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Abstract

Plane partition diamonds were introduced by Andrews, Paule, and Riese (2001)
as part of their study of MacMahon’s Q-operator in search of integer partition
identities. More recently, Dockery, Jameson, Sellers, and Wilson (2024) extended
this concept to d-fold partition diamonds and found their generating function in
a recursive form. We approach d-fold partition diamonds via Stanley’s (1972)
theory of P-partitions and give a closed formula for a bivariate generalization of
the Dockery—Jameson—Sellers—Wilson generating function; its main ingredient is the
Euler-Mahonian polynomial encoding descent statistics of permutations.

1. Introduction
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Figure 1: A plane partition diamond.

A plane partition diamond is an integer partition a; + as + - - - + a; whose parts
satisfy the inequalities given by Figure 1, where each directed edge represents >.
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Plane partition diamonds were introduced by Andrews, Paule, and Riese [1], who
found their generating function as

H 1 +q3n—1
n>1 1- qn

They proved this result as part of an impressive series of papers on partition identities
via MacMahon’s Q-operator; indeed MacMahon himself used it for the case of a
single diamond ¢ [4, Volume 2, Section IX, Chapter II].

Figure 2: A d-fold partition diamond.

Dockery, Jameson, Sellers, and Wilson [3] recently generalized the above concept
to a d-fold partition diamond, whose parts now follow the inequalities stipulated by
Figure 2. They proved that their generating function equals

Fy (q(n—l)(d—i-l)+17 q)

H l_qn

n>1

where Fj;(qo,w) € Z[qo,w] is recursively defined via Fj(qo,w) = 1 and

Fy(qo,w) = (1 - gow?) Fd—l(Qo,wz :Z(l — qo) Fa—1(qow, w) . Q)

Once more the proof in [3] uses MacMahon’s {2-operator.

Our goal is to view the above results via Stanley’s theory of P-partitions [5, 6].
Our first result gives a closed formula for the generating function for d-fold partition
diamonds. In a charming twist of fate, its main ingredient turns out to be the
FEuler—Mahonian polynomial

Ed(l'7y) — Z xdes(‘r)ymaj(’r)
TESY

which first appeared in a completely separate part of MacMahon’s vast body of
work [4, Volume 2, Chapter IV, Section 462]; here Des(7) := {j : 7(j) > 7(j + 1)}
records the descent positions of a given permutation 7 € Sy, with the statistics
des(7) := | Des(7)| and maj(7) := >, cpes(r) J-



INTEGERS: 26 (2026) 3

Theorem 1. The Dockery—Jameson—Sellers—Wilson polynomial Fy(x,y) equals the
Euler—Mahonian polynomial Eq(x,y).

This theorem consequently implies that Equation (1) defines the Euler-Mahonian
polynomials recursively. We suspect that this recursion is known but could not find
it in the literature.

Qe

Ad+1

Figure 3: The d-fold partition diamond poset of length M, with ¢ = M (d+ 1) + 1.

Theorem 1 is actually a corollary of our main result, which gives a 2-variable
refinement as follows. Let M be the number of ¢s in a finite version of the d-fold
partition diamond depicted in Figure 3; we call M the length of the diamond. We
define og ar(a,b) to be the generating function of d-fold partition diamonds of length
M, where a encodes the parts in the “folds” of the diamond, and b encodes the parts
in the links connecting the ¢s. That is,

— § aaer-"+ad+1+ad+3+---+a2d+2+a2d+4+---+GM(d+1) bal+ad+2+“-+aM(d+1)+1

(2)

where the sum is over all d-fold partition diamonds a; +as + - + AN (d41)+1-

oa.m(a,b) :

Theorem 2. For positive integers d and M,

[Tat1 Ba ("%, )

M d AT
(1 — aMap+) M [T (1 — and—ibn)

oam(a,b) =

Naturally, Theorem 1 follows with a = b = ¢ and M — oco. Another special
evaluation (a = 1) gives the generating function, already discovered by Dockery—
Jameson—Sellers—Wilson [3], of Schmidt type d-fold partition diamonds, in which we
sum only the links a1 + agy2 + as@g41y41 + -

Corollary 1 ( [3]). The generating function for Schmidt type d-fold partition
diamonds is given by
H Ed(qna 1)
(1 _ qn)d+1 :

n>1
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des(7) is known as an Fulerian polynomial.

The polynomial Eq(z,1) =3 5 @
Section 2 contains our proof of Theorem 2. As we will see, it can be applied to
more general situations, e.g., allowing folds within the diamond of different heights.

We will outline this in Section 3.

2. Proofs

We now briefly review Stanley’s theory of P-partitions [5,6]. Fix a finite partially
ordered set (P,=). We may assume that P = [¢] := {1,2,...,c} and that j < k
implies j < k; i.e., (P, =) is naturally labelled. A linear extension of (P, <) is an
order-preserving bijection (P, <) — ([c], <). It is a short step to think about a linear
extension as a permutation in S.; accordingly we define the Jordan—Hdélder set of
(P, =) as

JH(P, <) := {r € S.: <, refines <}

where < refers to the (total) order given by the linear extension corresponding to 7.
A P-partition is a composition m; + mg + --- + m, such that m : P — Z>¢ is
order preserving:!
ik — m; < my, .

It comes with the multivariate generating function

— mi M2 Me
op(z1,22y ...y 2e) 1= E 27yt 2l

where the sum is over all P-partitions. The standard g¢-series for the P-partitions is,
naturally, the specialization op(q,q,...,q).

One of Stanley’s fundamental results, given here in the form of [2, Corollary 6.4.4],
is that

I1; (1) RT(G+1) R (+2) " R
op(21, 22,y 20) = Z j€Des(r) “T(i+1)~7(j+2) (c)’ (3)

c—1
reJH(P,<) IT—o (1= 271y 2r(42)  2r(e))

We will apply Equation (3) to the poset depicted in Figure 3. This poset has a
natural additive structure, and so we first review how to compute Equation (3) for

P=Qd:id - dQum,

where the linear sum A @ B of two posets A and B is defined on the ground set
AW B, with the relations inherited among elements of A and those of B, together
with a < b for any a € A and b € B. Assuming that @; has ground set [g;], let

1Stanley defines P-partitions in an order-reversing fashion.
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so:=0and s; :=qo+¢q1+---+¢j—1. Each element 7 € JH(P) is uniquely given via

70(4) if j € Qo,
T1(j—81)+81 lfJEQll,
T(j): Tg(j—82)+82 lfJEQ/z,

TM(j—SM)+S]v[ lf] GQ/J\/I,

for some 7; € JH(Q,), where 0 < j < M. Here Q) := {sr + 1,5, +2,.

with the relations induced by those in Q). Subsequently,
M
Des(7) = |H {j + sk : j € Des(7i)}

k=0

and so the numerator in Equation (3) becomes

H Fr(G+1)RT(i+2) T Ar(e)
j€Des(T)

M
= H H (A1) 4k 2R (G+2)+sk " AT (gr)Fok Fmipr (D Fskpn T

k=0 jeDes(7y)

cy Sk Ak}

“Zra(gm)+sa o

(4)

with an analogous form for the denominator. We now apply these concepts to the

partition diamond poset P in Figure 3.
Proof of Theorem 2. We have
P={1}9Qi®Qa® - ®Qq,

M copies

where Qg is the poset in Figure 4, an antichain with d elements plus one more

element that sits above the others.

1
2
3 d+1

Figure 4: The poset Q.

The generating function o4 as(a, b) defined in Equation (2) is the special evaluation

oanm(a,b) = op(z1,22,...,2) where zj = {

a ifjZlmodd+1,
b if j=1modd+1.
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We now count how many a’s and b’s appear in Equation (4). Each 7,(d+1) =d+1,
bM—F+1 to Equation (4). The remaining variables contribute
a7 for the index k and a™~*)4 for the indices greater than k. The denominator
in Equation (3) is computed analogously; note that, unlike the numerator, it has a
contribution stemming from the minimal element in P. In summary, this analysis
yields

contributing a factor of

b) = ]._[;C\/[::l j€Des(Ty) a(M—k-Fl)d—ijW—k‘f‘l
oqnm(a,b) = Z 1= aMapM+\ 1™ 117 (1 — a(M—kt1)d—j pM—F+1
TEJH(P) (1-a ) =1 M=o (1-a )

Hllcwzl > ress Hjepestn) aM =Rt )d=jpM =kt 5)

(1 — aMdpM+1) Hf:f:l Hj:o (1 — a(M—k+1)d=jpM—k-+1)

where the second equation follows from the fact that each 7, stemming from some
7 € JH(P) fixes d + 1, but can freely permute the remaining d elements.
By standard bijective arguments,

Z H oM —k+1)d—jpM—k+1 _ Z H q(M—k+1)d—jpM—k+1

TESq j€Des(1) TE€S4 jEAsc(T)

Z H q(M—k)d+jpM—k+1

T7€S4 d—j€Asc(T)

Z H aM—R)d+ipM—k+1

TESq jEDes(T)

where Asc(T) :={j: 7(j) < 7(j+1)}. Substituting this back into Equation (5) and
making the change of parameters n := M — k gives

M—1 nd+jpn+1
n=0 ZTGSd HjGDeS(T) a b

(1 — aMdpM+1) Hﬁi—ol H?:o (1 _ a(n+1)d—jbn+1)

M _ .
Hn:l ZTGSd HjEDeS(T) a(n—Dd+ipn
(1 — aMdpM+1) HnM:l H?:o (1 — and—ipn)

(J'd’I\/[(G,7 b) =

maj(T n— n des(7)
Hr]\L4:1 Zresda l( )<a( Udb )

(1 — gMdpM+1) I, H?:o (1 — and—ipn)

_ HTAL/I:1 Ed(a("_l)db", a) -
(1 — aMapM+1) M ?:o (1 — and—ipn)

n=1
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3.

Another Extension

The ansatz for our proof of Theorem 2 is, naturally, amenable to more general
constructs. We give one sample here, the proof of which is analogous to that of
Theorem 2.

Let {d; }Jle be a finite sequence of positive integers. We define the multifold

partition diamond corresponding to this sequence to be a partition whose parts
follow a similar structure as those in Figure 3, but the jth diamond has d; folds.
The accompanying bivariate generating function is o4, 4, (a,b), where again a
encodes the parts in the “folds” of the diamond, and b encodes the parts in the links
connecting the ¢s. Let wy, := Zjﬂikﬂ d;.

Theorem 3. For positive integers dy, ..., dpr,

1\4_ Ed awkbekJrl a
Hk_l K ( ’

(1 — awopM+1) Hilq\/le H;'lk:() (1 — qwrtde—ipM—k+1) ’

Ody,....dnm (a7 b) =

We conclude with an open question, namely, we are curious if the combinatorial

perspective on partition diamonds via P-partitions sheds light on the partition
congruences appearing in [1] and [3], and if so, if the congruences can be extended
in light of Theorem 3.
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