nd+jbn+1

(1− aMdbM+1)
∏M−1

n=0

∏d
j=0

(
1− a(n+1)d−jbn+1

)
=

∏M
n=1

∑
τ∈Sd

∏
j∈Des(τ) a

(n−1)d+jbn

(1− aMdbM+1)
∏M

n=1

∏d
j=0 (1− and−jbn)

=

∏M
n=1

∑
τ∈Sd

amaj(τ)
(
a(n−1)dbn

)des(τ)
(1− aMdbM+1)

∏M
n=1

∏d
j=0 (1− and−jbn)

=

∏M
n=1 Ed(a

(n−1)dbn, a)

(1− aMdbM+1)
∏M

n=1

∏d
j=0 (1− and−jbn)

.
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3. Another Extension

The ansatz for our proof of Theorem 2 is, naturally, amenable to more general

constructs. We give one sample here, the proof of which is analogous to that of

Theorem 2.

Let {dj}Mj=1 be a finite sequence of positive integers. We define the multifold

partition diamond corresponding to this sequence to be a partition whose parts

follow a similar structure as those in Figure 3, but the jth diamond has dj folds.

The accompanying bivariate generating function is σd1,...,dM
(a, b), where again a

encodes the parts in the “folds” of the diamond, and b encodes the parts in the links

connecting the ⋄s. Let ωk :=
∑M

j=k+1 dj .

Theorem 3. For positive integers d1, . . . , dM ,

σd1,...,dM
(a, b) =

∏M
k=1 Edk

(
aωkbM−k+1, a

)
(1− aω0bM+1)

∏M
k=1

∏dk

j=0 (1− aωk+dk−jbM−k+1)
.

We conclude with an open question, namely, we are curious if the combinatorial

perspective on partition diamonds via P -partitions sheds light on the partition

congruences appearing in [1] and [3], and if so, if the congruences can be extended

in light of Theorem 3.

Acknowledgement. We thank James Sellers for helpful comments.
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