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Abstract
Let D :Z»

w, — 27, be defined so

D(z1,x9,...,25) = (21 + 2 (mod m), x5 + x3 (mod m), ..., ,, + 1 (mod m)).

This function D is known as the Ducci function and for u € Z,, {D*(u)}2,, is
the Ducci sequence of u. Every Ducci sequence enters a cycle because Z7,, is finite.
In this paper, we aim to establish an upper bound for how long it will take for a
Ducci sequence in Z, to enter its cycle when n is even.

1. Introduction

We focus on an endomorphism, D, on Z such that

D(z1,x9,...,25) = (21 + 2 (mod m), x5 + x3 (mod m), ..., ,, + 1 (mod m)).

We call D the Ducci function, similar to [2], [7], and [9]. If u € Z@, then
{D*(u)}52, is known as the Ducci sequence of u. Because Z7, is finite, every

Ducci sequence eventually enters a cycle. We have a specific name for this cycle,
which we give in the following definition.

Definition 1. The Ducci cycle of u is
{v | there exists o € ZT U {0}, 8 € Z* such that v = D**#(u) = D%(u)}.
The length of u, Len(u), is the smallest « satisfying the equation
v = D**P(u) = D%(u)
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for some v € Z7 and the period of u, Per(u), is the smallest § that satisfies the
equation.

To see this in action, let us look at the Ducci sequence of (0,0,0,1) € Zé:
(0,0,0,1),(0,0,1,1),(0,1,2,1),(1,3,3,1),(4,1,4,2),(0,0,1,1). From here, we can
see that the Ducci cycle of (0,0,0,1) is (0,0,1,1),(0,1,2,1),(1,3,3,1), and (4, 1,4, 2).
We can also determine that Len(0,0,0,1) = 1 and Per(0,0,0,1) = 4.

The tuple (0,0,0,1) and any tuple of the form (0,0, ...,0,1) € Z", are important
when it comes to Ducci sequences. The Ducci sequence of (0,0,...,0,1) € Z", is
called the basic Ducci sequence of 7Z%,. This definition is first used in [7, page 302].
We also define

Pm(n) = Per(0,0,...,0,1)

and
Lm(n)! = Len(0,0,...,0,1).

Using these, our example from the previous paragraph tells us that Ps(4) = 4
and Ls(4) = 1. These values are significant because by [2, Lemma 1], if u € Z7,,
then Len(u) < L,,(n) and Per(u)|P,,(n). Therefore, P, (n) and L,,(n) provide a
maximal value for Per(u) and Len(u), respectively, for any u € Z7,.

For the rest of this paper, we are most interested in the value of L,,(n), partic-
ularly when n is even. Our goal is to prove the following theorem.

Theorem 1. Let n be even. Then the following are true.
1. If ged(n,m) =1, then Ly, (n) = 1.

2. If there exists p prime, k,ni,m; € Z*, such that n = p*ni, m = pmy,
k

ged(ny,my) =1, and p t ny,my, then Ly, (n) = p*.
3. If there exists p prime and k,l,ny,m; € ZT such that n = p*ny, m = p'mq,
ged(ny,my) =1, and p{ny,my, then L, (n) < p*~1((p—1) +1).

4. If there exists p1,pa, ..., pt prime where p1 < ps < --- < py, for 1 < <t, and
n=phiphz . pfng, m = pltpl2 - pltmy with ged(ny,my) = 1 and p; t ny,my
for every i, then

L(n) = maac{Lpii (n)]1<i<t}.

It is worth noting that we believe that the inequality in Part (3) of Theorem 1
is, in fact, an equality. We are able to confirm this is true for all m < 50 and even
n < 20 where ged(n,m) is a power of a prime. We would test for larger n,m, but
our program for computing L., (n) requires first finding P,,(n), which typically gets

1Both of these notations are very similar to how [2, Definition] defines them, and for Py, (n),
the notation is also like [7] and [9].



INTEGERS: 26 (2026) 3

larger as n,m increase. The values of P,,(n) get too large for our MATLAB [13]
program to find.

The work in this paper was done while the second author was a Ph.D. student
at Kent State University under the advisement of the first author and appeared as
part of the second author’s dissertation, found at [16].

2. Background

The Ducci function was originally defined as an endomorphism on Z™ or (ZTU{0})"
such that D(x1, 22, ...,2,) = (|21 — 22|, |22 — 23], ..., |7, — 21]), With this being the
most common definition of the Ducci function. Note that if D is defined on Z", then
D(u) € (Z* U {0})". Therefore, for simplicity, we will refer to both of these cases
as Ducci on Z™. Other papers, including [3], [5], and [14], use the same formula for
D but define Ducci on R™. It is, of course, necessary that we handle the cases of
Ducci on Z™ and on R™ separately.

Ducci sequences on Z" also always enter a cycle. There are discussions of why
this happens in [4], [7], [9], and [12]. A well-known fact for Ducci functions on Z"
is proved in [12, Lemma 3]: all of the entries of a tuple in a Ducci cycle belong
to {0,c} for some ¢ € Z*. Since D(Au) = AD(u) for all u € Z", this means that
we can focus on when Ducci is defined on Zs where we are using our definition of
D given at the beginning of the paper, particularly when examining Ducci cycles.
Because of the significance of Ducci on Z3 to the original Ducci case, this leads us
to wonder what happens if we define Ducci on Z}, for other values of m using our
definition given at the beginning of the paper. The first paper to look at Ducci on
Zr, is [17].

When looking at La(n) in particular, [7, page 303] is the first to show that
Ly(n) = 1 when nis odd. When n is even, [9, Theorem 6] tells us that if n = 2% 2k2
where k; > ko > 0, then La(n) = 22, This is then extended by [1, Theorem 4] to
all even n = 2¥ny where ny is odd. Here, Ls(n) = 2% Notice that this supports
Part (2) of Theorem 1 when m = p = 2.

If we allow n to be odd, we have a formula for L,,(n) from [11, Theorem 2].
Specifically, if m = 2'm; where n, m; are odd, then L,,(n) = I. For a case where n
is even, [10, Theorem 2| proves that if n = 2¥ and m = 2, then L,,(n) = 2*~1(1+1).

Before moving on, we would also like to give a few definitions that will be useful
later. If u,v € Z7,, then v is a predecessor to u if D(v) = u. We let K(Z3)) be the
set of all tuples in a Ducci cycle. It is stated that K(Z7,) is a subgroup of Z7, in
[2, page 6001]. A proof of this is provided in [10, Theorem 1].

We now consider another example of a Ducci sequence and its cycle. For this,
we will look at the basic Ducci sequence of ZS. We create a transition graph that
maps out all Ducci sequences on Z$ and then look at the connected component that
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(0,0,0,1,0,0)

(0,0,1,1,0,0)

Figure 1: Transition Graph for Z$

includes the basic Ducci sequence. This connected component is given in Figure
1. Notice that we can determine that Ly(6) = 2 from Figure 1, which agrees with
Theorem 1. We can also see that P»(6) = 6. It is worth noting that every tuple
in Figure 1 that has a predecessor has exactly two, which is the same as our m in
this case. This is because of [10, Theorem 4], which says that if n is even, then
every tuple that has a predecessor has exactly m predecessors. This theorem also
tells us that if u € Z", has a predecessor, call it (z1, 22, ..., Z,), then the remaining
predecessors are of the form

(1 + 2,00 — 2,23 + 2, o0y Ty — 2)

for some z € Z,, and all tuples of this form are predecessors to u. All of the tuples
in the transition graph in Figure 1 that have a predecessor, call them (z1, 2, ..., ),
also satisfy the condition that 1y — xo + 23 — -+ — 2, = 0 (mod 2). In fact, the
following theorem addresses this.
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Theorem 2. Let n be even. Then (x1,xa,...,2,) € Z" has a predecessor if and
onlyif ey —xo+x3 — 24+ -+ Tp_1 —x, =0 (mod m).

We first note that [12, Lemma 5] proves that this is true for m = 2 and [2, Lemma
4] proves it is true when m is prime.

Proof of Theorem 2. For the forward direction, assume (z1, 2, ..., Z,) has a prede-
cessor (Y1, Yo, -, Yn). Then

y1 + y2 = x1 (mod m)

Y2 —+ Y3z = T2 (mOd m)

Yn + Y1 = 2, (mod m). (2.1)
Subtracting the second congruence from the first yields
Y1 — Y3 = 21 — o (mod m).

Adding this to the third congruence produces y; + y4 = 1 — 2 + 3 (mod m).
Continuing creates the congruences

Y1 —Yn—1 =21 — X2+ —Tp_9 (mOd m)

and
Y1+ Yn =1 — 22+ - + 21 (mod m).

Using this and Congruence (2.1), we see that
Tp =21 — T2+ -+ + xp—1 (mod m),

which gives
1 —Xa+ + Tpo1 — Tn =0 (mod m),

and the forward direction follows.
For the backward direction, assume x1—xo+x3—24+ - -+Tp_1—2, = 0 (mod m).
It suffices to show that there exist y1,ys, ..., yn that satisfy the congruences

y1 + y2 = 21 (mod m)

Y2 + y3 = 2 (mod m)

Yn + Y1 = 2, (mod m).
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Let y; = 0. If we let yo = x1, then the first congruence will be satisfied. If we then let
Y3 = To — 1, the second congruence will be satisfied. If we continue this, following
the structure y; = Tj_1—Tj_2+ -+ when j is even and Yj =Tj_1—Tj_o+ -—XT1
when j is odd, then the first n — 1 congruences will be satisfied. This results in
Yn = Tp—1 — Tp—2 + -+ + x1. We then see that

Y1+ Yn =Tp-1 — T2+ -+ x1 (mod m).

By assumption, x,—1 — Zp_2 + -+ + x1 = x,, (mod m) and y; + y, = x, (mod m)
follow, and the final congruence is satisfied. Therefore, (x1,x2, ..., z,) has at least
one predecessor, (Y1, Y2, -, Yn)- O

Moving forward, if u € Z7,, it will be useful to have a tool that gives us infor-
mation about tuples in the Ducci sequence of u. To do this, let us first look at the

first few tuples in the Ducci sequence of a tuple (z1, z2, ..., z,) € Z:

(1,22, ..., Tp)
(1 + 22,20 + X3, .oy Ty, + 1)
(21 + 2w + 23,22 + 223 + gy ooy Ty + 221 + X2)
(x1 + 3x2 + 323 + x4, T2 + 323 + 324 + T5, ..., Ty + 321 + 322 + T3)

We can see that the coefficients of the x; in the first entry of each tuple in the
Ducci sequence occur in all of the entries of that tuple for some z;. For this reason,
we will let a, 5 represent the coefficient of z, in the first entry of D" (1, x2, ..., Zp).
Here r > 0 and 1 < s < n. The s-coordinate reduces modulo n, with the exception
that we write a, , instead of a, . Note that a, s also appears as the coefficient of
Zs—i+1 in the ith entry of D" (z1,xa,...,2,). A more thorough explanation of why
we can do this can be found in [10, page 6]. We also have that

D"(0,0,...,0,1) = (Grps Qrn—1, -y Qr.1)-

s—1
theorem also tells us that a, s = a,_1,s + ar_1,s—1, and more generally that

Additionally, by [10, Theorem 5|, when r < n, we have a,, = < " > This

n
Qp4t,s = E At i Qr s—i4+1
=1

when ¢t > 1.
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3. Proving the Main Theorem

Before we can prove Theorem 1, there are a few lemmas that we will need. We
begin with two lemmas about particular binomial coefficients. We believe that
both Lemmas 1 and 2 are known and have been proven before, but we are providing
proofs here for completeness.

Lemma 1. Let p be prime and j < p¥ —1, k> 1. Then

(pkj‘ Y = 1) (moap)

Proof. To prove this, we will do induction on j. Our base case is when j = 0, which

k-1
is satisfied by <p 0 ) = 1. For our inductive step, assume

(pk ") = o odp)

j—1

()= (o))

Because we proved the j = 0 case in the base case, we can assume 0 < j < p¥ — 1,
which will give us
k k
P~ 1) (p - 1) _
. + 1. = 0 (mod p).
< J J—1 ( )
Pk -1
Solving for < i ), we find that
k k
)=
. =—1|". mod p).
( J J—1 ( )

Pk -1
By induction, < . ) is congruent to
J

Note

modulo p or

modulo p, and the lemma follows. O
The next lemma is similar to Lemma 1.
Lemma 2. For k > 1 and p an odd prime

<pk —pk1> _ {(_1)c (modp) i — ph

J 0 (mod p) otherwise.
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Proof. We prove this via induction on j. Our base case covers when j = 0, 1, which

(pk _Opk_1> =1 (mod p)

(pk _1pk1) = 0 (mod p).

follow from
and

For our inductive step, assume that the lemma is true for j* < j. For j > 0, we use
the Chu—Vandermonde identity, which says that

L))

=0

A proof of this can be found in [15, Identity 57]. As a result,

(ZD B Zi; (p’“;) (pkj__pj_1> = 0 (mod p). (3.1)

If j < pF=1, the sum in Equation (3.1) is also congruent to

(o))

k_ o k—1
modulo p, in addition to being congruent to 0 modulo p, so (p p ) is congru-
J

ent to 0 modulo p. If j > p*~!, the sum in Equation (3.1) is congruent to
P\ [pk — phet . P\ [pk — pkel
0 J pht) N\ — Pkt
modulo p. This sum is congruent to 0 modulo p by Equation (3.1), which produces

ko k-1 ko ok—1
p =P pr—=p
( ; >—<j_pk_1)(modp).

k_ k=1
If j # ¢p®~! for some ¢, then (p p ) is congruent to 0 modulo p by induction.

k

Tk
If j = cpF~! for some ¢, then pe=p ) is congruent to —(—1)¢~! modulo p or
J
(—=1)¢ modulo p, and the lemma follows. O

Next, we would like to look at the a, ; coefficient for a particular r in Lemmas 3
and 4.



INTEGERS: 26 (2026) 9

Lemma 3. Let n = p*ny where p is prime, ny > 1, and ¢ > 1. Then for s # bp*+1
and 0 < b < ny, we have acr o =0 (mod p).

Proof. We prove this via induction on ¢ with our base case being when ¢ = 1, which,
by [10, Theorem 5] follows from

ok
Apk 5 = (s - 1) =0 (mod p)

precisely when s # 1,p* 4+ 1. For the inductive step, assume

a(c—1)pk,s = 0 (mod p)
for s # b'pF + 1 (mod n), 0 < ¥ < ny — 1. Using [10, Theorem 5], we can break
down a.pk ¢ as follows:

n
Qepk s = E Apk ;A (c—1)pk s—it+1* (32)
=1

k
Using a,x ; = <.p 1), Equation (3.2) is congruent to
i

Apk 10 (c—1)pk,s T Apk pk 410 (c—1)pk s —pk

modulo p. Notice that for s #Z bp* + 1 (mod n), Equation (3.2) is congruent to
0 modulo p where 0 < b < nj; — 1 by induction, and the lemma follows. O

For the remaining cases where s = bp* + 1, we have the following lemma.

Lemma 4. Let n = p*ny for some k and ny > 1, a, s be the coefficients for n, and
ay s be the coefficients for n1. Then, for ¢ > 1 and 0 <b < ny,

%
Aepk bpk+1 = Qe b1 (mOdp)'

Proof. We prove this via induction on ¢, starting with the base case of ¢ = 1. Notice

that because p* < n, we have a,r ; = <pok>, which is 1. Since a} ; = ((1)) =1, we
have that
apk 1 = aj 5 (mod p).
Similarly, .
Apk ph+1 = (pk) =1
p
and
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k
SO Gpk phyy = a7 o (mod p). Finally, for 2 < b < n;, because (p ) =0 (mod p)
' J1
1
when j; # 1,p" and ( > = 0 when js > 1, we have
J2
Apk bk 41 = @7 g (mod p)
for every 2 < b < n;. The base case follows from here.
Moving on to the inductive step, assume
a(c—l)pk,bpk-‘rl = a:—l,b—i—l (mOd p)
when 0 < b < ny. Then,
n
Qepk bpk+1 = Zap’“,ia(cfl)pk’,bkaeri' (33)
i=1
P

Notice that a,r , = ( > = 0 (mod p) when s # 1,p* + 1. Therefore, our

s—1
remaining pieces tell us Equation (3.3) is congruent to

Apk 10 (c—1)pk bpk+1 T Apk pk 410 (c—1)pk,(b—1)p*+1

modulo p. By induction, Equation (3.3) is congruent to

* *
G141 T Qo1 p

modulo p, which is congruent to a; ,,; modulo p and the lemma follows. O

Putting Lemmas 3 and 4 together allows us to visualize what Der* (0,0,...,0,1)
looks like in Z for n = pFng:
D*(0,0,...,0,1) = (0,0,...,0,a

0,...,0,a 0,...,0,az ). (3.4)

* *
c,m1? c,ny—1»

Bear in mind that the last set of ... in the right side of Equation (3.4) covers a much
larger area then the first two. We now have the pieces we need to prove Theorem
1.

Proof of Theorem 1. Assume n is even. Before proving Part (1) of this theorem, we
would like to first note that when m is prime, this case follows from [2, Lemma 5].
Assume that ged(n,m) = 1. We want to prove

(0,0,...,0,1,1) € K(Z,)

and
(0,0,..,0,1) ¢ K(Z2).
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We first use Theorem 2 to note that since —1 # 0 (mod m), the n-tuple (0,0, ...,0,1)
does not have a predecessor and therefore (0,0, ...,0,1) & K(Z},). We now note that
(0,0,...,0,1,1) has m predecessors and that if any of these predecessors are in the
cycle, then so is (0,0, ...,0,1,1). In addition to this, if there exists u,v € Z?, such
that D?(v) = D(u) = (0,0, ...,0,1,1), then u € K(Z?,) because otherwise we would
have

Len(v) > Len(u) = Len(0,0, ...,0,1) = L,,(n),

which cannot happen. Since (0,0,...,0,1) is a predecessor for (0,0, ...,0,1,1), it
follows by [10, Theorem 4] that the other predecessors of (0,0, ...,0,1,1) will be of
the form

u=(z,m—2,2,..,2,1 —2)

for some nonzero z € Z,,, so we only need to prove that there exists such a z where
u has a predecessor. By Theorem 2, u has a predecssor if and only if

z—(m—-2)+z—(m—2)+--+2z—(1—-2)=0 (mod m),

or, equivalently,
nz—1=0 (mod m).

Since ged(n,m) = 1, there exists a unique z such that nz = 1 (mod m). Therefore
we have a z that satisfies the above and (z,m — 2, 2, ..., 2,1 — z) has a predecessor.
Therefore, L,,(n) =1 and Part (1) follows.

For Part (2) of the theorem, it is worth noting that if m = p, then this case
follows from [2, Theorem 4]. Assume n = p*ni, m = pm; where ged(ni,m1) = 1,
and p{ny,m;. We must then start with proving that L,,(n) < p*.

Let Py (n) = d. From the first case of this theorem, we know L= (n) =1, which
means

agt1,s = a1,s (mod @)

or m
1 (mod —) s=1,2

ad+1,s = 75)7/
0 (mod —) otherwise.

p

We will use this to write

)

Agt1,s = m (3.5)
0s— (mod m) otherwise
p

5Sﬂ+1(modm) s=1,2
p

for some 0 < §;, < p. We start by showing aysy,, = a
First,

o+.s (mod m) for every s.

n
Apkyd,s = E Ad+1,iQpk —1, s—i4+1- (36)
i=1
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Substituting in our values for ag11 s from Congruence (3.5), we see that Equation
(3.6) is congruent to

n
m m m
((51* + 1)apk,178 + (62* + 1)apk,1’571 + —_— Zéiapk,1’87i+1
p P P =
modulo m, which after some rearranging is congruent to

n
m
Apk_1,s + Apk _1,5—1 + — E 67;apk71,87i+1

i=1

modulo m. Using a, s = ar—1,5 + ar—1,s—1 from [10, Theorem 5] and substituting

apk_1 ;41 for the appropriate binomial coefficient, Equation (3.6) is congruent to
n k
m p¥—1
apk’s+piz_;6i< o i )
m «— pF—1
modulo m. Notice that this base case will follow if — Z di . ] =0 (mod m),
s—1
i=1
~ o (Ph -1 pF—1
which will follow if Z (5i< ) ) = 0 (mod p). Note that in this sum, ( . )
s—1 s—1

i=1
is nonzero for only p* many consecutive terms for every s. We would like to use
this and the following three claims to prove

n k 1
E 5i<p ) =0 (mod p).
; s—1
=1

The claims are as follows:

1. 65 = 0 as long as s # bp® + 1, bp* + 2 for some 0 < b < %;
p
n
2. Opphy1 = Oppkyo, when 0 < b < Z?;

3. Oppry1 + Op—1)pr 42 = 0 (mod p) where 0 < b < Z%

n k
—1
Notice that Zdi (p , ) = 0 (mod p) will follow if all three claims true; the

s—1
claims will gilve1 us that most of the d; will be congruent to 0 modulo p, and since
at most p* terms in the sum will already be nonzero, there will only be 2 nonzero
terms in the entire sum, as for every pF consecutive §; you pick, only 2 will be
nonzero. This leaves us with 2 cases.
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In the first case, the two nonzero terms in the sum are adjacent to each other.

n k
—1
If p is odd, then because of Claim 1 and Lemma 1, we have that g 0; (p ) ) is
s—1
i=1

either congruent to
Obpr+1 — Oppt 42
modulo p or
_5bp’“+1 + 5bp’“+2
modulo p, both of which are congruent to 0 modulo p by Claim 2.

If p = 2 for our first case, then by Claim 1 and the well-known Lucas’s Theorem
(a proof of which can be found in [8, Theorem 1]), the sum

n ok _q
Z d; . = 52’€b+1 + 62kb+2 (mod 2),
i=1

S—1

which is congruent to 0 modulo 2 by Claim 2, and L,,(n) < p¥ would follow.
In the second case, the two nonzero terms are p* terms apart. This will only

happen if the remaining terms of E 0; <p . ) are congruent to
s—1i
i=1

k k
P —1 P —1
Opprt1 ( 0 ) +0(p—1)pk 42 (pk B 1)

modulo p, which, by Claim 3, would be congruent to 0 modulo p and L,,(n) < p*

would follow from here as well.
To prove the claims, note that by [2, Proposition 4], P,(p*n1) = p*P,(n1). We
therefore write d = cp* where ¢ = P,(n;). By Lemma 3, a4 = 0 (mod p) where

s#bkarlforsomeOSbﬁ]%‘ Then for s # bp* + 1,bp* + 2,

Ad+1,s = Qd,s + Gd,s—1,

which is congruent to 0 modulo p. This implies d, = 0 for s # bp* + 1, bp* + 2 and
Claim 1 follows.
For Claim 2,

Qdi1,bph41 — Ad41,bpk+2 = Ad bpk+1 T Ad ppk — Qd bpk+2 — Od bpk 115
which is
Qg ppk — Qg pph+2 = 0 (mod p)
because of Lemma 3 and because p*|d. Therefore, Claim 2 follows.
p )

As for Claim 3, we have

At 1,bpk+1 T Qdt1,(b—1)pk+2 = Qdbpk+1 T Qg ppk T Qg (b—1)pk+2 T Ad,(b—1)pk+1>
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which is congruent to
Ad,bpk+1 T Ad, (b—-1)pk+1
modulo p. By Lemma 4, this sum is congruent to
* *
ac,b+1 + ac,b

modulo p or
*
Qe 1,b+1

modulo p, where a; ; is the coefficient for n;. Therefore, by Part (1) of Theorem 1,

0 (modp) b>1

a +a _ =
d+1,bpk+1 d+1,(b—1)pk+2 {1 (mod p) b=0,1L

For b > 1,
m
Aq1,bph 41 Qa1 (- 1)pr 2 = (Oppr 11 + 6(bfl)p’“+2); (mod m),
which will give us dy,k11 + d(p—1)pr+2 = 0 (mod p). For b= 0,1,
m
Agt1,bph 41 T Gay1,(b—1)pk+2 = (Oppri1 + 6(6—1)1)’“-&-2)5 + 1 (mod m)
gives us Gpph 41 + dp—1)pk42 = 0 (mod p) for b= 0,1 and Claim 3 follows. Since all
three claims follow, this gives us L,,(n) < p*.

We now need to prove that L,,(n) = p*. Suppose L,(n) < p* — 1. Then
Qgyph—1,s = Apr_1 s (mod m) for every s and

n
Agtpk—1,5 = Z Ad+1,iQpk —2 s—i+1- (37)
i=1
If we separate out the terms where ¢ = 1,2, Equation (3.7) is

n
Ad41,10pk_2 s T Qd+1,20pk _2 51 + § Ad41,i0pk—2 s—it1-
i=3

Substituting our values for ag4+1,s from Congruence (3.5) and binomial coefficients
in for a,x_y ¢_;41 into the sum and rearranging, Equation (3.7) is congruent to

m — Pk —2
Ak _ Gpl_o g1 + — é .
pk 2,s+ pk—25—1 » ; s(s_z>

modulo m or

n k
m p¥ =2
- =>4
Qpk 1,5—1—101':1 (s—i)
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modulo m. This implies that n Z i (p ) ) = 0 (mod m), which produces
s—1

i=1

i: 5; <p - 2) =0 (mod p). (3.8)

i=1

Substituting §; = 0 for i # bp* + 1,bp* + 2 by using Claim 1, Congruence (3.8) is
congruent to

n1—1 k k
Pt —2 pr—2
bZ:;) 5bpk'+1 (8 _ bpk _ 1) + 6bpk+2 (S _ bpk o 2)

modulo p. Using Claim 2, Congruence (3.8) is congruent to

ni—1 k k
pr =2 Pt =2
Z 6bpk+1(<sbpk - 1) + (sbpk2>)
b=0
modulo p or
ny— 1
p¥—1
Z 6b”k“( - pkl)

pfl

modulo p. Notice that only one of the
s—bpk —1

) is not congruent to 0 modulo p.

-2
Therefore, we find that Z 0; <p . ) is congruent to either
—1

=1
(5bpk+1

modulo p or
—Oppk 41

modulo p for some 0 < b < ny — 1. As long as one of the dy,r; 1 coefficients is
nonzero, we have a contradiction. Suppose then that dy,r,; = 0 for every b. Then,
we would have L,,(n) = 1. Then (0,0,...,0,1,1) has a predecessor that is also in
the cycle. This is equivalent to one of its predecessors having a predecessor itself.
Since one of (0,0,...,0,1,1) is (0,0,...,0,1), all of its other predecessors will be of
the form (z,m — z, 2, ..., 2,1 — 2) for some z € Z,,. Suppose there exists nonzero z
such that this tuple has a predecessor. Then it must be true that

z+z4+z4+--+2—1+2=0 (mod m),

which would suggest nz = 1 (mod m). However, since gcd(n,m) > 1, we cannot
have this and we have a contradiction. Therefore, L,,(n) = p*.
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We prove Part (3) of the theorem via induction on [, where Part (2) of this
theorem serves as the base case of [ = 1. Assume that if n = pFny, m* = p!~tm1,
ged(ny,m?) =1, and p{ny,mi, then L,-(n) < p*~ (I —1)(p — 1)+ 1) = v. Now
assume that n = p*n; and m = p'm; with ged(ni,m1) = 1 and p{ny, m;. We set
out to prove that L,,(n) < v+ p¥ — p¥~1. Choose d such that p*|d and P,,(n)|d.
Then

m
Uytds = Gy s (mod —).

We use this to write m
Uytd,s = Qys + 555 (mod m) (3.9

for some 0 < §, < p. Note also that

n

a7+pk,pk—l’sz E Apk _pk—1 jQy s—j+1-
i=1

Since a,x

Pk — ph1
ph_pk—1; = ( )7 we plug these into ayr_,x-1; to see that the sum

i—1
above is i .
n -1
Z pT=p
< i1 )a'y,si+1~ (310)
i=1

Now consider a4 pk_pr-144 s

n

a,y+pk_pk—1+d75 = E apk_pk717ia7+d’sfi+1. (3.11)
i=1

Plugging our values for the a4 s—i+1 from Equation (3.9) into Equation (3.11),

we find that a,pr_pr-144 4 is congruent to

n
m
> " ape_pe1 (G emit1 + 5S,i+1;)

i=1

pr—ph

1
into th
i1 )mo e

modulo m. Separating the sums and plugging aps _ps—1,; = (

sum in the line above, Equation (3.11) is congruent to

n k k—1 n k k—1
P —p m o~ (PF = p

) Lty Sors
( i—1 )a”’s Z+1+pi_1< i—1 )““

=1

modulo m. Using Expression (3.10), Equation (3.11) is congruent to

m O [ph — pk=1
oyl — — Os—i
N +pk—pk 1’S+p;< i1 >sz+1
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modulo m. Therefore, we only need that Z
i=1

P — ph1
7 —1

>5si+1 = 0 (mod p) to
see that

Lyn(n) < v +p" —pFt.
We consider two cases.

In our first case, we address when p is an odd prime. Note that by Lemma 2, we
have

n pk _ pk—l
> ( o )5“-“ =05 — Oy ph1 0y _gph1 =+ 0o ph i pp1 (mod p).
i
=1

Note that

(a’v-‘rd,s - a%é’) - (a'y-&-d,s—p’“—l - a"y,s—p’“—l) +ooet (av-&-d,s—p""-i-p’“—l - a’%s—p’“-&-p""—l)
(3.12)
is congruent to
%((53 — Og_ph—1 + -+ 5S,pk+pk—1)
modulo m. We can show d; — d5_pk-1 + -+ + d5_prype-1 = 0 (mod p) by showing
Expression (3.12) is congruent to 0 modulo m. Since we already know that this

m
sum is congruent to 0 modulo —, it suffices to show Expression (3.12) is congruent

to 0 modulo p. Rewriting the sum in Expression (3.12) yields

p—1 p—1
D (Dt g it — Y (=1 a1 (3.13)
=0 =0

Note that if s # bp*~! + 1 for some b, then Expression (3.13) is congruent to
0 modulo p by Lemma 3 and because p*~!|y,d. Assume then that s = bp*~! +1
for some b. Since p*|d, write d = cp* for some ¢ € Z*, which yields

T+d=p" NI -1)(p—1)+1+cp).

So the first sum in Expression (3.13) is

p—1 p—1
Z(—l)zawd,s—ipk—l = Z(_l)la'y-‘rd,(b—i)p’“—l-&-la
=0 1=0

which by Lemma 4, is congruent to

p—1

Z(_1)ia’>('<l—1)(p—1)+1+cp,b—i+1 (3.14)
i=0
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modulo p. By [2, Proposition 4], P,(n) = p*P,(n1). By [6, Proposition 3.1],
P,(n)|Ppn(n). So

PP By(n1)]ep”
and we conclude that P,(n1)|c. Using this yields that Expression (3.14) is congruent

to
p—1

Z(_1)ia>(kl—1)(p—1)+1,b—i+1
i=0

modulo p. Looking at our other sum in Expression (3.13),

p—1 p—1
Z(_l)la%s—ip’“‘l = (1) ay,ijpr-141,
i=0 i=0

which by Lemma 4 is congruent to

p—1

Z(_1)ia>(kl—1)(p—1)+1,b—i+1
i=0

modulo p. So we have that Expression (3.13) is

p—1 p—1
Z(fl)za'y-‘rd,s—ipk*l - Z(*l)za’y,s—ipkfl = 0 (mod p),
=0 =0

which gives us that L,,(n) < p*~1(I(p — 1) + 1).
In our second case, assume p = 2. We want to show L,,(n) < 28=1(1+1). Write
d = 2kc. Then the sum we are interested in is

n k E—1 n k-1
p¥—p _ 2
Z ( i—1 )5s—i+1 — Z <i_1)5s—i+la
i=1 =1
which is congruent to
0s + 55—2’“—1

modulo 2. Note that

SE

(Aytd,s = Qy,s) + (Qypgs—ok—1 — Gy g_ok—1) = — (05 + 05_ok—1) (mod m),
so similar to before, d5 + J,_gr-1 = 0 (mod 2) if

(Aytds + Qypgs—28—1) = (Ay,s + Gy s_or—1) = 0 (mod 2). (3.15)

Notice that Congruence (3.15) is congruent to 0 modulo 2 if s # 2¥~1b+ 1 for some
b. Assume then that s = 28=1h + 1. Then
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(a‘H'd,S + a'y+d,s—2’“—1) - (a’%s + a'y,s—Q"'_l)

= (Qyqdor-1p41 T a'y+d,2’“*1(b—1)+1) — (A 2k-1p41 + ay,zkfl(b—1)+1)-

Using v +d = 287((I — 1) + 1 + 2¢), Congruence (3.15) is congruent to

*

(@(—1)+1426,641 T A1) +14266) — (@0—1)41,641 T G(1—1)+1,)

modulo 2. Like before, we still have that P,(n1)|c, so the left-hand side Congruence
(3.15) is congruent to

(a(—1)41,641 T 90—1)116) = (@G—1)+1,041 T C—1)+1,)

modulo 2, which is congruent to 0 modulo 2. Therefore, L,,(n) < 2871(1 + 1).
Finally, for Part (4), assume n = p’f1p§2 ~opPtny and m = plfpl; - -ptm; where
p; is prime, p; { n1,my for every i and ged(ni, m1) = 1. We wish to show that

Ly(n) = max{Lpii (n)]1<i<t}.

Let v = L 1, (n), vy =max{y; | 1 <i<t}, and d = P,,(n). We have that

Ary;+d,s = Ay, s (mOd pil)
(1445 = a1,5 (mod my)
for every s and every i. Then, since v > ~; for every i, we have that
_ l;
ytd,s = Gy,s (mod pj')
Qytd,s = Gry,s (mod mq),
which gives a4, = a,s (mod m).
If we had that L,,(n) <, then ayy4-1.s = ay—1,s (mod m), which implies

Qrytd—1,5s = Ay—1,s (mOd pil)

for every i. But ay+4—1,5 # ay—1,s (mod p;j) for some j, which gives us a contra-
diction. Therefore, L,,(n) = 7. O
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