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Abstract

In 2020, Cerbai, Claesson, and Ferrari generalized West stack-sorting maps to the
stack-sorting maps sσ which avoid a specified pattern σ. Our paper introduces
cyclic-pattern-avoiding maps s[σ] and consecutive-cyclic-pattern-avoiding maps s[σ]
which are natural analogues of sσ. In particular, we study the case of length 3
patterns and prove that our stack-sorting machine SC[123] sorts any permutation of
length n within n − 2 iterations when n ≥ 3, where SC[123] is defined as SC[σ] =
s ◦ s[σ], with s being West’s deterministic stack-sorting map. Additionally, we
characterize the graphs generated from the stack-sorting machine SC[321]. Lastly,
we identify the permutations in |Sortn(s[123])| and |Sortn(s[321])|.

1. Introduction

In 1990, West [10] introduced a deterministic stack-sorting map s : Sn → Sn. At

each step of the algorithm, before adding the first remaining element of the input

permutation onto the top of the stack, elements are removed from the top of the

stack until the stack is empty or its top element exceeds the current first input

element (see, for example, Figure 1). West [10] proved that s(π) = id if and only if

π avoids the 231 pattern [10]. Since West’s introduction of the deterministic stack-

sorting map, researchers have studied many variations of s [5, 6, 7, 10, 2, 3]. The

stack-sorting machine [4] has also been studied extensively from a sorting point of

view.

In 2020, Cerbai, Claesson, and Ferrari [4] generalized West’s sorting stack to

include pattern avoidance of arbitrary length. For each pattern σ, they defined the

map sσ : Sn → Sn, which processes permutations through a stack under the new
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Figure 1: West stack-sorting map s on π = 3124.

condition that elements in the stack must avoid the pattern σ when read from top

to bottom. West’s stack-sorting map is a special case of sσ in which σ = 21.

In 2021, Berlow [2] introduced a generalized map sT that avoids a set T of

patterns. The sT map operates by removing the minimum number of elements

from the top of the stack necessary to ensure that appending the next element in

the permutation to the stack will not induce any pattern in T . The cyclic map s[σ],

which is the focus of our paper, is a special case of sT in which T = [σ], representing

the set of all rotations of the pattern σ.

Babson and Steingŕımsson [1] first introduced vincular pattern avoidance, where

vincular patterns can additionally require some elements to be adjacent when con-

sidering whether a permutation contains the pattern; see Steingŕımsson [1] for a

survey of the study of vincular patterns, which he refers to as generalized patterns.

Our paper introduces cyclic-pattern-avoiding stacks s[σ] and their corresponding

cyclic-pattern-avoiding machines SC[σ], which are analogues of the classical-pattern-

avoiding stack-sorting maps sσ and stack-sorting machines SCσ[2]. The maps s[σ]
and SC[σ] operate on the same principle as sσ and SCσ with the added condition

that the stack must cyclically avoid the given permutation pattern when read from

top to bottom. Formally, s[σ](π) is the output permutation produced by processing

π through a stack that avoids all patterns in [σ]. The map removes elements from

the top of the stack when necessary to avoid the formation of any pattern in [σ] by

the incoming element. Once all input elements have been processed, the elements

of the stack are removed from the top of the stack one by one and appended to

the output permutation in order. Figure 2 illustrates the process using the example

s[123](3124) = 2143. The cyclic avoidance machine SC[σ] is defined as s ◦ s[σ]. For

example, SC[123](3124) = s(2143) = 1234.

Stacks avoiding cyclic patterns of length 2 simply return the input permutation,

hence, our paper will focus on cyclic patterns of length 3. The only two distinct
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Figure 2: Cyclic stack-sorting map s[123] on π = 3124.

length 3 patterns up to rotation are 123 and 321, thus, the only two distinct length

3 cyclic avoidance maps and machines are the [123] and [321]-avoiding maps and

machines.

West’s stack-sorting machine gets its name from its ability to sort a permutation

of length n using at most n − 1 applications of the mapping s21 [10]. A natural

question that arises is whether our cyclic maps also satisfy such a property. Our

first main result is that SC[123] sorts any permutation π of length n into idn, the

length n identity permutation, through n − 2 iterations when n ≥ 3 and that this

bound is tight. To show the tightness of the bound, we define a permutation ξn
where n ≥ 1 as follows. If n is even, let ξn = 1, 3, · · · , n− 3, n− 1, 2, 4, · · · , n− 2, n.

If n is odd, let ξn = 2, 4, · · · , n−3, n−1, 1, 3, · · · , n−2, n. For example, ξ6 = 135246

and ξ7 = 2461357.

Theorem 1. For any permutation π ∈ Sn where n ≥ 3, we have SCn−2
[123](π) = idn

and SCn−3
[123](ξn) ̸= idn.

As an example of the above result, consider the length 3 permutation 231. It

requires 3−1 = 2 iterations of applying the West stack to map it to the identity. In

other words, s(s(231)) = s(213) = 123. Meanwhile, the [123]-avoiding stack-sorting

machine, SC[123], maps 231 to 123 in one iteration. To illustrate the tightness of

the bound, consider SC[123](ξ4) = SC[123](1324) = 3124 ̸= id4.

In general, consider the directed graph formed by the mapping SC[σ] on Sn,

where each permutation π ∈ Sn is a vertex and there is an edge from π to SC[σ](π)

when SC[σ](π) ̸= π. In the graph formed by SC[123], Theorem 1 implies that every

vertex has a directed path ending at idn, and that the graph has no cycles. In

contrast, in the directed graph formed by SC[321], when n ≥ 4, the identity has a

directed path to a vertex that is part of a cycle. Our second main result concerns

the length of this cycle and where it begins.
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Theorem 2. For all n ≥ 4 and m ≥ ⌈n−1−⌈ 2n−1
3 ⌉

2 ⌉, we have that

SCm
[321](idn) = SC

m+⌈ 2n−1
3 ⌉

[321] (idn).

The next few theorems focus on consecutive cyclic avoidance machines. The

consecutive cyclic avoidance stack, denoted s[σ], is motivated by Defant and Zheng

[6], who introduced consecutive-pattern-avoiding stack-sorting maps in 2021. Con-

secutive cyclic avoidance maps s[σ] and consecutive avoidance machines SC[σ] are

natural analogues of consecutive stack-sorting maps. Formally, s[σ](π) is the output

permutation produced by processing π through a stack that consecutively avoids all

patterns in [σ]. Elements are removed from the top of the stack when necessary

to avoid the formation of any consecutive pattern in [σ] by the incoming element.

Once all input elements have been processed, the elements in the stack are removed

from the top of the stack and appended to the output permutation in the order they

were removed from the stack. Figure 3 illustrates the process through the example

s[123](3124) = 4213. Meanwhile, the consecutive cyclic avoidance machine SC[σ] is

defined as s ◦ s[σ]. For example, SC[123](3124) = s(4213) = 1234.
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Figure 3: Consecutive cyclic stack-sorting map s[123] on π = 3124.

The final main results concern the number of permutations sorted by s[123] and

s[321]. Theorem 3 states that no permutations of length at least 4 are sorted by

s[123].

Theorem 3. For all n ≥ 4, the equation |Sortn(s[123])| = 0 holds.

Meanwhile, for all n ≥ 2 the number of permutations of length n sorted by s[321]
is 2n−2, and all such permutations are enumerated in our proof.

Theorem 4. For all n ≥ 2, the equation |Sortn(s[321])| = 2n−2 holds.

In Section 2, we establish the preliminaries. In Section 3, we prove Theorems 1

to 4. In Section 4, we suggest future directions.
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2. Preliminaries

A permutation π ∈ Sn is a sequence of length n such that π = π1π2...πn, where

πi are distinct natural numbers from 1 to n. A stack is a structure that can store

an ordered list of elements. The only two types of allowed modifications to a stack

are adding an element to the top of the stack and removing an element from the

top of the stack. A pattern σ is a permutation σ1σ2 . . . σ|σ| which will be used

specifically in the context of pattern avoidance. The reverse of a permutation

is defined by Rev(π1π2 · · ·πn) = πn · · ·π2π1. For instance, Rev(2314) = 4132.

The standardization of a sequence τ of distinct numbers, denoted by st(τ), is the

permutation in Sn obtained by replacing the ith-smallest entry in the sequence with

i for all 1 ≤ i ≤ n. For example, st(315) = 213, since 3 is the second largest element,

1 is the smallest element, and 5 is the largest element. Two sequences of distinct

numbers, τ and τ ′, have the same relative order if st(τ) = st(τ ′). For instance,

213 and 315 have the same relative order. A permutation π contains a pattern

σ if there exists a sequence of indices i1 < i2... < ik such that st(πi1 ...πik) = σ.

For example, 52413 contains the pattern 132 since st(243) = 132. A permutation

π contains a sequence a1, a2, ..., ak without gaps if there exists an index i where

1 ≤ i ≤ n + 1 − k such that πi, πi+1, · · · , πi+k−1 = a1, a2, · · · , ak. For instance,

the permutation 42351 contains the sequence 2, 3, 5 without gaps. A stack avoids

a pattern if at all times, the stack does not contain the pattern when read from

top to bottom. A stack cyclically avoids a pattern if the stack avoids all rotations

of the pattern when read from top to bottom. Additionally, the reduction of a

sequence π, denoted by red(π), is defined to be the permutation obtained from

replacing every maximal consecutive subsequence of contiguous numbers with its

minimum element and then standardizing the resulting permutation. For example,

the maximal consecutive subsequences of contiguous numbers in the permutation

16783425 are 1, 678, 34, 2, 5. Hence, red(16783425) = st(16325) = 15324. Finally,

for a given map f : Sn → Sn, define Sortn(f) to be the pre-image of {idn} under

f . For instance, Sort3(s[321]) = {312, 321} since these are all the permutations in

S3 sorted by s[321].

3. Proofs of the Main Results

3.1. Proof of Theorem 1

We first prove that reducing a permutation π does not change the number of itera-

tions of SC[123] required to sort π.

Lemma 1. For π ∈ Sn, we have that red(SC[123](red(π))) = red(SC[123](π)). Also,

any sequence of the form a, a + 1, · · · , a + k that π contains without gaps is added

onto and removed from the stack together.
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Proof. Suppose that a permutation π contains the sequence a, a + 1, · · · , a + k

without gaps. Before a is added onto the s[123] stack, all elements on the stack

must be less than a or greater than a + k. Thus, if adding a does not induce the

patterns [123] in the stack, then adding any element in a, a+ 1, · · · , a+ k will not

induce the patterns [123] with earlier elements in the stack. Also note that no two

or three elements from the above sequence will induce a [123] pattern with earlier

elements on the stack either. Hence, the elements in a, a+1, · · · , a+k will be added

onto the s[123] stack together, without inducing the patterns [123]. Similarly, the

sequence a, a+1, · · · , a+k will also be removed from the stack consecutively. Thus,

s[123](π) contains the sequence Rev(a, a + 1, · · · , a + k) without gaps. Applying s

will then reverse Rev(a, a+1, · · · , a+ k). Hence, SC[123](π) = s ◦ s[123](π) contains
the sequence a, a + 1, · · · , a + k without gaps. Thus, any contiguous subsequence

of consecutive numbers in π also appears in SC[123](π), and they are always added

onto and removed from the stacks together.

Hence, each maximal contiguous subsequence of consecutive numbers in π can

be treated as a single element with respect to the reduction operation and SC[123].

Thus, red(SC[123](red(π))) = red(SC[123](π)).

Consequently, the number of iterations required to sort a permutation π equals

the number of permutations required to sort red(π).

Corollary 1. For π ∈ Sn, we have that SCk
[123](π) = idn if and only if

SCk
[123](red(π))) = id|red(π)|.

Next, we prove that red ◦ SC[123] reduces the length of any permutation.

Lemma 2. For any π ∈ Sn with n ≥ 2, the equation |red(SC[123](π))| < |π| holds.

Proof. It suffices to show that SC[123](π) contains a sequence of the form a, a + 1

without gaps. First, suppose that π1 ̸= n. Note that right before the element π1+1

is added onto the s[123] stack, the stack should only contain π1, otherwise it would

induce the pattern 231 or 312. Thus, π1 and π1 +1 are consecutive elements at the

bottom of the stack and are the last two elements removed from the s[123] stack so

s[123](π) ends with the sequence π1 + 1, π1. Clearly, after applying s to s[123](π),

the element π1 appears right before π1 + 1 in SC[123](π).

Now, suppose π1 = n. Then s[123](π) ends with n, and thus, s(s[123](π)) ends

with the sequence (n − 1, n). Hence, SC[123](π) contains a sequence of the form

(a, a+ 1) without gaps. Therefore, |red(SC[123](π))| < |π|.

We finish by using Corollary 1 and Lemma 2 to prove Theorem 1.

Proof of Theorem 1. We first use induction to prove that SCn−2
[123](π) = idn for π ∈

Sn with n ≥ 3. The base case n = 3 is clear by straightforward verification. Now

assume that for all n where 3 ≤ n ≤ m, the equation SCn−2
[123](π) = idn holds.
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For any π ∈ Sm+1, Lemma 2 implies that |red(SC[123](π))| < |π| = m+1. Thus,

by our inductive hypothesis, SCm−2
[123](red(SC[123](π))) = id|red(SC[123](π))|. Then by

Corollary 1, SCm−1
[123](π) = idm+1. Hence, SCn−2

[123](π) = idn for all π ∈ Sn, which

proves that any length n permutation π can be sorted through at most n − 2

iterations of SC[123].

We now show the tightness of the bound by proving SCn−3
[123](ξn) ̸= idn for n ≥ 3

by induction on n. The base case n = 3 is clear. Now assume that for n = m, the

equation SCn−3
[123](ξn) ̸= idn holds.

Suppose n = m+ 1. If m+ 1 is even, then

SC[123](ξm+1) = 3, 5, · · · ,m, 1, 2, 4, · · · ,m− 1,m+ 1

which implies that red(SC[123](ξm+1)) = ξm. In the case where m + 1 is odd, we

have that

SC[123](ξm+1) = 1, 4, 6, · · · ,m, 2, 3, 5, · · · ,m+ 1

which implies that red(SC[123](ξm+1)) = ξm. Thus, red(SC[123](ξm+1)) = ξm always

holds. By the inductive hypothesis, SCm−3
[123](ξm) ̸= id|ξm|.

Then by Corollary 1, SCm−2
[123](ξm+1) ̸= id|ξm+1|. Hence, SCn−3

[123](ξn) ̸= idn always

holds for n ≥ 3.

3.2. Proof of Theorem 2

Define the superimpose operation si(τ1, τ2) which operates on two disjoint sequences

of distinct numbers, τ1 and τ2, as follows. The last element of τ2 is added onto the

top of a stack followed by the last two elements of τ1 in reverse order, or followed

by the last element of τ1 if τ1 has only one element left. The process is repeated

until either τ1 or τ2 is empty, in which case all remaining elements are added onto

the top of the stack in reverse order. The output sequence is then obtained by

reading the stack from top to bottom. For example, si((1, 2, 3, 4, 5), (6, 7, 8, 9, 10)) =

6, 7, 1, 8, 2, 3, 9, 4, 5, 10 since the elements are added onto the stack in the order

10, 5, 4, 9, 3, 2, 8, 1, 7, 6 where the underlined elements are from the sequence 6, 7, 8,

9, 19 and all other elements are from 1, 2, 3, 4, 5.

Lemma 3. For all n,m where n ≥ 4 and 1 ≤ m < ⌈ 2n−1
3 ⌉, we have that

SC[321](si((1, 2, · · · ,m), (m+1,m+2, · · · , n))) = si((1, 2, · · · ,m+1), (m+2,m+3, · · · , n)).

Proof. Let π = si((1, 2, · · · ,m), (m + 1,m + 2, · · · , n)). Since m < ⌈ 2n−1
3 ⌉, the

first element of π is m + 1. Hence, when applying s[321] to π, the element m + 1

remains at the bottom of the stack and is the last element to be removed from

the stack. Then whenever π contains a sequence (i, j) satisfying i < m + 1 < j

without gaps, all elements less than i are removed from the stack before i is added

onto the stack, and the remaining elements on the stack are in an increasing order
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from top to bottom. Thus, j is added onto the stack immediately after i. Since

π = si((1, 2, · · · ,m), (m+ 1,m+ 2, · · · , n)), either j is the last element of π or the

element right after j in π is i+1. If j is the last element of π, then j is removed from

the stack, and i is removed from the stack immediately after. If i+ 1 is right after

j in π, then i + 1, i,m + 1 forms the 213 pattern, hence j and i are consecutively

removed from the stack in that order before i+1 is added. In either case, the order

of the elements i, j is swapped. Thus, s[321](π) is equivalent to the permutation

obtained by swapping all adjacent pairs of elements i, j in π with i preceding j and

i < m + 1 < j, and then placing the element m + 1 at the end of π since m + 1 is

removed from the stack last.

Next, when applying s to s[321](π), each element j > m+1 remains on the stack

until right before the element j + 1 is added or the final operation in which every

element in the stack is removed and appended to the output permutation in the

same order of removal. Thus, SC[321](π) = s(s[321](π)) = si((1, 2, · · · ,m+ 1), (m+

2,m+ 3, · · · , n)).

Example 1. To illustrate the process described in the above proof, we consider

the case n = 6,m = 2. We have that si((1, 2), (3, 4, 5, 6)) = 3, 4, 5, 1, 2, 6 and that

s[321](3, 4, 5, 1, 2, 6) = 4, 5, 1, 6, 2, 3, which is equivalent to swapping the adjacent

elements 2, 6 since 2 < m+1 < 6 in the permutation 3, 4, 5, 1, 2, 6 and then placing

the element m+ 1 = 3 at the end. Then,

SC[321](3, 4, 5, 1, 2, 6) = s(4, 5, 1, 6, 2, 3) = 4, 1, 5, 2, 3, 6 = si((1, 2, 3), (4, 5, 6)).

We now prove Theorem 2 using Lemma 3.

Proof of Theorem 2. SC[321](idn) = (2, 3, · · · , n − 1, 1, n) = si((1), (2, 3, · · · , n)).
Then from Lemma 3, it follows that for all 0 ≤ m < ⌈ 2n−1

3 ⌉,

SCm+1
[321](idn) = SCm

[321](si((1), (2, 3, · · · , n))) = si((1, 2, · · · ,m+ 1), (m+ 2, · · · , n)).

Hence,

SC
⌈ 2n−1

3
⌉

[321] (idn) = si((1, 2, · · · , ⌈2n− 1

3
⌉), (⌈2n− 1

3
⌉+ 1, ⌈2n− 1

3
⌉+ 2, · · · , n)).

Since 3⌈ 2n−1
3 ⌉ > 2n − 2 implies ⌈ 2n−1

3 ⌉ > 2(n − ⌈ 2n−1
3 ⌉ − 1), the first element of

SC
⌈ 2n−1

3 ⌉
[321] (idn) is 1. Thus, when applying s[321] to SC

⌈ 2n−1
3 ⌉

[321] (idn), the element 1 is at

the bottom of the stack. When any element i > ⌈ 2n−1
3 ⌉ is appended to the stack,

all elements currently on the stack are less than i, hence, all elements except 1 are
removed from the stack to avoid forming a 321 pattern. The element i is removed
from the stack, either right before the element i+1 is added onto the stack or when
all elements are removed from the stack and appended to the output permutation
in the order of removal. Meanwhile for any element i < ⌈ 2n−1

3 ⌉, the element i is
removed from the stack immediately after it is added, because the next element
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is always greater than i. Thus, applying s[321] to SC
⌈ 2n−1

3 ⌉
[321] (idn) is equivalent to

moving each element i where ⌈ 2n−1
3 ⌉ < i < n to the original position of the element

i+1, and then moving the elements n, 1 to the end of the output permutation since
they are outputted last. Thus,

s[321](SC
⌈ 2n−1

3 ⌉
[321] (idn)) = si((2, 3, · · · , ⌈2n− 1

3
⌉), (⌈2n− 1

3
⌉+ 1, · · · , n− 1)), (n, 1)

which denotes the concatenation of the two sequences on the right side. Then it
follows that

s(s[321](SC
⌈ 2n−1

3
⌉

[321] (idn))) = si((2, · · · , ⌈2n− 1

3
⌉), (⌈2n− 1

3
⌉+1, · · · , n−2)), si((1), (n−1, n))

which equals SC
⌈ 2n−1

3 ⌉+1

[321] (idn).

Similarly, by reusing the above reasoning we have that

SC
⌈ 2n−1

3
⌉+2

[321] (idn) = si(τ), si((1, 2), (n− 3, n− 2, · · · , n)),

where τ = (3, · · · , ⌈ 2n−1
3 ⌉), (⌈ 2n−1

3 ⌉+1, · · · , n− 4). Then from induction on m, for

all m where 2m ≤ n− 1− ⌈ 2n−1
3 ⌉, it follows that

SC
⌈ 2n−1

3
⌉+m

[321] (idn) = si(ϕ), si((1, · · · ,m), (n− 2m+ 1, · · · , n)),

where ϕ = (m+ 1, · · · , ⌈ 2n−1
3 ⌉), (⌈ 2n−1

3 ⌉+ 1, · · · , n− 2m).

Then by setting m = ⌈n−1−⌈ 2n−1
3 ⌉

2 ⌉, through simple verification we obtain the
equation

SC
⌈ 2n−1

3 ⌉+m

[321] (idn) = si((1, · · · ,m), (m+ 1, · · · , n)) = SCm
[321](idn).

Hence, for m ≥ ⌈n−1−⌈ 2n−1
3 ⌉

2 ⌉ we have that SC
⌈ 2n−1

3 ⌉+m

[321] (idn) = SCm
[321](idn).

3.3. Proof of Theorem 3

In this section, we prove Theorem 3.

Proof of Theorem 3. Assume that there exists a permutation π such that s[123](π) =

idn. Note that π1 must be the last element outputted, and hence π1 = n.

If π2 = 1, then when π3 is added onto the stack, no previous element has been

removed from the stack. Thus, π3 is removed from the stack before π2. Since

π3 > π2, it contradicts s[123](π) = idn.

If 1 < π2 < n, we consider two sub-cases based on the relative order of π2 and

π3. In the case of π2 < π3, the element π3 is added onto the stack without removing

any elements from the top of the stack. Hence, π3 is removed from the stack before

π2. Since π3 > π2, it contradicts s[123](π) = idn. Now, in the case where π2 > π3,

the sequence π3π2π1 forms the 123 pattern, hence, π2 is removed from the stack

before π3 is added. Since π2 > π3, it contradicts s[123](π) = idn.
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3.4. Proof of Theorem 4

A sequence π is good if for any i with 1 ≤ i ≤ |π|, we have that

πi = min(πi, πi+1, . . . , π|π|) or πi = max(πi, πi+1, . . . , π|π|). For example, 51432 is

a good sequence. We first prove the necessary condition for a permutation to be

sorted by s[321].

Lemma 4. For all n ≥ 2 and any π ∈ Sortn(s[321]), we must have that π1 = n and

π[2:n] must be good.

Proof. We have that π1 = n for any π in Sortn(s[321]) because π1 is the last element

of s[321](π). We prove that π[2:n] is good by induction. The base case n = 2 is

clear. Assume that for all n where 1 ≤ n ≤ m, we have that π[2:n] is good for any

π ∈ Sortn(s[321]). Now, we prove the same statement for n = m+ 1.

If π2 = 1 then π2 is removed from the stack immediately before π3 is added

onto the stack, since π3, π2, π1 = π3, 1,m+ 1 would form a 213 pattern. Thus, the

sequence π1π[3:m+1] is sorted by s[321] and as a result, from our inductive hypothesis

it follows that π[3:m+1] is a good sequence. Since π2 = 1, thus, π[2:m+1] is a good

sequence.

If π2 = m, then since π1 and π2 do not form consecutive patterns [321] with any

other element, π2 will not be removed from the stack until the final operation in

which the stack is cleared. Hence, π[2:m+1] is sorted by s[321], and by our inductive

hypothesis π[3:m+1] is a good sequence. Thus, π[2:m+1] is also good.

If 1 < π2 < m, then π2 must be removed from the stack before the final oper-

ation in which all elements in the stack are removed and appended to the output

permutation in that order. Otherwise, π2 becomes the second-to-last element of

the output permutation, implying that π is not sortable by s[321]. Additionally, π2

must be removed from the stack before any element πi > π2 is added onto the stack.

Otherwise, πi would be removed from the stack before π2, which would contradict

the sortability of π. Since the elements 1, 2, · · · , π2 − 1 must be removed from the

stack before π2, thus, the elements 1, 2, · · · , π2 − 1 must be added onto the stack

before any element greater than π2. However, the addition of any element less than

π2 to the stack cannot induce any consecutive pattern in [321] with π1 and π2.

Hence, π2 is not removed from the stack until right before the first element πi > π2

is added onto the stack. Thus, before πi is added onto the stack there is still at

least one element less than π2 on the top of the stack, and it is impossible for all

of them to be removed from the stack by patterns induced through πi since πi does

not induce any consecutive pattern in [321] with an element less than π2 and the

element π2. Thus, π2 is not removed from the stack before the addition of πi > π2

to the stack, which leads to a contradiction.

The converse of Lemma 4 follows from reversing the inductive process. Hence,

the condition that π1 = n and π[2:n] is good is both sufficient and necessary for π
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to be sorted by s[321].

Corollary 2. For all n ≥ 2 and any π ∈ Sn, we have that π ∈ Sortn(s[321]) if and

only if π1 = n and π[2:n] is good.

We now finish by using Corollary 2 to prove Theorem 4.

Proof of Theorem 4. From Corollary 2, it follows that

Sortn(s[321]) = {π ∈ Sn|π1 = n and π[2:n] is good}

which has a size equal to |{π ∈ Sn−1|π is good}|. For any good permutation π of

size n− 1, by definition π1 = min({1, 2, · · · , n− 1}) or π1 = max({1, 2, · · · , n− 1}).
Then π2 = min({1, 2, · · · , n − 1} − {π1}) or π2 = max({1, 2, · · · , n − 1} − {π1}).
Similarly,

πi = min({1, 2, · · · , n− 1} − {π1, · · · , πi−1})

or

πi = max({1, 2, · · · , n− 1} − {π1, · · · , πi−1}).

Hence, after fixing π1, π2, · · · , πi−1, each πi has exactly two possible values, except

for πn−1 which is fixed by the values of π1, π2, · · · , πn−2 since

|{1, 2, · · · , n− 1} − {π1, · · · , πn−2}| = 1.

Hence, |{π ∈ Sn−1|π is good}| = 2n−2 which implies that |Sortn(s[321])| = 2n−2 for

all n ≥ 2.

4. Future Directions

We conclude with the following conjectures. Our first conjecture concerns the num-

ber of permutations that are sortable by SC[123] and has been verified by code for

n ≤ 9.

Conjecture 1. For all n ≥ 1, the sequence |Sortn(SC[123])| is enumerated by OEIS

A006318 [8], the sequence of Large Schröder numbers.

In Theorem 3, we proved that no permutations of length at least 4 are sortable

by s[123]. The conjecture below describes the output permutation that shares the

longest prefix with idn.

Conjecture 2. The permutation 1, 2, ..., ⌊n
2 ⌋, n, n − 1, ..., ⌊n

2 ⌋ + 1 is the unique

length n permutation in {s[123](π)|π ∈ Sn} that shares the longest prefix with idn.

The last two conjectures are about the number of input permutations that are

mapped to the conjectured unique output permutation that shares the longest prefix

with idn.
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Conjecture 3. For all n ≥ 4 when n is even, there exists a unique input permuta-

tion π ∈ Sn such that s[123](π) = 1, 2, ..., ⌊n
2 ⌋, n, n− 1, ..., ⌊n

2 ⌋+ 1.

Conjecture 4. For all n ≥ 4 when n is odd, there exist ⌈n
2 ⌉ input permutations

π ∈ Sn such that s[123](π) = 1, 2, ..., ⌊n
2 ⌋, n, n− 1, ..., ⌊n

2 ⌋+ 1.
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