#A15 INTEGERS 26 (2026)

CYCLIC-PATTERN-AVOIDING STACKS

Alex Zhan
Basis Independent Silicon Valley, San Jose, California
alex.zhan.us@gmail.com

Stella Bie
Interlake High School, Bellevue, Washington
stella.bie.academic@gmail.com

Received: 8/10/25, Accepted: 12/22/25, Published: 1/5/26

Abstract

In 2020, Cerbai, Claesson, and Ferrari generalized West stack-sorting maps to the
stack-sorting maps s, which avoid a specified pattern ¢. Our paper introduces
cyclic-pattern-avoiding maps s, and consecutive-cyclic-pattern-avoiding maps sy
which are natural analogues of s,. In particular, we study the case of length 3
patterns and prove that our stack-sorting machine SCj123) sorts any permutation of
length n within n — 2 iterations when n > 3, where SCj133) is defined as SC,) =
50 8[s], with s being West’s deterministic stack-sorting map. Additionally, we
characterize the graphs generated from the stack-sorting machine SCjzgq). Lastly,
we identify the permutations in [Sort,, (s[123])| and [Sort,(ss21])|-

1. Introduction

In 1990, West [10] introduced a deterministic stack-sorting map s : S, — Sp,. At
each step of the algorithm, before adding the first remaining element of the input
permutation onto the top of the stack, elements are removed from the top of the
stack until the stack is empty or its top element exceeds the current first input
element (see, for example, Figure 1). West [10] proved that s(7) = id if and only if
7 avoids the 231 pattern [10]. Since West’s introduction of the deterministic stack-
sorting map, researchers have studied many variations of s [5, 6, 7, 10, 2, 3]. The
stack-sorting machine [4] has also been studied extensively from a sorting point of
view.

In 2020, Cerbai, Claesson, and Ferrari [4] generalized West’s sorting stack to
include pattern avoidance of arbitrary length. For each pattern o, they defined the
map Sy : S, — Sy, which processes permutations through a stack under the new
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Figure 1: West stack-sorting map s on m = 3124.

condition that elements in the stack must avoid the pattern o when read from top
to bottom. West’s stack-sorting map is a special case of s, in which o = 21.

In 2021, Berlow [2] introduced a generalized map sp that avoids a set T of
patterns. The s map operates by removing the minimum number of elements
from the top of the stack necessary to ensure that appending the next element in
the permutation to the stack will not induce any pattern in T'. The cyclic map s[4,
which is the focus of our paper, is a special case of s in which T' = [o], representing
the set of all rotations of the pattern o.

Babson and Steingrimsson [1] first introduced vincular pattern avoidance, where
vincular patterns can additionally require some elements to be adjacent when con-
sidering whether a permutation contains the pattern; see Steingrimsson [1] for a
survey of the study of vincular patterns, which he refers to as generalized patterns.

Our paper introduces cyclic-pattern-avoiding stacks s|,) and their corresponding
cyclic-pattern-avoiding machines SCf,j, which are analogues of the classical-pattern-
avoiding stack-sorting maps s, and stack-sorting machines SC,[2]. The maps 5[,
and SCp,) operate on the same principle as s, and SC, with the added condition
that the stack must cyclically avoid the given permutation pattern when read from
top to bottom. Formally, s;5)(7) is the output permutation produced by processing
7 through a stack that avoids all patterns in [o]. The map removes elements from
the top of the stack when necessary to avoid the formation of any pattern in [o] by
the incoming element. Once all input elements have been processed, the elements
of the stack are removed from the top of the stack one by one and appended to
the output permutation in order. Figure 2 illustrates the process using the example
5[123)(3124) = 2143. The cyclic avoidance machine SC,; is defined as s o s{,). For
example, SCj123)(3124) = s(2143) = 1234.

Stacks avoiding cyclic patterns of length 2 simply return the input permutation,
hence, our paper will focus on cyclic patterns of length 3. The only two distinct
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Figure 2: Cyclic stack-sorting map s[123; on m = 3124.

length 3 patterns up to rotation are 123 and 321, thus, the only two distinct length
3 cyclic avoidance maps and machines are the [123] and [321]-avoiding maps and
machines.

West’s stack-sorting machine gets its name from its ability to sort a permutation
of length n using at most n — 1 applications of the mapping s9; [10]. A natural
question that arises is whether our cyclic maps also satisfy such a property. Our
first main result is that SC[jp3) sorts any permutation 7 of length n into id,, the
length n identity permutation, through n — 2 iterations when n > 3 and that this
bound is tight. To show the tightness of the bound, we define a permutation &,
where n > 1 as follows. If n is even, let {, =1,3,--- ,n—3,n—1,2,4,--- ,n—2,n.
Ifnisodd,let ¢, =2,4,--- ,n—3,n—1,1,3,--- ,n—2,n. For example, £ = 135246
and &; = 2461357.

Theorem 1. For any permutation m € S, where n > 3, we have SCEE;] (r) = idy

and SCy55 () # idy.

As an example of the above result, consider the length 3 permutation 231. It
requires 3 —1 = 2 iterations of applying the West stack to map it to the identity. In
other words, s(s(231)) = s(213) = 123. Meanwhile, the [123]-avoiding stack-sorting
machine, SCpy23), maps 231 to 123 in one iteration. To illustrate the tightness of
the bound, consider SCj123)(§4) = SCj123)(1324) = 3124 # idy.

In general, consider the directed graph formed by the mapping SCi, on Sy,
where each permutation 7 € S, is a vertex and there is an edge from 7 to SCy, ()
when SC,)(7) # 7. In the graph formed by SCj123), Theorem 1 implies that every
vertex has a directed path ending at id,, and that the graph has no cycles. In
contrast, in the directed graph formed by SC(321}, when n > 4, the identity has a
directed path to a vertex that is part of a cycle. Our second main result concerns
the length of this cycle and where it begins.
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Theorem 2. For alln >4 and m > [%

1, we have that
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SOy (ida) = SChyy 7 (idy).

The next few theorems focus on consecutive cyclic avoidance machines. The
consecutive cyclic avoidance stack, denoted s(,, is motivated by Defant and Zheng
[6], who introduced consecutive-pattern-avoiding stack-sorting maps in 2021. Con-
secutive cyclic avoidance maps sj,] and consecutive avoidance machines SC(,] are
natural analogues of consecutive stack-sorting maps. Formally, s, () is the output
permutation produced by processing 7 through a stack that consecutively avoids all
patterns in [o]. Elements are removed from the top of the stack when necessary
to avoid the formation of any consecutive pattern in [o] by the incoming element.
Once all input elements have been processed, the elements in the stack are removed
from the top of the stack and appended to the output permutation in the order they
were removed from the stack. Figure 3 illustrates the process through the example
s[123)(3124) = 4213. Meanwhile, the consecutive cyclic avoidance machine SCp,j is
defined as s o s[,. For example, SC195)(3124) = 5(4213) = 1234.

3124 124 24 ) 4
— — 1 — 1 —
3] 3 3
4 4 42 421
2 2
1 — 1 — 1 — N
3 i 3 3
4213

Figure 3: Consecutive cyclic stack-sorting map spj23; on 7 = 3124.

The final main results concern the number of permutations sorted by s[123; and
s[g21]- Theorem 3 states that no permutations of length at least 4 are sorted by

5[123]-

Theorem 3. For all n > 4, the equation |Sorty,(s[123)| = 0 holds.

Meanwhile, for all n > 2 the number of permutations of length n sorted by s(321]
is 272, and all such permutations are enumerated in our proof.

Theorem 4. For all n > 2, the equation |Sorty(spza1))| = 2" holds.

In Section 2, we establish the preliminaries. In Section 3, we prove Theorems 1
to 4. In Section 4, we suggest future directions.
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2. Preliminaries

A permutation ™ € S, is a sequence of length n such that # = mymy...m,, where
m; are distinct natural numbers from 1 to n. A stack is a structure that can store
an ordered list of elements. The only two types of allowed modifications to a stack
are adding an element to the top of the stack and removing an element from the
top of the stack. A pattern o is a permutation o103 ...0|, which will be used
specifically in the context of pattern avoidance. The reverse of a permutation
is defined by Rev(mimg:--m,) = 7, - mam;. For instance, Rev(2314) = 4132.
The standardization of a sequence 7 of distinct numbers, denoted by st(7), is the
permutation in S,, obtained by replacing the i**-smallest entry in the sequence with
i for all 1 <14 < n. For example, st(315) = 213, since 3 is the second largest element,
1 is the smallest element, and 5 is the largest element. Two sequences of distinct
numbers, 7 and 7', have the same relative order if st(r) = st(7’'). For instance,
213 and 315 have the same relative order. A permutation 7 contains a pattern
o if there exists a sequence of indices i1 < 43... < i) such that st(m,..m,) = 0.
For example, 52413 contains the pattern 132 since st(243) = 132. A permutation
T contains a sequence ai,ds, ..., ar without gaps if there exists an index ¢ where
1 <i<n+1-ksuch that m;, 741, - ,Tiyk—1 = a1,0a2, - ,a,. For instance,
the permutation 42351 contains the sequence 2, 3,5 without gaps. A stack avoids
a pattern if at all times, the stack does not contain the pattern when read from
top to bottom. A stack cyclically avoids a pattern if the stack avoids all rotations
of the pattern when read from top to bottom. Additionally, the reduction of a
sequence 7, denoted by red(w), is defined to be the permutation obtained from
replacing every maximal consecutive subsequence of contiguous numbers with its
minimum element and then standardizing the resulting permutation. For example,
the maximal consecutive subsequences of contiguous numbers in the permutation
16783425 are 1,678,34,2,5. Hence, red(16783425) = st(16325) = 15324. Finally,
for a given map f : S, — Sy, define Sort, (f) to be the pre-image of {id,} under
f. For instance, Sorts(sjsz;)) = {312,321} since these are all the permutations in
S3 sorted by s(321)-

3. Proofs of the Main Results

3.1. Proof of Theorem 1

We first prove that reducing a permutation 7 does not change the number of itera-
tions of SCj1g3) required to sort 7.

Lemma 1. For m € S,, we have that red(SCp23)(red(m))) = red(SCjia3)(m)). Also,
any sequence of the form a,a+1,--- ,a + k that ™ contains without gaps is added
onto and removed from the stack together.
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Proof. Suppose that a permutation 7 contains the sequence a,a + 1, - ,a + k
without gaps. Before a is added onto the s[i23) stack, all elements on the stack
must be less than a or greater than a + k. Thus, if adding a does not induce the
patterns [123] in the stack, then adding any element in a,a + 1, -+ ,a + k will not
induce the patterns [123] with earlier elements in the stack. Also note that no two
or three elements from the above sequence will induce a [123] pattern with earlier
elements on the stack either. Hence, the elements in a,a+1,--- ,a+k will be added
onto the spy93) stack together, without inducing the patterns [123]. Similarly, the
sequence a,a+1,--- ,a+k will also be removed from the stack consecutively. Thus,
s[123)(m) contains the sequence Rev(a,a +1,---,a + k) without gaps. Applying s
will then reverse Rev(a,a+1,---,a+k). Hence, SC123)(7) = s 0 s[123(7) contains
the sequence a,a 4+ 1, -+ ;a + k without gaps. Thus, any contiguous subsequence
of consecutive numbers in 7 also appears in SCj123)(7), and they are always added
onto and removed from the stacks together.

Hence, each maximal contiguous subsequence of consecutive numbers in 7 can
be treated as a single element with respect to the reduction operation and SCp;23).
Thus, red(SCpy93)(red(m))) = red(SCpi23)(7)). O

Consequently, the number of iterations required to sort a permutation 7 equals
the number of permutations required to sort red(mw).

Corollary 1. For 7 € S,,, we have that SCI[‘123] (m) =idy if and only if

SCI[(DB] (red(ﬂ))) = id‘rcd(ﬂ)‘.

Next, we prove that red o SCy;23) reduces the length of any permutation.
Lemma 2. For any m € S, with n > 2, the equation [red(SCji23)(7))| < |7| holds.

Proof. It suffices to show that SCjj23)(7) contains a sequence of the form a,a + 1
without gaps. First, suppose that m; # n. Note that right before the element 71 + 1
is added onto the s[;23] stack, the stack should only contain 71, otherwise it would
induce the pattern 231 or 312. Thus, 7m; and 7 + 1 are consecutive elements at the
bottom of the stack and are the last two elements removed from the s[;23) stack so
s[123)(m) ends with the sequence 71 + 1,7;. Clearly, after applying s to sp123)(7),
the element 7; appears right before 71 + 1 in SCpya3)(7).

Now, suppose 71 = n. Then s[123)(7) ends with n, and thus, s(s[123)(7)) ends
with the sequence (n — 1,n). Hence, SC123(7) contains a sequence of the form
(a,a + 1) without gaps. Therefore, [red(SCj123)(7))| < |7]. O

We finish by using Corollary 1 and Lemma 2 to prove Theorem 1.

Proof of Theorem 1. We first use induction to prove that SCEE??] (7) =1id, for 7 €
Sy with n > 3. The base case n = 3 is clear by straightforward verification. Now

assume that for all n where 3 < n < m, the equation SCﬁ;g] (m) = id, holds.
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For any 7 € Sy, 41, Lemma 2 implies that [red(SCjya3)(7))| < 7| = m + 1. Thus,
by our inductive hypothesis, SCﬁlggﬁ(red(SC[lgg,] (m))) = id|red(8C 15 (m))- Then by

Corollary 1, SCiz () = idmy1. Hence, SCI53 (m) = idy, for all 7 € Sy, which
proves that any length n permutation 7 can be sorted through at most n — 2
iterations of SCpy23).

We now show the tightness of the bound by proving SCﬁ;g’] (&n) #idy, for n > 3
by induction on n. The base case n = 3 is clear. Now assume that for n = m, the
equation SCE_Q??”] (&) # idy holds.

Suppose n =m + 1. If m + 1 is even, then

SC[123](€m+1) :3,5,"‘ ,m,1,2,4,~- ,m—l,m—|—1

which implies that red(SCj123](§m+1)) = &m- In the case where m + 1 is odd, we
have that
SC[123](£m+1) = 174u67' o 7m72u3757"' 7m+ 1

which implies that red(SCj123)(§m+1)) = &m- Thus, red(SCii23)(§mt1)) = Em always
holds. By the inductive hypothesis, SCF{;S‘?’(fm) #idje,. -

Then by Corollary 1, SCF‘ES? (Emy1) #idg,, |- Hence, SCF{Q% (&) # id, always

holds for n > 3. O]

3.2. Proof of Theorem 2

Define the superimpose operation si(11, 7o) which operates on two disjoint sequences
of distinct numbers, 7 and 7o, as follows. The last element of 7 is added onto the
top of a stack followed by the last two elements of 7 in reverse order, or followed
by the last element of 71 if 7y has only one element left. The process is repeated
until either 71 or 75 is empty, in which case all remaining elements are added onto
the top of the stack in reverse order. The output sequence is then obtained by
reading the stack from top to bottom. For example, si((1,2, 3,4,5), (6,7,8,9,10)) =
6,7,1,8,2,3,9,4,5,10 since the elements are added onto the stack in the order
10,5,4,9,3,2,8,1,7,6 where the underlined elements are from the sequence 6,7, 8,
9,19 and all other elements are from 1,2, 3,4, 5.

Lemma 3. For all n,m wheren >4 and 1 <m < fzngl], we have that

SCs211(si((1,2,--- ,m), (m+1,m+2,--- ,n))) =si((1,2,--- ,m+1),(m+2,m+3,--- ,n)).

Proof. Let m = si((1,2,--- ,m),(m + 1,m + 2,--- ,n)). Since m < [2271], the
first element of 7 is m + 1. Hence, when applying s(321) to m, the element m + 1
remains at the bottom of the stack and is the last element to be removed from
the stack. Then whenever m contains a sequence (i, ) satisfying i < m+1 < j
without gaps, all elements less than i are removed from the stack before i is added

onto the stack, and the remaining elements on the stack are in an increasing order
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from top to bottom. Thus, j is added onto the stack immediately after i. Since
m=si((1,2,---,m),(m+1,m+2,---  n)), either j is the last element of = or the
element right after j in m is i+ 1. If j is the last element of 7, then j is removed from
the stack, and 4 is removed from the stack immediately after. If 4 4+ 1 is right after
j in 7, then i 4+ 1,4, m 4 1 forms the 213 pattern, hence j and ¢ are consecutively
removed from the stack in that order before ¢ + 1 is added. In either case, the order
of the elements 4,j is swapped. Thus, s321)(7) is equivalent to the permutation
obtained by swapping all adjacent pairs of elements 4, j in 7 with ¢ preceding j and
t <m+41 < j, and then placing the element m + 1 at the end of 7 since m + 1 is
removed from the stack last.

Next, when applying s to s(321](7), each element j > m + 1 remains on the stack
until right before the element j + 1 is added or the final operation in which every
element in the stack is removed and appended to the output permutation in the
same order of removal. Thus, SCiza11(7) = s(s[321)(7)) = si((1,2,--- ,m + 1), (m +
2,m+3,--,n)). O

Example 1. To illustrate the process described in the above proof, we consider
the case n = 6,m = 2. We have that si((1,2),(3,4,5,6)) = 3,4,5,1,2,6 and that
S8[321] (3,4,5,1,2,6) = 4,5,1,6,2,3, which is equivalent to swapping the adjacent
elements 2,6 since 2 < m+ 1 < 6 in the permutation 3,4,5,1,2,6 and then placing
the element m + 1 = 3 at the end. Then,

SCi321)(3,4,5,1,2,6) = 5(4,5,1,6,2,3) = 4,1,5,2,3,6 = si((1,2,3), (4,5,6)).
We now prove Theorem 2 using Lemma 3.

Proof of Theorem 2. SCso11(idn) = (2,3,---,n — 1,1,n) = si((1),(2,3,---,n)).
Then from Lemma 3, it follows that for all 0 < m < [72"3_1]7

ch;ﬁ(idn) = SCE;Zl] (Si((1)7 (27 CIEE 7”))) = Si((lv 2, ,m+ 1)a (m +2,-- 7”))

Hence,

In—ly . 2n — 1 2n —1 2n —1
SOl i) = si((1,2,+ 122, 2Ly 20y )

Since 3[%] > 2n — 2 implies [2"3—’1] > 2(n — [%] — 1), the first element of
2n—1 2n—1
SC[;KW (idy) is 1. Thus, when applying s(3oq] to SC[LK1 (id,), the element 1 is at
the bottom of the stack. When any element 7 > [2"3’ 11 is appended to the stack,
all elements currently on the stack are less than ¢, hence, all elements except 1 are
removed from the stack to avoid forming a 321 pattern. The element 4 is removed
from the stack, either right before the element i+ 1 is added onto the stack or when
all elements are removed from the stack and appended to the output permutation
in the order of removal. Meanwhile for any element 7 < [2”3: 17, the element i is

removed from the stack immediately after it is added, because the next element
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is always greater than i. Thus, applying s(321) to scl ](1d ) is equivalent to

[321]
moving each element ¢ where (%1 < i < n to the original position of the element
1+ 1, and then moving the elements n, 1 to the end of the output permutation since
they are outputted last. Thus,

oo (SOl (i) = 8i((2,3, -+ [Z]), (P14 L= 1), (1)

which denotes the concatenation of the two sequences on the right side. Then it
follows that

(o192 (5Clzgy (i) = si((2, 0+ 22D, ([0, n=2), (1), (0= 1,m)

which equals SC[3213] H_1(1dn).

Similarly, by reusing the above reasoning we have that

SCla | (ida) = si(r),5((1,2), (0 = 3,n = 2,0+ m),

[321

where 7 = (3,- - JM]) (f
all m where 2m <n — 1 — [2=

—1741,--- ,n—4). Then from induction on m, for
17, it follows that

SClo T (idn) = si(6),si((L, -+ m), (n—2m+1,- -+ ,m)),
2n

where g = (m+1,---, [ 311),”2” 211 41, n - 2m).

[217,

[nfl

Then by setting m = ]1 through simple verification we obtain the

equation
80{32;'] P Gd,) = si((L,- - m), (m 41, 1)) = SClyy (ida).

H n—l—(a%iW f2%17+m : _ m :
ence, for m > [——5—2—1 we have that SCpor) (idn) = SCf3,y (idn)- O

3.3. Proof of Theorem 3
In this section, we prove Theorem 3.

Proof of Theorem 3. Assume that there exists a permutation 7 such that sj;3)(7) =
id,. Note that m; must be the last element outputted, and hence m; = n.

If 7o = 1, then when 73 is added onto the stack, no previous element has been
removed from the stack. Thus, 73 is removed from the stack before my. Since
T3 > o, it contradicts s[123)(7) = idy.

If 1 < my < n, we consider two sub-cases based on the relative order of 75 and
3. In the case of my < w3, the element 73 is added onto the stack without removing
any elements from the top of the stack. Hence, 73 is removed from the stack before
my. Since w3 > o, it contradicts spgg)(m) = id,. Now, in the case where 73 > 73,
the sequence m3mom; forms the 123 pattern, hence, mo is removed from the stack
before 73 is added. Since my > 73, it contradicts sigg)(7) = idy. O



INTEGERS: 26 (2026) 10

3.4. Proof of Theorem 4

A sequence 7 is good if for any @ with 1 < i < |x|, we have that

T = Min(7m, Tig1, ..., Tx|) OF T; = Max(m;, Tiq1,...,T|x). For example, 51432 is
a good sequence. We first prove the necessary condition for a permutation to be
sorted by s(3a1)-

Lemma 4. For alln > 2 and any 7 € Sorty(s[321)), we must have that 7y =n and
T[2:n) TMust be good.

Proof. We have that m; = n for any 7 in Sorty, (s[321]) because 7 is the last element
of s[321] (r). We prove that T2:n] 18 good by induction. The base case n = 2 is
clear. Assume that for all n where 1 < n < m, we have that 7[3., is good for any
7 € Sorty(s[321)). Now, we prove the same statement for n =m + 1.

If 71 = 1 then 7y is removed from the stack immediately before w3 is added
onto the stack, since w3, mo, ™1 = w3, 1, m + 1 would form a 213 pattern. Thus, the
sequence mm(3.m41] is sorted by s(z21) and as a result, from our inductive hypothesis
it follows that 7(3.,,41) is a good sequence. Since my = 1, thus, m[2.,41) is a good
sequence.

If m9 = m, then since 7y and 72 do not form consecutive patterns [321] with any
other element, mo will not be removed from the stack until the final operation in
which the stack is cleared. Hence, m3.,,, 1) is sorted by s[321], and by our inductive
hypothesis 7[3.,,,11] is a good sequence. Thus, m[z.,41] is also good.

If 1 < ms < m, then 7 must be removed from the stack before the final oper-
ation in which all elements in the stack are removed and appended to the output
permutation in that order. Otherwise, m3 becomes the second-to-last element of
the output permutation, implying that 7 is not sortable by s[321;. Additionally, m
must be removed from the stack before any element m; > 79 is added onto the stack.
Otherwise, m; would be removed from the stack before w5, which would contradict
the sortability of . Since the elements 1,2, -, 75 — 1 must be removed from the
stack before 7o, thus, the elements 1,2, -+, 7 — 1 must be added onto the stack
before any element greater than mo. However, the addition of any element less than
mo to the stack cannot induce any consecutive pattern in [321] with m; and .
Hence, 75 is not removed from the stack until right before the first element m; > mo
is added onto the stack. Thus, before m; is added onto the stack there is still at
least one element less than 75 on the top of the stack, and it is impossible for all
of them to be removed from the stack by patterns induced through 7; since 7; does
not induce any consecutive pattern in [321] with an element less than w3 and the
element mo. Thus, 7o is not removed from the stack before the addition of m; > w9
to the stack, which leads to a contradiction. O

The converse of Lemma 4 follows from reversing the inductive process. Hence,
the condition that m; = n and 3., is good is both sufficient and necessary for
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to be sorted by s[321]-

Corollary 2. For alln > 2 and any m € S,, we have that m € Sorty, (s[321]) if and
only if T =n and ma.,) s good.

We now finish by using Corollary 2 to prove Theorem 4.
Proof of Theorem 4. From Corollary 2, it follows that
Sorty(s[z21)) = {m € Su|m1 = n and 7.y, is good}

which has a size equal to [{m € S,,_1|7 is good}|. For any good permutation 7 of
size n — 1, by definition 73 = min({1,2,--- ,n—1}) or m; = max({1,2,--- ,n—1}).
Then 7y = min({1,2,--- ,n — 1} — {m}) or ma = max({1,2,---,n — 1} — {m}).
Similarly,

m =min({1,2,--- ,n—1} = {m, - ,m—1})

or
m =max({1,2,--- ,n—1} — {my, - ,m_1}).

Hence, after fixing 71, mo, - ,m;_1, each m; has exactly two possible values, except

for m,_1 which is fixed by the values of 71, w9, ,m,_2 since

|{1’27"' ’n_l}_{ﬂ—lv"' a”Tn*2}| =1

Hence, [{m € S,_1|r is good}| = 2”72 which implies that [Sorty(s}321))| = 2"~ for
all n > 2. O

4. Future Directions

We conclude with the following conjectures. Our first conjecture concerns the num-
ber of permutations that are sortable by SCj;23) and has been verified by code for
n<9.

Conjecture 1. For all n > 1, the sequence [Sort,, (SCj;23))| is enumerated by OEIS
A006318 [8], the sequence of Large Schroder numbers.

In Theorem 3, we proved that no permutations of length at least 4 are sortable
by sp123;- The conjecture below describes the output permutation that shares the
longest prefix with id,,.

Conjecture 2. The permutation 1,2,...,[5],n,n — 1,...,|5] + 1 is the unique

length n permutation in {sp193)(7)|m € S, } that shares the longest prefix with id,.

The last two conjectures are about the number of input permutations that are
mapped to the conjectured unique output permutation that shares the longest prefix
with id,,.
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Conjecture 3. For all n > 4 when n is even, there exists a unique input permuta-
tion 7 € S, such that sjp3(7) = 1,2,..., [5],n,n—1,..,[5] + 1.

Conjecture 4. For all n > 4 when n is odd, there exist [%] input permutations
7 € Sy, such that sjag(m) = 1,2,..., [5],n,n—1,.., [ 5] + 1.
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