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Abstract

Let D : Zn
m → Zn

m be defined so

D(x1, x2, ..., xn) = (x1 + x2 (mod m), x2 + x3 (mod m), ..., xn + x1 (mod m)).

This function D is known as the Ducci function and for u ∈ Zn
m, {Dα(u)}∞α=0 is

the Ducci sequence of u. Every Ducci sequence enters a cycle because Zn
m is finite.

In this paper, we aim to establish an upper bound for how long it will take for a

Ducci sequence in Zn
m to enter its cycle when n is even.

1. Introduction

We focus on an endomorphism, D, on Zn
m such that

D(x1, x2, ..., xn) = (x1 + x2 (mod m), x2 + x3 (mod m), ..., xn + x1 (mod m)).

We call D the Ducci function, similar to [2], [7], and [9]. If u ∈ Zn
m, then

{Dα(u)}∞α=0 is known as the Ducci sequence of u. Because Zn
m is finite, every

Ducci sequence eventually enters a cycle. We have a specific name for this cycle,

which we give in the following definition.

Definition 1. The Ducci cycle of u is

{v | there exists α ∈ Z+ ∪ {0}, β ∈ Z+ such that v = Dα+β(u) = Dα(u)}.

The length of u, Len(u), is the smallest α satisfying the equation

v = Dα+β(u) = Dα(u)
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for some v ∈ Zn
m and the period of u, Per(u), is the smallest β that satisfies the

equation.

To see this in action, let us look at the Ducci sequence of (0, 0, 0, 1) ∈ Z4
5:

(0, 0, 0, 1), (0, 0, 1, 1), (0, 1, 2, 1), (1, 3, 3, 1), (4, 1, 4, 2), (0, 0, 1, 1). From here, we can

see that the Ducci cycle of (0, 0, 0, 1) is (0, 0, 1, 1), (0, 1, 2, 1), (1, 3, 3, 1), and (4, 1, 4, 2).

We can also determine that Len(0, 0, 0, 1) = 1 and Per(0, 0, 0, 1) = 4.

The tuple (0, 0, 0, 1) and any tuple of the form (0, 0, ..., 0, 1) ∈ Zn
m are important

when it comes to Ducci sequences. The Ducci sequence of (0, 0, ..., 0, 1) ∈ Zn
m is

called the basic Ducci sequence of Zn
m. This definition is first used in [7, page 302].

We also define

Pm(n) = Per(0, 0, ..., 0, 1)

and

Lm(n)1 = Len(0, 0, ..., 0, 1).

Using these, our example from the previous paragraph tells us that P5(4) = 4

and L5(4) = 1. These values are significant because by [2, Lemma 1], if u ∈ Zn
m,

then Len(u) ≤ Lm(n) and Per(u)|Pm(n). Therefore, Pm(n) and Lm(n) provide a

maximal value for Per(u) and Len(u), respectively, for any u ∈ Zn
m.

For the rest of this paper, we are most interested in the value of Lm(n), partic-

ularly when n is even. Our goal is to prove the following theorem.

Theorem 1. Let n be even. Then the following are true.

1. If gcd(n,m) = 1, then Lm(n) = 1.

2. If there exists p prime, k, n1,m1 ∈ Z+, such that n = pkn1, m = pm1,

gcd(n1,m1) = 1, and p ∤ n1,m1, then Lm(n) = pk.

3. If there exists p prime and k, l, n1,m1 ∈ Z+ such that n = pkn1, m = plm1,

gcd(n1,m1) = 1, and p ∤ n1,m1, then Lm(n) ≤ pk−1(l(p− 1) + 1).

4. If there exists p1, p2, ..., pt prime where p1 < p2 < · · · < pt, for 1 ≤ i ≤ t, and

n = pk1
1 pk2

2 · · · pkt
t n1, m = pl11 p

l2
2 · · · pltt m1 with gcd(n1,m1) = 1 and pi ∤ n1,m1

for every i, then

Lm(n) = max{L
p
li
i

(n) | 1 ≤ i ≤ t}.

It is worth noting that we believe that the inequality in Part (3) of Theorem 1

is, in fact, an equality. We are able to confirm this is true for all m ≤ 50 and even

n ≤ 20 where gcd(n,m) is a power of a prime. We would test for larger n,m, but

our program for computing Lm(n) requires first finding Pm(n), which typically gets

1Both of these notations are very similar to how [2, Definition] defines them, and for Pm(n),
the notation is also like [7] and [9].



INTEGERS: 26 (2026) 3

larger as n,m increase. The values of Pm(n) get too large for our MATLAB [13]

program to find.

The work in this paper was done while the second author was a Ph.D. student

at Kent State University under the advisement of the first author and appeared as

part of the second author’s dissertation, found at [16].

2. Background

The Ducci function was originally defined as an endomorphism on Zn or (Z+∪{0})n
such that D̄(x1, x2, ..., xn) = (|x1 − x2|, |x2 − x3|, ...., |xn − x1|), with this being the

most common definition of the Ducci function. Note that if D̄ is defined on Zn, then

D̄(u) ∈ (Z+ ∪ {0})n. Therefore, for simplicity, we will refer to both of these cases

as Ducci on Zn. Other papers, including [3], [5], and [14], use the same formula for

D̄ but define Ducci on Rn. It is, of course, necessary that we handle the cases of

Ducci on Zn and on Rn separately.

Ducci sequences on Zn also always enter a cycle. There are discussions of why

this happens in [4], [7], [9], and [12]. A well-known fact for Ducci functions on Zn

is proved in [12, Lemma 3]: all of the entries of a tuple in a Ducci cycle belong

to {0, c} for some c ∈ Z+. Since D̄(λu) = λD̄(u) for all u ∈ Zn, this means that

we can focus on when Ducci is defined on Z2 where we are using our definition of

D given at the beginning of the paper, particularly when examining Ducci cycles.

Because of the significance of Ducci on Zn
2 to the original Ducci case, this leads us

to wonder what happens if we define Ducci on Zn
m for other values of m using our

definition given at the beginning of the paper. The first paper to look at Ducci on

Zn
m is [17].

When looking at L2(n) in particular, [7, page 303] is the first to show that

L2(n) = 1 when n is odd. When n is even, [9, Theorem 6] tells us that if n = 2k1+2k2

where k1 > k2 ≥ 0, then L2(n) = 2k2 . This is then extended by [1, Theorem 4] to

all even n = 2kn1 where n1 is odd. Here, L2(n) = 2k. Notice that this supports

Part (2) of Theorem 1 when m = p = 2.

If we allow n to be odd, we have a formula for Lm(n) from [11, Theorem 2].

Specifically, if m = 2lm1 where n,m1 are odd, then Lm(n) = l. For a case where n

is even, [10, Theorem 2] proves that if n = 2k and m = 2l, then Lm(n) = 2k−1(l+1).

Before moving on, we would also like to give a few definitions that will be useful

later. If u,v ∈ Zn
m, then v is a predecessor to u if D(v) = u. We let K(Zn

m) be the

set of all tuples in a Ducci cycle. It is stated that K(Zn
m) is a subgroup of Zn

m in

[2, page 6001]. A proof of this is provided in [10, Theorem 1].

We now consider another example of a Ducci sequence and its cycle. For this,

we will look at the basic Ducci sequence of Z6
2. We create a transition graph that

maps out all Ducci sequences on Z6
2 and then look at the connected component that
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(0, 0, 0, 1, 0, 1) (0, 0, 1, 1, 1, 1)

(0, 1, 0, 0, 0, 1)

(1, 1, 0, 0, 1, 1)(0, 1, 0, 1, 0, 0)

(1, 1, 1, 1, 0, 0)

(0, 0, 0, 0, 1, 1)

(0, 0, 0, 0, 0, 1)

(1, 1, 1, 1, 1, 0) (1, 1, 1, 0, 1, 0)

(0, 1, 0, 1, 1, 0)

(1, 0, 1, 0, 0, 1)

(1, 1, 0, 0, 0, 0)

(0, 1, 0, 0, 0, 0)

(1, 0, 1, 1, 1, 1)

(1, 0, 1, 1, 1, 0) (0, 1, 1, 0, 1, 0)

(1, 0, 0, 1, 0, 1)

(0, 0, 1, 1, 0, 0)(0, 0, 0, 1, 0, 0)

(1, 1, 1, 0, 1, 1)

(1, 0, 1, 0, 1, 1)

(0, 1, 1, 0, 0, 1)

(1, 0, 0, 1, 1, 0)

Figure 1: Transition Graph for Z6
2

includes the basic Ducci sequence. This connected component is given in Figure

1. Notice that we can determine that L2(6) = 2 from Figure 1, which agrees with

Theorem 1. We can also see that P2(6) = 6. It is worth noting that every tuple

in Figure 1 that has a predecessor has exactly two, which is the same as our m in

this case. This is because of [10, Theorem 4], which says that if n is even, then

every tuple that has a predecessor has exactly m predecessors. This theorem also

tells us that if u ∈ Zn
m has a predecessor, call it (x1, x2, ..., xn), then the remaining

predecessors are of the form

(x1 + z, x2 − z, x3 + z, ..., xn − z)

for some z ∈ Zm and all tuples of this form are predecessors to u. All of the tuples

in the transition graph in Figure 1 that have a predecessor, call them (x1, x2, ..., xn),

also satisfy the condition that x1 − x2 + x3 − · · · − xn ≡ 0 (mod 2). In fact, the

following theorem addresses this.
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Theorem 2. Let n be even. Then (x1, x2, ..., xn) ∈ Zn
m has a predecessor if and

only if x1 − x2 + x3 − x4 + · · ·+ xn−1 − xn ≡ 0 (mod m).

We first note that [12, Lemma 5] proves that this is true for m = 2 and [2, Lemma

4] proves it is true when m is prime.

Proof of Theorem 2. For the forward direction, assume (x1, x2, ..., xn) has a prede-

cessor (y1, y2, ..., yn). Then

y1 + y2 ≡ x1 (mod m)

y2 + y3 ≡ x2 (mod m)

...

yn + y1 ≡ xn (mod m). (2.1)

Subtracting the second congruence from the first yields

y1 − y3 ≡ x1 − x2 (mod m).

Adding this to the third congruence produces y1 + y4 ≡ x1 − x2 + x3 (mod m).

Continuing creates the congruences

y1 − yn−1 ≡ x1 − x2 + · · · − xn−2 (mod m)

and

y1 + yn ≡ x1 − x2 + · · ·+ xn−1 (mod m).

Using this and Congruence (2.1), we see that

xn ≡ x1 − x2 + · · ·+ xn−1 (mod m),

which gives

x1 − x2 + · · ·+ xn−1 − xn ≡ 0 (mod m),

and the forward direction follows.

For the backward direction, assume x1−x2+x3−x4+· · ·+xn−1−xn ≡ 0 (mod m).

It suffices to show that there exist y1, y2, ..., yn that satisfy the congruences

y1 + y2 ≡ x1 (mod m)

y2 + y3 ≡ x2 (mod m)

...

yn + y1 ≡ xn (mod m).
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Let y1 = 0. If we let y2 = x1, then the first congruence will be satisfied. If we then let

y3 = x2 − x1, the second congruence will be satisfied. If we continue this, following

the structure yj = xj−1−xj−2+· · ·+x1 when j is even and yj = xj−1−xj−2+· · ·−x1

when j is odd, then the first n − 1 congruences will be satisfied. This results in

yn = xn−1 − xn−2 + · · ·+ x1. We then see that

y1 + yn ≡ xn−1 − xn−2 + · · ·+ x1 (mod m).

By assumption, xn−1 − xn−2 + · · ·+ x1 ≡ xn (mod m) and y1 + yn ≡ xn (mod m)

follow, and the final congruence is satisfied. Therefore, (x1, x2, ..., xn) has at least

one predecessor, (y1, y2, ..., yn).

Moving forward, if u ∈ Zn
m, it will be useful to have a tool that gives us infor-

mation about tuples in the Ducci sequence of u. To do this, let us first look at the

first few tuples in the Ducci sequence of a tuple (x1, x2, ..., xn) ∈ Zn
m:

(x1, x2, ..., xn)

(x1 + x2, x2 + x3, ..., xn + x1)

(x1 + 2x2 + x3, x2 + 2x3 + x4, ..., xn + 2x1 + x2)

(x1 + 3x2 + 3x3 + x4, x2 + 3x3 + 3x4 + x5, ..., xn + 3x1 + 3x2 + x3)

...

.

We can see that the coefficients of the xj in the first entry of each tuple in the

Ducci sequence occur in all of the entries of that tuple for some xi. For this reason,

we will let ar,s represent the coefficient of xs in the first entry of Dr(x1, x2, ..., xn).

Here r ≥ 0 and 1 ≤ s ≤ n. The s-coordinate reduces modulo n, with the exception

that we write ar,n instead of ar,0. Note that ar,s also appears as the coefficient of

xs−i+1 in the ith entry of Dr(x1, x2, ..., xn). A more thorough explanation of why

we can do this can be found in [10, page 6]. We also have that

Dr(0, 0, ..., 0, 1) = (ar,n, ar,n−1, ..., ar,1).

Additionally, by [10, Theorem 5], when r < n, we have ar,s =

(
r

s− 1

)
. This

theorem also tells us that ar,s = ar−1,s + ar−1,s−1, and more generally that

ar+t,s =

n∑
i=1

at,iar,s−i+1

when t ≥ 1.
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3. Proving the Main Theorem

Before we can prove Theorem 1, there are a few lemmas that we will need. We

begin with two lemmas about particular binomial coefficients. We believe that

both Lemmas 1 and 2 are known and have been proven before, but we are providing

proofs here for completeness.

Lemma 1. Let p be prime and j ≤ pk − 1, k ≥ 1. Then(
pk − 1

j

)
≡ (−1)j (mod p).

Proof. To prove this, we will do induction on j. Our base case is when j = 0, which

is satisfied by

(
pk − 1

0

)
= 1. For our inductive step, assume

(
pk − 1

j − 1

)
≡ (−1)j−1 (mod p).

Note (
pk

j

)
=

(
pk − 1

j

)
+

(
pk − 1

j − 1

)
.

Because we proved the j = 0 case in the base case, we can assume 0 < j ≤ pk − 1,

which will give us (
pk − 1

j

)
+

(
pk − 1

j − 1

)
≡ 0 (mod p).

Solving for

(
pk − 1

j

)
, we find that

(
pk − 1

j

)
≡ −

(
pk − 1

j − 1

)
(mod p).

By induction,

(
pk − 1

j

)
is congruent to

−(−1)j−1

modulo p or

(−1)j

modulo p, and the lemma follows.

The next lemma is similar to Lemma 1.

Lemma 2. For k > 1 and p an odd prime(
pk − pk−1

j

)
≡

{
(−1)c (mod p) j = cpk−1

0 (mod p) otherwise.
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Proof. We prove this via induction on j. Our base case covers when j = 0, 1, which

follow from (
pk − pk−1

0

)
≡ 1 (mod p)

and (
pk − pk−1

1

)
≡ 0 (mod p).

For our inductive step, assume that the lemma is true for j∗ < j. For j > 0, we use

the Chu–Vandermonde identity, which says that

δ∑
γ=0

(
α

γ

)(
β

δ − γ

)
=

(
α+ β

δ

)
.

A proof of this can be found in [15, Identity 57]. As a result,(
pk

j

)
=

j∑
i=0

(
pk−1

i

)(
pk − pk−1

j − i

)
≡ 0 (mod p). (3.1)

If j < pk−1, the sum in Equation (3.1) is also congruent to(
pk−1

0

)(
pk − pk−1

j

)

modulo p, in addition to being congruent to 0 modulo p, so

(
pk − pk−1

j

)
is congru-

ent to 0 modulo p. If j ≥ pk−1, the sum in Equation (3.1) is congruent to(
pk−1

0

)(
pk − pk−1

j

)
+

(
pk−1

pk−1

)(
pk − pk−1

j − pk−1

)
modulo p. This sum is congruent to 0 modulo p by Equation (3.1), which produces(

pk − pk−1

j

)
≡ −

(
pk − pk−1

j − pk−1

)
(mod p).

If j ̸= cpk−1 for some c, then

(
pk − pk−1

j

)
is congruent to 0 modulo p by induction.

If j = cpk−1 for some c, then

(
pk − pk−1

j

)
is congruent to −(−1)c−1 modulo p or

(−1)c modulo p, and the lemma follows.

Next, we would like to look at the ar,s coefficient for a particular r in Lemmas 3

and 4.
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Lemma 3. Let n = pkn1 where p is prime, n1 > 1, and c ≥ 1. Then for s ̸= bpk+1

and 0 ≤ b < n1, we have acpk,s ≡ 0 (mod p).

Proof. We prove this via induction on c with our base case being when c = 1, which,

by [10, Theorem 5] follows from

apk,s =

(
pk

s− 1

)
≡ 0 (mod p)

precisely when s ̸= 1, pk + 1. For the inductive step, assume

a(c−1)pk,s ≡ 0 (mod p)

for s ̸≡ b′pk + 1 (mod n), 0 ≤ b′ ≤ n1 − 1. Using [10, Theorem 5], we can break

down acpk,s as follows:

acpk,s =

n∑
i=1

apk,ia(c−1)pk,s−i+1. (3.2)

Using apk,i =

(
pk

i− 1

)
, Equation (3.2) is congruent to

apk,1a(c−1)pk,s + apk,pk+1a(c−1)pk,s−pk

modulo p. Notice that for s ̸≡ bpk + 1 (mod n), Equation (3.2) is congruent to

0 modulo p where 0 ≤ b ≤ n1 − 1 by induction, and the lemma follows.

For the remaining cases where s = bpk + 1, we have the following lemma.

Lemma 4. Let n = pkn1 for some k and n1 > 1, ar,s be the coefficients for n, and

a∗r,s be the coefficients for n1. Then, for c ≥ 1 and 0 ≤ b < n1,

acpk,bpk+1 ≡ a∗c,b+1 (mod p).

Proof. We prove this via induction on c, starting with the base case of c = 1. Notice

that because pk < n, we have apk,1 =

(
pk

0

)
, which is 1. Since a∗1,1 =

(
1

0

)
= 1, we

have that

apk,1 ≡ a∗1,1 (mod p).

Similarly,

apk,pk+1 =

(
pk

pk

)
= 1

and

a∗1,2 =

(
1

1

)
= 1,
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so apk,pk+1 ≡ a∗1,2 (mod p). Finally, for 2 ≤ b < n1, because

(
pk

j1

)
≡ 0 (mod p)

when j1 ̸= 1, pk and

(
1

j2

)
= 0 when j2 > 1, we have

apk,bpk+1 ≡ a∗1,b+1 (mod p)

for every 2 ≤ b < n1. The base case follows from here.

Moving on to the inductive step, assume

a(c−1)pk,bpk+1 ≡ a∗c−1,b+1 (mod p)

when 0 ≤ b < n1. Then,

acpk,bpk+1 =

n∑
i=1

apk,ia(c−1)pk,bpk+2−i. (3.3)

Notice that apk,s =

(
pk

s− 1

)
≡ 0 (mod p) when s ̸= 1, pk + 1. Therefore, our

remaining pieces tell us Equation (3.3) is congruent to

apk,1a(c−1)pk,bpk+1 + apk,pk+1a(c−1)pk,(b−1)pk+1

modulo p. By induction, Equation (3.3) is congruent to

a∗c−1,b+1 + a∗c−1,b

modulo p, which is congruent to a∗c,b+1 modulo p and the lemma follows.

Putting Lemmas 3 and 4 together allows us to visualize what Dcpk

(0, 0, ..., 0, 1)

looks like in Zn
p for n = pkn1:

Dcpk

(0, 0, ..., 0, 1) = (0, 0, ..., 0, a∗c,n1
, 0, ..., 0, a∗c,n1−1, 0, ..., 0, a

∗
c,1). (3.4)

Bear in mind that the last set of ... in the right side of Equation (3.4) covers a much

larger area then the first two. We now have the pieces we need to prove Theorem

1.

Proof of Theorem 1. Assume n is even. Before proving Part (1) of this theorem, we

would like to first note that when m is prime, this case follows from [2, Lemma 5].

Assume that gcd(n,m) = 1. We want to prove

(0, 0, ..., 0, 1, 1) ∈ K(Zn
m)

and

(0, 0, ..., 0, 1) ̸∈ K(Zn
m).
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We first use Theorem 2 to note that since −1 ̸≡ 0 (mod m), the n-tuple (0, 0, ..., 0, 1)

does not have a predecessor and therefore (0, 0, ..., 0, 1) ̸∈ K(Zn
m). We now note that

(0, 0, ..., 0, 1, 1) has m predecessors and that if any of these predecessors are in the

cycle, then so is (0, 0, ..., 0, 1, 1). In addition to this, if there exists u,v ∈ Zn
m such

that D2(v) = D(u) = (0, 0, ..., 0, 1, 1), then u ∈ K(Zn
m) because otherwise we would

have

Len(v) > Len(u) = Len(0, 0, ..., 0, 1) = Lm(n),

which cannot happen. Since (0, 0, ..., 0, 1) is a predecessor for (0, 0, ..., 0, 1, 1), it

follows by [10, Theorem 4] that the other predecessors of (0, 0, ..., 0, 1, 1) will be of

the form

u = (z,m− z, z, ..., z, 1− z)

for some nonzero z ∈ Zm, so we only need to prove that there exists such a z where

u has a predecessor. By Theorem 2, u has a predecssor if and only if

z − (m− z) + z − (m− z) + · · ·+ z − (1− z) ≡ 0 (mod m),

or, equivalently,

nz − 1 ≡ 0 (mod m).

Since gcd(n,m) = 1, there exists a unique z such that nz ≡ 1 (mod m). Therefore

we have a z that satisfies the above and (z,m− z, z, ..., z, 1− z) has a predecessor.

Therefore, Lm(n) = 1 and Part (1) follows.

For Part (2) of the theorem, it is worth noting that if m = p, then this case

follows from [2, Theorem 4]. Assume n = pkn1, m = pm1 where gcd(n1,m1) = 1,

and p ∤ n1,m1. We must then start with proving that Lm(n) ≤ pk.

Let Pm(n) = d. From the first case of this theorem, we know Lm
p
(n) = 1, which

means

ad+1,s ≡ a1,s (mod
m

p
)

or

ad+1,s ≡


1 (mod

m

p
) s = 1, 2

0 (mod
m

p
) otherwise.

We will use this to write

ad+1,s ≡


δs
m

p
+ 1 (mod m) s = 1, 2

δs
m

p
(mod m) otherwise

(3.5)

for some 0 ≤ δs < p. We start by showing apk+d,s ≡ apk,s (mod m) for every s.

First,

apk+d,s =

n∑
i=1

ad+1,iapk−1,s−i+1. (3.6)
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Substituting in our values for ad+1,s from Congruence (3.5), we see that Equation

(3.6) is congruent to

(δ1
m

p
+ 1)apk−1,s + (δ2

m

p
+ 1)apk−1,s−1 +

m

p

n∑
i=3

δiapk−1,s−i+1

modulo m, which after some rearranging is congruent to

apk−1,s + apk−1,s−1 +
m

p

n∑
i=1

δiapk−1,s−i+1

modulo m. Using ar,s = ar−1,s + ar−1,s−1 from [10, Theorem 5] and substituting

apk−1,s−i+1 for the appropriate binomial coefficient, Equation (3.6) is congruent to

apk,s +
m

p

n∑
i=1

δi

(
pk − 1

s− i

)

modulo m. Notice that this base case will follow if
m

p

n∑
i=1

δi

(
pk − 1

s− i

)
≡ 0 (mod m),

which will follow if

n∑
i=1

δi

(
pk − 1

s− i

)
≡ 0 (mod p). Note that in this sum,

(
pk − 1

s− i

)
is nonzero for only pk many consecutive terms for every s. We would like to use

this and the following three claims to prove

n∑
i=1

δi

(
pk − 1

s− i

)
≡ 0 (mod p).

The claims are as follows:

1. δs = 0 as long as s ̸= bpk + 1, bpk + 2 for some 0 ≤ b <
n

pk
;

2. δbpk+1 = δbpk+2, when 0 ≤ b <
n

pk
;

3. δbpk+1 + δ(b−1)pk+2 ≡ 0 (mod p) where 0 ≤ b <
n

pk
.

Notice that

n∑
i=1

δi

(
pk − 1

s− i

)
≡ 0 (mod p) will follow if all three claims true; the

claims will give us that most of the δi will be congruent to 0 modulo p, and since

at most pk terms in the sum will already be nonzero, there will only be 2 nonzero

terms in the entire sum, as for every pk consecutive δi you pick, only 2 will be

nonzero. This leaves us with 2 cases.
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In the first case, the two nonzero terms in the sum are adjacent to each other.

If p is odd, then because of Claim 1 and Lemma 1, we have that

n∑
i=1

δi

(
pk − 1

s− i

)
is

either congruent to

δbpk+1 − δbpk+2

modulo p or

−δbpk+1 + δbpk+2

modulo p, both of which are congruent to 0 modulo p by Claim 2.

If p = 2 for our first case, then by Claim 1 and the well-known Lucas’s Theorem

(a proof of which can be found in [8, Theorem 1]), the sum

n∑
i=1

δi

(
2k − 1

s− i

)
≡ δ2kb+1 + δ2kb+2 (mod 2),

which is congruent to 0 modulo 2 by Claim 2, and Lm(n) ≤ pk would follow.

In the second case, the two nonzero terms are pk terms apart. This will only

happen if the remaining terms of

n∑
i=1

δi

(
pk − 1

s− i

)
are congruent to

δbpk+1

(
pk − 1

0

)
+ δ(b−1)pk+2

(
pk − 1

pk − 1

)
modulo p, which, by Claim 3, would be congruent to 0 modulo p and Lm(n) ≤ pk

would follow from here as well.

To prove the claims, note that by [2, Proposition 4], Pp(p
kn1) = pkPp(n1). We

therefore write d = cpk where c = Pp(n1). By Lemma 3, ad,s ≡ 0 (mod p) where

s ̸= bpk + 1 for some 0 ≤ b ≤ n

pk
. Then for s ̸= bpk + 1, bpk + 2,

ad+1,s = ad,s + ad,s−1,

which is congruent to 0 modulo p. This implies δs = 0 for s ̸= bpk + 1, bpk + 2 and

Claim 1 follows.

For Claim 2,

ad+1,bpk+1 − ad+1,bpk+2 = ad,bpk+1 + ad,bpk − ad,bpk+2 − ad,bpk+1,

which is

ad,bpk − ad,bpk+2 ≡ 0 (mod p)

because of Lemma 3 and because pk|d. Therefore, Claim 2 follows.

As for Claim 3, we have

ad+1,bpk+1 + ad+1,(b−1)pk+2 = ad,bpk+1 + ad,bpk + ad,(b−1)pk+2 + ad,(b−1)pk+1,
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which is congruent to

ad,bpk+1 + ad,(b−1)pk+1

modulo p. By Lemma 4, this sum is congruent to

a∗c,b+1 + a∗c,b

modulo p or

a∗c+1,b+1

modulo p, where a∗r,s is the coefficient for n1. Therefore, by Part (1) of Theorem 1,

ad+1,bpk+1 + ad+1,(b−1)pk+2 ≡

{
0 (mod p) b > 1

1 (mod p) b = 0, 1.

For b > 1,

ad+1,bpk+1 + ad+1,(b−1)pk+2 ≡ (δbpk+1 + δ(b−1)pk+2)
m

p
(mod m),

which will give us δbpk+1 + δ(b−1)pk+2 ≡ 0 (mod p). For b = 0, 1,

ad+1,bpk+1 + ad+1,(b−1)pk+2 ≡ (δbpk+1 + δ(b−1)pk+2)
m

p
+ 1 (mod m)

gives us δbpk+1 + δ(b−1)pk+2 ≡ 0 (mod p) for b = 0, 1 and Claim 3 follows. Since all

three claims follow, this gives us Lm(n) ≤ pk.

We now need to prove that Lm(n) = pk. Suppose Lm(n) ≤ pk − 1. Then

ad+pk−1,s ≡ apk−1,s (mod m) for every s and

ad+pk−1,s =

n∑
i=1

ad+1,iapk−2,s−i+1. (3.7)

If we separate out the terms where i = 1, 2, Equation (3.7) is

ad+1,1apk−2,s + ad+1,2apk−2,s−1 +

n∑
i=3

ad+1,iapk−2,s−i+1.

Substituting our values for ad+1,s from Congruence (3.5) and binomial coefficients

in for apk−2,s−i+1 into the sum and rearranging, Equation (3.7) is congruent to

apk−2,s + apk−2,s−1 +
m

p

n∑
i=1

δs

(
pk − 2

s− i

)
modulo m or

apk−1,s +
m

p

n∑
i=1

δi

(
pk − 2

s− i

)
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modulo m. This implies that
m

p

n∑
i=1

δi

(
pk − 2

s− i

)
≡ 0 (mod m), which produces

n∑
i=1

δi

(
pk − 2

s− i

)
≡ 0 (mod p). (3.8)

Substituting δi = 0 for i ̸= bpk + 1, bpk + 2 by using Claim 1, Congruence (3.8) is

congruent to

n1−1∑
b=0

δbpk+1

(
pk − 2

s− bpk − 1

)
+ δbpk+2

(
pk − 2

s− bpk − 2

)
modulo p. Using Claim 2, Congruence (3.8) is congruent to

n1−1∑
b=0

δbpk+1(

(
pk − 2

s− bpk − 1

)
+

(
pk − 2

s− bpk − 2

)
)

modulo p or
n1−1∑
b=0

δbpk+1

(
pk − 1

s− bpk − 1

)

modulo p. Notice that only one of the

(
pk − 1

s− bpk − 1

)
is not congruent to 0 modulo p.

Therefore, we find that

n∑
i=1

δi

(
pk − 2

s− i

)
is congruent to either

δbpk+1

modulo p or

−δbpk+1

modulo p for some 0 ≤ b ≤ n1 − 1. As long as one of the δbpk+1 coefficients is

nonzero, we have a contradiction. Suppose then that δbpk+1 = 0 for every b. Then,

we would have Lm(n) = 1. Then (0, 0, ..., 0, 1, 1) has a predecessor that is also in

the cycle. This is equivalent to one of its predecessors having a predecessor itself.

Since one of (0, 0, ..., 0, 1, 1) is (0, 0, ..., 0, 1), all of its other predecessors will be of

the form (z,m− z, z, ..., z, 1− z) for some z ∈ Zm. Suppose there exists nonzero z

such that this tuple has a predecessor. Then it must be true that

z + z + z + · · ·+ z − 1 + z ≡ 0 (mod m),

which would suggest nz ≡ 1 (mod m). However, since gcd(n,m) > 1, we cannot

have this and we have a contradiction. Therefore, Lm(n) = pk.
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We prove Part (3) of the theorem via induction on l, where Part (2) of this

theorem serves as the base case of l = 1. Assume that if n = pkn1, m
∗ = pl−1m∗

1,

gcd(n1,m
∗
1) = 1, and p ∤ n1,m

∗
1, then Lm∗(n) ≤ pk−1((l − 1)(p− 1) + 1) = γ. Now

assume that n = pkn1 and m = plm1 with gcd(n1,m1) = 1 and p ∤ n1,m1. We set

out to prove that Lm(n) ≤ γ + pk − pk−1. Choose d such that pk|d and Pm(n)|d.
Then

aγ+d,s ≡ aγ,s (mod
m

p
).

We use this to write

aγ+d,s ≡ aγ,s + δs
m

p
(mod m) (3.9)

for some 0 ≤ δs < p. Note also that

aγ+pk−pk−1,s =

n∑
i=1

apk−pk−1,iaγ,s−i+1.

Since apk−pk−1,i =

(
pk − pk−1

i− 1

)
, we plug these into apk−pk−1,i to see that the sum

above is
n∑

i=1

(
pk − pk−1

i− 1

)
aγ,s−i+1. (3.10)

Now consider aγ+pk−pk−1+d,s:

aγ+pk−pk−1+d,s =

n∑
i=1

apk−pk−1,iaγ+d,s−i+1. (3.11)

Plugging our values for the aγ+d,s−i+1 from Equation (3.9) into Equation (3.11),

we find that aγ+pk−pk−1+d,s is congruent to

n∑
i=1

apk−pk−1,i(aγ,s−i+1 + δs−i+1
m

p
)

modulo m. Separating the sums and plugging apk−pk−1,i =

(
pk − pk−1

i− 1

)
into the

sum in the line above, Equation (3.11) is congruent to

n∑
i=1

(
pk − pk−1

i− 1

)
aγ,s−i+1 +

m

p

n∑
i=1

(
pk − pk−1

i− 1

)
δs−i+1

modulo m. Using Expression (3.10), Equation (3.11) is congruent to

aγ+pk−pk−1,s +
m

p

n∑
i=1

(
pk − pk−1

i− 1

)
δs−i+1
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modulo m. Therefore, we only need that

n∑
i=1

(
pk − pk−1

i− 1

)
δs−i+1 ≡ 0 (mod p) to

see that

Lm(n) ≤ γ + pk − pk−1.

We consider two cases.

In our first case, we address when p is an odd prime. Note that by Lemma 2, we

have

n∑
i=1

(
pk − pk−1

i− 1

)
δs−i+1 ≡ δs − δs−pk−1 + δs−2pk−1 − · · ·+ δs−pk+pk−1 (mod p).

Note that

(aγ+d,s − aγ,s)− (aγ+d,s−pk−1 − aγ,s−pk−1) + · · ·+ (aγ+d,s−pk+pk−1 − aγ,s−pk+pk−1)

(3.12)

is congruent to
m

p
(δs − δs−pk−1 + · · ·+ δs−pk+pk−1)

modulo m. We can show δs − δs−pk−1 + · · · + δs−pk+pk−1 ≡ 0 (mod p) by showing

Expression (3.12) is congruent to 0 modulo m. Since we already know that this

sum is congruent to 0 modulo
m

p
, it suffices to show Expression (3.12) is congruent

to 0 modulo p. Rewriting the sum in Expression (3.12) yields

p−1∑
i=0

(−1)iaγ+d,s−ipk−1 −
p−1∑
i=0

(−1)iaγ,s−ipk−1 . (3.13)

Note that if s ̸= bpk−1 + 1 for some b, then Expression (3.13) is congruent to

0 modulo p by Lemma 3 and because pk−1|γ, d. Assume then that s = bpk−1 + 1

for some b. Since pk|d, write d = cpk for some c ∈ Z+, which yields

γ + d = pk−1((l − 1)(p− 1) + 1 + cp).

So the first sum in Expression (3.13) is

p−1∑
i=0

(−1)iaγ+d,s−ipk−1 =

p−1∑
i=0

(−1)iaγ+d,(b−i)pk−1+1,

which by Lemma 4, is congruent to

p−1∑
i=0

(−1)ia∗(l−1)(p−1)+1+cp,b−i+1 (3.14)
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modulo p. By [2, Proposition 4], Pp(n) = pkPp(n1). By [6, Proposition 3.1],

Pp(n)|Pm(n). So

pkPp(n1)|cpk

and we conclude that Pp(n1)|c. Using this yields that Expression (3.14) is congruent

to
p−1∑
i=0

(−1)ia∗(l−1)(p−1)+1,b−i+1

modulo p. Looking at our other sum in Expression (3.13),

p−1∑
i=0

(−1)iaγ,s−ipk−1 =

p−1∑
i=0

(−1)iaγ,(b−i)pk−1+1,

which by Lemma 4 is congruent to

p−1∑
i=0

(−1)ia∗(l−1)(p−1)+1,b−i+1

modulo p. So we have that Expression (3.13) is

p−1∑
i=0

(−1)iaγ+d,s−ipk−1 −
p−1∑
i=0

(−1)iaγ,s−ipk−1 ≡ 0 (mod p),

which gives us that Lm(n) ≤ pk−1(l(p− 1) + 1).

In our second case, assume p = 2. We want to show Lm(n) ≤ 2k−1(l+1). Write

d = 2kc. Then the sum we are interested in is

n∑
i=1

(
pk − pk−1

i− 1

)
δs−i+1 =

n∑
i=1

(
2k−1

i− 1

)
δs−i+1,

which is congruent to

δs + δs−2k−1

modulo 2. Note that

(aγ+d,s − aγ,s) + (aγ+d,s−2k−1 − aγ,s−2k−1) ≡ m

2
(δs + δs−2k−1) (mod m),

so similar to before, δs + δs−2k−1 ≡ 0 (mod 2) if

(aγ+d,s + aγ+d,s−2k−1)− (aγ,s + aγ,s−2k−1) ≡ 0 (mod 2). (3.15)

Notice that Congruence (3.15) is congruent to 0 modulo 2 if s ̸= 2k−1b+1 for some

b. Assume then that s = 2k−1b+ 1. Then
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(aγ+d,s + aγ+d,s−2k−1)− (aγ,s + aγ,s−2k−1)

= (aγ+d,2k−1b+1 + aγ+d,2k−1(b−1)+1)− (aγ,2k−1b+1 + aγ,2k−1(b−1)+1).

Using γ + d = 2k−1((l − 1) + 1 + 2c), Congruence (3.15) is congruent to

(a∗(l−1)+1+2c,b+1 + a∗(l−1)+1+2c,b)− (a∗(l−1)+1,b+1 + a∗(l−1)+1,b)

modulo 2. Like before, we still have that Pp(n1)|c, so the left-hand side Congruence

(3.15) is congruent to

(a∗(l−1)+1,b+1 + a∗(l−1)+1,b)− (a∗(l−1)+1,b+1 + a∗(l−1)+1,b)

modulo 2, which is congruent to 0 modulo 2. Therefore, Lm(n) ≤ 2k−1(l + 1).

Finally, for Part (4), assume n = pk1
1 pk2

2 · · · pkt
r n1 and m = pl11 p

l2
2 · · · pltr m1 where

pi is prime, pi ∤ n1,m1 for every i and gcd(n1,m1) = 1. We wish to show that

Lm(n) = max{L
p
li
i

(n) | 1 ≤ i ≤ t}.

Let γi = L
p
li
i

(n), γ = max{γi | 1 ≤ i ≤ t}, and d = Pm(n). We have that

aγi+d,s ≡ aγi,s (mod plii )

a1+d,s ≡ a1,s (mod m1)

for every s and every i. Then, since γ ≥ γi for every i, we have that

aγ+d,s ≡ aγ,s (mod plii )

aγ+d,s ≡ aγ,s (mod m1),

which gives aγ+d,s ≡ aγ,s (mod m).

If we had that Lm(n) < γ, then aγ+d−1,s ≡ aγ−1,s (mod m), which implies

aγ+d−1,s ≡ aγ−1,s (mod plii )

for every i. But aγ+d−1,s ̸≡ aγ−1,s (mod p
lj
j ) for some j, which gives us a contra-

diction. Therefore, Lm(n) = γ.
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