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Abstract

Finding the distributions of permutation statistics across classes of permutations
that avoid certain patterns has attracted significant interest in the literature. In
particular, Bukata et al. found the distribution of a single statistic among ascents
(asc), descents (des), double ascents (dasc), double descents (ddes), peaks (pk), and
valleys (vl) over permutations avoiding any two patterns of length 3. Moreover, Han
and Kitaev found the joint distribution of six classical statistics (asc, des, lrmax,
Irmin, rlmax, rlmin) over the same classes of permutations. In this paper, we
generalize all of these results by deriving explicit formulas for the joint distributions
of all of the above-mentioned statistics over permutations avoiding any two patterns
of length 3. All the multivariate generating functions we obtain are rational.

1. Introduction

Let [n] :={1,2,...,n}. A permutation of length n is a rearrangement of the set [n].
Denote by S, the set of permutations of [n]. A permutation w7y -« 7, € S, avoids
a pattern p = p1p2---pr € Sy if there is no subsequence m;, m;, - - - m;, such that
mi; < 7, if and only if p; < p,,. For example, the permutation 45123 avoids the
pattern 132. Let S, (7, p) denote the set of permutations in .S,, that avoid patterns
7 and p. For a comprehensive review of the field of permutation patterns, which
has received considerable attention in the literature, we direct the reader to [7] and
references therein.

Of interest to us are the following classical permutation statistics. For 1 < i <
n — 1, we say that i is an ascent (resp., descent) in w € S, if m; < w41 (resp.,
m; > mi+1) and asc(m) (resp., des(w)) is the number of ascents (resp., descents) in
m. Also, m; is a right-to-left maximum (resp., right-to-left minimum) in = if m; is
greater (resp., smaller) than any element to its right. Note that 7, is always a right-
to-left maximum and a right-to-left minimum. Denote by rlmax(7) and rlmin(r)
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the number of right-to-left maxima and right-to-left minima in 7, respectively. We
define left-to-right maxima, counted by lrmax(r), and left-to-right minima, counted
by lrmin(7), in a similar way. For 1 < i < n — 2, we say that i is a double ascent
(resp., double descent) in w € S, if m; < mip1 < Wipo (vesp., m > Wip1 > Wit2).
We denote by dasc(m) (resp., ddes(w)) the number of double ascents (resp., double
descents) in m. For 1 < i < n — 2, iis a peak (resp., valley) in w € S, if m; <
Tit1 > Tita (vesp., m; > mir1 < mir2), and pk(w) (resp., vl(7)) is the number of
peaks (resp., valleys) in 7. For example, if 7 = 453126, then des(7) = 2, Irmin(7) =
Irmax(7) = rlmin(r) = asc(n) = 3, and rlmax(w) = dasc(n) = ddes(w) = pk(w) =
vl(m) = 1.

In the literature, there is a research trend focused on determining the distri-
butions of permutation statistics within classes of permutations avoiding certain
patterns (see, for example, [1, 2, 3, 4, 6] and the references therein). In par-
ticular, Bukata et al. [3] found the distribution of a single statistic in the set
{asc, des, dasc, ddes, pk, vl} over permutations avoiding any two patterns of length
3. Moreover, Han and Kitaev [6] found the joint distribution of six statistics (asc,
des, lIrmax, Irmin, rlmax, rlmin) over the same classes of permutations. In this
paper, we generalize all of these results by finding explicit formulas for joint distri-
bution of (asc, des, Irmax, lrmin, rlmax, rlmin, dasc, ddes, pk, vl) over permutations
avoiding any two patterns of length 3. All the multivariate generating functions we
have derived are rational.

In what follows, we let g.f. stand for “generating function”. We will derive closed
form expressions for the following g.f.’s:

Firp) (2,04, u,0,8,t,y,2,6,m) 1=
TS anpese(n)gdesn) ylrmax(m) yrimax(m) glrmin(m) rimin(m),, dasc(r) ,ddes(x) ppi() V()
n>0 weSy(7,p)
for all 7 and p in Ss.
The following results appear in [8].

Theorem 1 ([8]). Let A, (7, p) be the number of elements in S, (T, p). Then,

(a) A,(123,132) = A,,(123,213) = A,,(321,231) = A,,(321,312) = 2"~ 1;
(b) A,(231,312) = A,(132,213) = 2",

(c) A,(213,312) = A,(132,231) = 2"~1;

(@) A,(213,231) = A,(132,312) = 2",

(e) A,(132,321) = A,,(123,231) = A,,(123,312) = A,(213,321) = 1+ (});

A
A
A
A
0 ifn>5
(£) A,(123,321) n ifn=1o0rn=2
4 ifn=3 orn=4.

In order to determine the distribution of the statistics over S, (7, p), for every
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7,p € S3, based on the properties of the g.f.’s discussed in [3, 6] (which are estab-
lished using trivial bijections), it is sufficient to examine the distributions of the
statistics over the first pair in each of (a)—(e) in Theorem 1 (the case (f) is trivial
and does not require consideration).

This paper is organized as follows. In Section 2, we derive all our distribution
results, which are summarized in Table 1. To illustrate the applicability of our
general formulas, we specialize them to pairs of corresponding statistics that appear
in [3]; see Table 2 for references. Finally, in Section 3, we provide concluding

remarks.
(asc, des, Irmax, lrmin, rlmax, rlmin, dasc, ddes, pk, v1)
Sn(123,132) Theorem 2
S, (132,321) Theorem 3
Sn(231,312) Theorem 4
Sn(213,231) Theorem 5
Sn(213,312) Theorem 6

Table 1: G.f.’s for joint distributions of the statistics over S, (7, p)

(asc,des) | (dasc,ddes) | (pk,vl)
Sn(123,132) (5) (6) (7)
S,(132,321) | (13) (14) (15)
5.(231,312) | (22) (23) (24)
S,(213,231) (30) (31) (32)
Sn(213,312) (34) (35) (36)

Table 2: References to formulas for the g.f.’s of the distributions of pairs of statistics
over S, (7, p)

2. Distributions over S, (1, p)

In this section, we find joint distribution of 10 classical statistics over five classes
of pattern-avoiding permutations. Given permutations @ € S, and 8 € Sy, let
a® B € Sy denote the direct sum of a and 3, and let « © § € S,4p denote the
skew-sum of « and 3, defined as follows [3]:

0®f = a(?), 1<i<a
N a+B(i—a), a+1<i<a-+b,

0o f= ali)+b, 1<i<a
N Bli—a), a+1<i<a+bd.
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For example, if a = 231 € S3 and 8 = 3241 € S4, then a @ § = 2316574 and
a e [ =6753241.

2.1. Permutations in S,,(123,132)

We first describe the structure of a (123,132)-avoiding permutation. Let 7 =
T T € Sp(123,132). If mp = n,1 < k < n, then my > m > -+ > 1
in order to avoid 123. On the other hand, in order to avoid 132, if i < k, then
m >n —k. Hence, m; =n —ifor 1 <i <k —1, while m1 1742 - m, must be a
(123, 132)-avoiding permutation in S,_x. So 7™ = (a® 1) © 5, where @ € S_; is a
decreasing permutation and 8 € S, is a (123,132)-avoiding permutation. We use
the structure of 7 to prove the following theorem.

Theorem 2. For S,,(123,132), we have
A

1 — fmpgsva? — qszz — qsvrz + q2s2vr222’

(1)

F(123,132) (xvpa q,u,v, Svta Y, Zaév m) =

where

A =1+ sz(tuv + pt*uve — g(lmpuzr + 2 + v2)) + ¢*s3tuva® (puz(m — 2)
+ 2(—=1 — mptuz + z + ptuzz)) + gs*vz?(¢z* + pt?uz(m(u +v) — u(l 4+ v)2)
+tu(—z —v(=1+Ip(m — u)x + 2))).

Proof. Let m = 7y -+ -7, € S,(123,132). If n = 0, the empty permutation con-
tributes 1 to F(1237132)(a:,p, q,u,v,8,t,y,2z,¢,m). If n =1, the only permutation
contributes wuvst to F(123132) (7, P, q,u, v, 8,t,y,2,£,m). Now, we consider three
cases based on where the element n, n > 2, appears in 7.

Case (a): m; = n. In this case, we let the g.f. for these permutations be

G(123,132) (%, P, ¢ w, v, 8,8, Y, 2, £, m) =
3 3 g pase(m) gdes(m), lrmax(r) , rimax(r) glrmin () primin (), dase(r) ddes(r) gok(r) ., vi(m)
n>2 w€S,(132,321)

TL=n
Case (b): m, =n. In this case, 7 = (n—1)(n—2) - - - In, and we have the following
three subcases.

Subcase (1): n = 2. In this case, the term corresponding to 7 = 12 is z?pu’vst?.

Subcase (2): n = 3. In this case, z®pqu?vs?t?m corresponds to m = 213.

Subcase (3): n > 4. In this case, the corresponding g.f. is

4,22 342
P i i i rEpguvs it zm
§ l'lpql 2’LL2’081 1t2zz 3m _ ,
‘ 1—xqzs
>4
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where positions 1,2, ..., (n — 3) are double descents, and 7, _om,_17, = 21n con-
tributes to vl(r). So the g.f. for permutations in Case (b) is
x4pq2u2053t2 23pqulvs?t?

zZm m

—_— = xzpu2vst2 + —
1 —xqzs 1 —xqzs

x2puzvst2 + x3pqu2v52t2m +
Case (¢): mpr =n and 1 < k < n. In this case, we have my > w9 > -+ > mp_1 and
m=n—ifor 1 <i<k—1 Then 7= (a®1)O S, where the structure of 1 © 3
is the same as in Case (a). Note that, in this case, T2 = n is not a left-to-right
minimum. Next, we consider three subcases based on k.

Subcase (1): k = 2. In this case, 11 = n — 1 < 3 = n, and we obtain the g.f.

xpuéG(lZB,lBZ) (37717’ q,u,v,s, ta Y, z, 67 m)7
where m; = n — 1 < m3 = n > w3 contributes to pk(w).

Subcase (2): kK = 3. Inthiscase, 11 = n—1 > m = n—2 < 3 = n and
T =n—2 < w3 =n > my. We see that the corresponding g.f. in this case is

x2pqusm£G(123,l32) (1'7 b,q,u,v,Ss, ta Y, =, ga m)

Subcase (3): k > 4. In this case, positions 1,2,...,k — 3 are double descents. We
see that the corresponding g.f. in this case is

i1 i1 ie2

lepql us'” 2" mEG(123,132)($aP,q7uﬂ)a Sat7y727‘€u m)

>3

30042 2
r°pq us®zml
= 17G(123,132) (xvpa q,u,v,s, ta Y, %, K? m)7
— xqsz
where 7y _om,_17 contributes to vl(m) and 7i_177E41 contributes to pk(w). So
the g.f. for permutations in Case (c) is
prKG(123,132) (J:, D, q, U, v, 8,t, Y, 2, 67 m) + x2pqusm€G(l23,132) (xapz q,u,v,Ss,t, Y, z, 67 m)
3.2 2
x us“zml
+ i)in(IQ&ISQ) (Iapa q,u,v,s, t? Y, 2, E’ m)
— xqsz
:mPUEG(IQSJSQ) (xap7 q,u,v,Ss, ta Y, 2z, g? m)
2
x pqusmt

:lpin(lQ3,132) (1"7p7 q,u,v,Ss,t, Y, 2z, £7 m)
— xqsz
Summarizing Cases (a)—(c) yields

F(123,132) (xapa q,u,v,s, t7 Y, 2, K? m) =1 + zuvst + G(123,132) (39710, q,u,v, S, ta Y, z, & m)
+ wpUZG(123,132) (ma P, q,u,,8,t,Y, 2, Z? m)
2
x“pqusmit
1761(123,132) (‘rapv q,u,v,s,1,y, 2, 47 m)
— xqsz
xquu2v52t2m

+ mZquvst2 +
1 —xqzs

(2)
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Next we compute G 123,132 (%, p, ¢, u, v, 5,1, %, z, £, m), which appears in Case (a). If
w1 = n, then 7 = 18 3, and the element n is the only left-to-right maximum, a left-
to-right minimum, and a right-to-left maximum, and we do not need to consider
left-to-right maxima for 8. Note that, in this case, n — 1 is not a left-to-right
minimum. If n = 2, then 7 = 21, and the respective term in the g.f. is x2quv?s3t.
Next, we consider three subcases based on where the element n — 1, n > 3, appears
in 7.

Subcase (1): my = n — 1. In this case, the structure of g is the same as in Case
(a), and we obtain the g.f.

l'q'LL’USZG(ng)ng) ('Iapv q, 1a v, s, t7 Y, z, Ea m)a

where 7 > w3 > 73 contributes to ddes().

Subcase (2): mp =n — 1. In this case, 8 = (( D 1) O, where ( = (K’ —1)---1,
and the structure of 16+ is the same as in Case (a). We then consider the following
two subsubcases.

Subsubcase (i): &/ = 3. Inthiscase, 1 =n > m =n—-2<m3 =n—1
contributes to vl(7) and 7 = n—2 < m3 = n —1 > m4 contributes to pk(m). So the
term corresponding to 7 is

.’L‘quuvssz(lzg’lgg) (xa b q, 1a U, S, t7 Y, %, Ea m)

Subsubcase (ii): k' > 4. In this case, positions 1,2,..., (k" — 3) are double
descents, so the term corresponding to 7 is

Zmipqi_1uv8i_1zi_2m£G(123,132) (377]9’ q, 17 v, s, ta Y, z, 67 m)
>3
23pqPuvs?zml

=—CG 77717 avta 7a£7 .
1— zgaz (123,132)(95}7 ¢, 1,v,8,t,y,2,4,m)

So the g.f. for permutations in Subcase (2) is given by

3042 2
r°pquvszml
(vTQPCIUUSmg + 11'(]52) G(123,132) (I,p, q, 17 v, S, ta Y, %, 67 m)

x2pquusml

=—CG : 7a717 77ta 7a€7 .
1— zgsz (123,132)(»’qu v, 8,t,9,2,£,m)

Subcase (3): m, = n — 1. In this case, the structure is the same as in Case (c).
The corresponding g.f. is

3 2,242

inpqi—2uvzsi—1t22i—3m _ T7pquu”sTttm

1—xzqzs
i>3 q
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Summarizing Subcases (1)—(3) yields

G(123,132) (1’7177 q,u,v,Ss, t7 Y, z, 67 m) :IQUUSZG(123’132) ($7 p,q, 1> v, $,t, Y, 2, év m)

2
r“pquvsml
1 G(123,132)("Eapa q,l,v,s,t,y,z,ﬁ,m)
— xqsz
3 22,2
t
D pquistm | 2202 3)
1 —zqzs

Letting u = 1 in Equation (3), we obtain

G(123,132) (l‘,p, q, 1, v, $,t, Y, 2z, 67 m) :quSZG(123,132) (x7p7 q, 17 v, s, t, Y, z, 67 m)

2
x pqusml
11)(170(123,132)(567177 q,1,v,5,t,y,2,6,m)
— xqsz
3 2,242
rpquTsTtm £2qv2st. (4)
1 —xzqzs
By simultaneously solving (2)—(4) we obtain the desired result. O

Corollary 1. Letu =v =s =t = 1. By setting four of the six variables p, q, y, z,
£, and m equal to 1 in Equation (1), we obtain the joint distributions of (asc,des),
(dasc, ddes), and (pk,vl) over S, (123,132):

n_asc(mw) des(w 1 +x— 2q$ + p.’E2 — qxz - pqxz + q2x2
> S atptmgte < ; (5)
1 — 2qx — pqz? + ¢%x2
n>0 weS,(123,132)
2 3 2 3
n,_ dasc(w) ddes(w) __ 1 +r+rt —xz—x"z—x"2
POEEED DR A p—— ! (6)

n>0 7€S,(123,132)

Z Z 7 PR i) l—z+ (1 —tm)z®> —(1—m)z® (2— £+ (£ — 1)x) G

1—2x + x2 — fma?
n>0 meSy(123,132)

2.2. Permutations in S,, (132, 321)

We first describe the structure of a (132,321)-avoiding permutation. Let 7 =
T € Sp(132,321). If mp = n, then 7 = nl12---(n —1). If 7y = n and
1 < k < n, then mpy1 < Ty < +-- < 7w, in order to avoid 321. On the other
hand, in order to avoid 132, if 1 <i < k — 1, then m; = n — k + 4. If m,, = n, then
Ty -+ 1 € Sp—1(132,321). Som = (a®1)S B, where a®1 € S, and S € Sy, i
are two increasing (132, 321)-avoiding permutations. We use the structure of 7 to
prove the following theorem.

Theorem 3. For S,,(132,321), we have

A
1 —ptay) (1 — puay)(1 — ptuxy)’

(®)

F(132,321) (x7p7 q,u,v, 8,8, Y, 2, g? m) = (
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where
A =1+ stuvx + pst2u2v1’2 + qs2tuvzx2 + mpqs2t2u2vm3 + mpqsthuv2:c3 + épqsztu%zxg
+ fmeqSQtZusvx4 + Zmp2q52t2u2v2x4 — ptxy — puxry — pqutu2v2x3y — pst2uvx2y
2 2 2 2 2 2,3 .2 3 2,2 3 3 2,2 2 3
—pstu vz y — pstTuTvxr Ty — p stuTvx Ty — p stTuvxy — pgs t uvTx"y — ptuxy
2,2 2 2 3 2 2,2 3 4 2 2,2 2 2 4 2 2,2 2 2 4
—pgsttu vy — mpqsTtiutvxTy — IpTqsTttut vy — mpigsTtTutvTay
— mp2q52t3u2v2x4y — €p2q52t2u31121:4y — Kmp3q52t3u3112m5y + thua:QyQ + p2t2um2y2
+p2tu2m2y2+p2st2u2vx3y2+p25t3u2v:ﬁ3y2+p28t2u3vm3y2+p35t3u3v:c4y2
+p2qs2t2u2v2x4y2+p2qs2t3u2v2x4y2+p2q32t2u302x4y2+£p3qs2t3u3v2m5y2
+ mp3q52t3u3v2x5y2 B p3t2u2x3y3 _ p3st3u3vx4y3 o p3q32t3u3v21:5y3.
Proof. Let m = 71 ---m, € 5,(132,321). If n < 1, then the corresponding g.f. is
1+ zuvst. For n > 2, we consider the following three cases.
Case (a): mp = m. In this case, 7 = nl2---(n — 1). The element n is the only
left-to-right maximum, a left-to-right minimum, and a right-to-left maximum. So

Irmax(7) = 1, and we consider the following three subcases.

Subcase (1): n = 2. In this case, 7 = 21 and the g.f. is 22quv?s?t.

Subcase (2): n = 3. In this case, 7 = 312 and 1 is a valley, so the g.f. is
23pquv?s*t?m.

Subcase (3): m > 4. In this case, 1 is a valley and 2,3,...,(n — 2) are double
ascents, so the g.f. in this case is

2t3

> alp P qunst T my P = T s my.
; 1 —zpty
i>4
Hence, the g.f. of permutations with 71 = n is given by
4,2 0002243 3 2,242
T uves“t m T7pquust m
x2quv232t + J:quuv252t2m + rTrguu s tmy $2quv252t + rpquv s tm
1 — zpty 1 — xpty

Case (b): mpy =nand 1 < k < n. In this case, 7 = (a®1) © 8, where a € Sj_; and
B € S,—r are two increasing (132, 321)-avoiding permutations. Note that m_17k
is an ascent, and when k > 3, we have that 1,2, ..., (k—2) are double ascents. The
g.f. for the permutation o € Sy is
o Y,
xpusg + szpzuzsgyz—l _ rpus

> 1 — zpuy

By Case (a), we obtain that the g.f. for 16 8 € S, _g41 is

3 2,2

r°pquuct m

P2quott + ZRA T
1 — xpty

)
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noting that, in this case, n is not a left-to-right minimum. So the g.f. of the per-
mutations in Case (b) is

xpust < 5

3 2,2
T’pgquut m
T quv2t+pq>
1 — zpuy

1 — xpty
Case (c): m, = n. In this case, we let the g.f. for these permutations be
G(132,321) (%P, q,u,v,8,t,y,2,¢, m) =
Z Z mnpasc(w)qdes(w)ulrmax(w),Urlmax('/r)Slrmin(w)trlmin(w)ydasc(w)dees(w)zpk('/r)mvl('/r).
n>2 LS
=7 5n(132,321)
Considering Cases (a)—(c), we conclude that
3 2,242
r°pquucst m
Fusz,321) (7,0, 4, u,v,5,t,y, 2,£,m) =1 4 zuvst + z2quv?s?t + T Pquyv s tm
1 — zpty
3pquut®m
1 — zpty

4
i (JJZQUUZt +
1 — xpuy

—|—G(1327321)(z,p,q,u,v,s,t,y,z,f,m). (9)

Next we evaluate G (132 321)(2,p, ¢, 4, v, 5,1, ¥, z,£,m), which appears in Case (c).
If 7, = n, then 7 = o ® 1 and rlmax(7) = 1. Any non-empty permutation in
Sn—1(132,321) is possible for a and we do not need to consider right-to-left maxima
of a. We now divide the permutations into three classes depending on the position
of n — 1.

Class A: m; = n — 1. In this case, we have the following three subclasses.
Subclass (1): n = 2. In this case, 7 = 12, and the g.f. is z2puvst?.

Subclass (2): n = 3. In this case, 7 = 213 and 1 is a valley, so the g.f. is
$3pqu2uszt2m.

Subclass (3): n > 4. In this case, 1 is a valley and 2,3,...,(n — 2) are double
ascents, so the g.f. in this case is
Z 22 qulos iy = z*p?quivs*tPmy

= 1 — zpty

Hence, the g.f. for the permutations in Class A is

4,2 2, 2,3 3 2,242
T u“vs“t’m r’pquivs“t‘m
P q y:zzpu2vst2+ pPq

:vzpuzvst2 + x?’pquzvsthm + — _—
1 — zpty 1 —apty

Class B:mp =n—1land 1 < k' <n—1. In this case, we have 7 = (((B1)0~v) @1,

where ( and « are non-empty increasing permutations. Now, /1 < mpy =n—1>

41 and 1,..., (K = 2), (k' +1),...,(n—2) are double ascents. So the g.f. for { is

S . mpusf
riptutslyt Tt =
; 1 — xpuy
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The g.f. for « is similar to that for Class A. Note that n — 1 is not a left-to-right
minimum, so the g.f. for the permutations in this case is

xpusl  x3pquvst®m B zpquivs*timl

1 — xpuy 1 — apty (1 — zpuy)(1 — zpty)’

Class C: m,_1 =n — 1. In this case, we let the g.f. for these permutations be

GG(132,321) (CE, P, q,u,v,8,t,y, 2, ‘67 m) =
Z Z $npasc(7r) qdcs(ﬂ)ulrmax(w) ,Urlmax(ﬁ) Slrmin(‘rr) trlmin(ﬂ') ydasc(w) decs(ﬂ)epk(ﬂ')mvl(ﬂ') .
n>

>3 T
Sn(132,321)
Tp="n
Tp—1=n—1

Considering Classes A—-C, we conclude that
3 2 242
t
G(132 321) (x7p7 q,u,v, s, t7 Y, 2, 67 m) :x2pu2vst2 + w
’ 1 — zpty
zpqulvs?timl
(1 — zpuy)(1 — zpty)

+ GG(132,321)(x7p7 q, U,U,S,t,y,Z,Z, m) (10)

Next, we evaluate GG (132,321)(, P, ¢, 4, v, 5,t,y, 2,£,m), which appears in Class C.
Now 7 = o/ @12, and any non-empty permutation in S, _2(132,321) is possible for
o’. We do not need to consider right-to-left maxima of o/, since rlmax(r) = 1. We
divide the permutations into three subclasses depending on the position of n — 2.
Subclass (1): m; = n — 2. In this case, we have the following two subsubcases.

Subsubcase (i): m = 3. In this case, 7 = 123 and 1 is a double ascent, so the g.f.
is 23p2udvstdy.

Subsubcase (ii): n > 4. In this case, 7= (n —2)12---(n —3)(n—1)n,so 1 is a

valley and 2,3,...,(n — 2) are double ascents. Thus, the g.f. in this case is
Z 2'p 2 quivs®t T imy T3 = —J;4p2qu31152t3my
= 1 — zpty
So the g.f. for the permutations in Subclass (1) is
4
x3p2ugvst3y 4 rip?qudvs?t3my
1 — zpty

Subclass (2): mpr =n—2and 1 < k' < n—2. In this case, we have 7 = ((('®1)6
¥ ®12, where (' € Sy—1 and 4’ € S,,_p»_o are non-empty increasing permutations.
Now, mprn_1 < mpr =n —2 > mgryr and 1. . (k” - 2), (k// + 1), ceey (Tl - 2) are
double ascents. So the g.f. for ¢’ is

L . mpusf
riptutslyT? =
; 1 — xpuy
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1:4p2 qu3vst3my

The g.f. for v is i opty
the g.f. for the permutations in this case is

. Note that n — 2 is not a left-to-right minimum, so

rpusl x4p2qu3vst3my_ 22piqutvsitimiy

1 —axpuy 11— apty (1 — xpuy)(1 — apty)
Subclass (3): mp_2 = n — 2. In this case, the g.f. for these permutations is
prUtZJGG(132,321) ($, p,q,u, 1a 5, t) Y, z, Ea m)a

where n gives zpuvty(n,—o =n—2 <m,_1 =n—1 <, =n) and we do not need
to consider right-to-left maxima of 7y - -« m,_1.
Considering Subclasses (1)—(3), we conclude that

GG(132,321) (%I% q,u,v,s, ta Y, 2, & m) :xpuvtyGG(132,321) (mvpv q,u, ]-7 S, ta Y, =, ‘gv m)
4.2 3., .243

3923 .3 TopPquvs<timy

By 7
+ z°p uvst’y 1 — apty

2t3

22piqutvstdmiy

(1 — zpuy)(1 — apty)

(11)

Letting v = 1 in Equation (11), we get

GG(132,321) (m7pa q,u, 17 S, t, Y, =, ev m) :prtyGG(132,321)($apa q,u, ]-7 S, tv Y, 2, év m)
2t3

4,2 3
39 3.3 T pfqu s*timy
t
+ x°p u sty + 1 — apty

2Ppiquts®t3mly (12)

(1 = zpuy)(1 — xpty)
By simultaneously solving (9)—(12), we obtain the desired result. O

Yy Yy g

Corollary 2. Letu=v =s=1t=1. Then, by setting four out of the six variables
D, ¢, Y, z, £, and m equal to one individually in Equation (8), we obtain the joint
distributions of (asc, des), (dasc, ddes), and (pk,vl) over S, (132,321):

Z Z l‘npasc(w)qdes(w> _ 142 — 3pz — 2pg;2 + 3p2x2 + q$2 + p2x3 _ p3;1;3

— 3 ’

n>0 weS,(132,321) (1-p2)

(13)
Z Z xnydasc(ﬂ)zddes(ﬂ) _ B _ (14)

(1 —zy)?
n>0 weS, (132,321)
n ppk(w), __vl(w) _ C

Z Z " P m = my (15)

n>0 mweS, (132,321)

where
B = 1+x(1-3y)+2?(2—3y+3y°)+2° (3—5y+3y> —y°)+z* (2—y) (1—y)* —2° (1-y)y,
and C =1-22+222 - (3—(¢—2m)z®> + (3 —20)(1 — m)z* — (1 — £ — m + fm)x>.
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2.3. Permutations in S,,(231, 312)

We first describe the structure of a (231,312)-avoiding permutation. Let 7 =
T € Sp(231,312). If mp = n, then 7 = n(n —1)---21. If 7y = n and
1 < k < n, then w41 > Tgyo > -+ > m, in order to avoid 312. On the other
hand, in order to avoid 231, m; = n+k—iif k+1 < i < n, and mymg-- - mp_1
must be a permutation in Sk_1(231,312). If m, = n, then mms - m,_1 must be
a permutation in S,_1(231,312). Namely, for 7 € S,(231,312), its structure is
T =a®(18p), where a € S;-1(231,312) and 1 & 8 € S,,_p4+1 is a decreasing
(231, 312)-avoiding permutation. We use the structure of 7 to prove the following
theorem.

Theorem 4. For S,(231,312), we have

F(231,312)(xap7Q7uaUaSat7y7za€’m) = (16)

So] IS

where

A =(1 — quzz)(Umpqtuz? — (1 — ptuzy)(1 — qxz)) + ¢>s>tuv?a®
+lgz(—1+ v+ 2z — quaz?)) + (1 — gz2)((1 — 2)(1 — quaz) — ptuz(z2(1 + Lgue — quaz)
+y(1 = 2)(1 — quz2)))) + sz(q(1 + v)2(1 — qz2)(1 — quaz) + v(—1+ qz(1 — py)z

+ pt?ulvz((1 — y)(1 — gz2)(—1 4 quaz) + Lgz(m — mquaz + v(—1 + qzz)))

— tu(—1 + quez) (pgza(—tmaz + y(—1 + gz2)) + pgPa®s(—bm +y2)))

+ gs?va?(—qz%(1 — qz2) (1 — quaz) + tu(—1 + quaz) (v(1 — 2)(1 — qzz)

+ 2(=1+4 qz(1 — py)z + pg°z” 2(—tm + y2))) + pt*u’z(—((—1 + gz2) (2 — y=
+q?e(l 4+ y(—1+2) — 2)z +v(y + 2z + lgzz — yz — qez® + qryz?)))

+m(=1— (=14 0)q(1 +v)zz + ¢*va?z(—z + £(1 — v(1 — 2) + 2))))),

z(mptuz((1 — gzz)(1 — quzz)

and
B = (1 —gsxz)(1 — quaz)(1 — gsvrz)(dmqtuz® — (1 — ptuzy) (1 — qrz)).

Proof. Let m = 71 -+ m, € 5,(231,312). If n < 1, then the corresponding g.f. is
1 + xuvst. For n > 2, the permutations are divided into three cases depending on
the position of n.

Case (a): mp = n. Inthis case, # = n(n—1)---21. If n = 2, then the corresponding
g.f. is 22quv?s®t. If n > 3, then positions 1,2,..., (n — 2) are double descents, so
the corresponding g.f. is

32003 63
_— S g uvT stz
E i utsity T = P —
— TqUSZ
i>3 9

Therefore, the g.f. in Case (a) is

32,033 2 2.2

2@ uv’s’tz T quusct
xzqm}Qth—i— 4 _ra .
1 — xqusz 1 — xqusz
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Case (b): my =mn and 1 < k < n. In this case, we let the g.f. be
G(231,312) (‘T7p7 q,u,v,8,t,y, Zvéy m) =
Z Z xnpasc(w)qdes(ﬂ)ulrmax(w),Urlmax(rr)Slrmin(w)trlmin(w)ydasc(w)dees(w)zpk(w)mvl(ﬂ') )
n>3 TE
S, (231,312)

TR=n

Case (c): m, = n. In this case, we let the g.f. for these permutations be

GG(231,312) (I, P, q,u,v, 8,1, Y, 2, z7 m) =
Z Z xnpasc(‘rr) qdes(ﬂ)ulrmax(w) ,Urlmax(rr) Slrmin(w) trlmin(‘rr) ydasc(fr) dees(w)zpk(ﬂ')mvl(ﬂ') .
n> S

U
S, (231,312)

Tp=n

Combining Cases (a)—(c), we have

F(231,312) (xap7 q,u,0,S, t7 Y, %, fa m) :GG(231,312) (55717’ q,u,,S, ta Y, %, 67 m)
+ G(231,312) (l‘7pa q,u,v,s, ta Y, z, 67 m)

x2quv2$2t

+ 1+ zuvst + (17)

— zqusz

Next we evaluate G(231,312) (%, P, ¢, u, v, 8, t,y, 2, £, m), which appears in Case (b).

Ifrm, =mnand 1 < k <mn, thenm = a® (16 ), where o € S;_1(231,312)

and 16 8 € S,_k+1 is a decreasing non-empty (231, 312)-avoiding permutation.

Note that we do not need to consider left-to-right minima for 16 £ and right-to-left

maxima for . For n > 3, we divide the permutations into three subcases depending
on the position of k — 1 which is the largest element of a.

Subcase (1): m; = k — 1. In this case, we have the following two subsubcases.

Subsubcase (i): k = 2. In this case, we have r = 1In---2. For 168 = (n—1)---1,
similarly to Case (a), we see that the corresponding g.f. is
x2quut

rpustl————.
1 —zquz

Subsubcase (ii): k # 2. In this case, we have 7 = (kK —1)---1n---k. Similarly
to Case (a), we see that the corresponding g.f. is

22qus’t x2quvt rp?ulv?s?tim

V4 =
P xqsz 1 —xquz (1 —zqs2)(1 — zquz)’

where m_omr_17 = 21n contributes to v1(n), mp_17pTEL1 = In(n —1) contributes
to pk(r), and m_17, = 1n contributes to asc(w).
So the g.f. in Subcase (1) is

r2quvt i pg?ule?s?tiim

xpustl .
P 1—zquz (1 —xqs2)(1 — xquz)
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Subcase (2): mpr =k —1and 1 <k <k — 1. In this case, « =y ® (1 © (), where
v € Skr—1(231,312) and 16(¢ € Sg_j is a decreasing non-empty (231, 312)-avoiding
permutation. For « = v@® (16 (), because the structure is the same as in Case (b),
we obtain the g.f. G(231,312)(7,p, ¢, u, 1,5,1,9,2,£,m). For 1 © 3, similarly to Case
(a), we see that the corresponding g.f. in Subcase (2) is
2,2

Tequut
Z7/npc;((2?)1,?)12) (Qf,p, q,u, 17 S, ta Y, %, év m)liv

— zquz
where m_omi_17y contributes to vl(m), mp_17mETr+1 contributes to pk(w), and
TE—17k contributes to asc(m).

Subcase (3): mp_1 = k — 1. In this case, the structure of « is the same as in Case
(c), so the g.f. in Subcase (3) is
2,2
Tequut
py‘gGG(23l,312) ($7P7 q,u, 17 S, t7 Y, z, 27 m)177
— xquz
where mj_omi_17 contributes to dasc(m), mp_17mETr+1 contributes to pk(rw), and

Tip—17) contributes to asc(m).
Combining Subcases (1)—(3), we have

quuUQt
G(231,312) (xap7 q,u,v,s,t, Y, 2, 67 m) :pyEGG(231,312) ($7P7 q,u, 17 s, t, Y, 2, éy m) m
2 2
T quut
+ empG(231,312) (337 p,q,u, 17 s, t, Y, 2, 67 m)1Q7
— zquz
2 2 4 .2 2 2 2,2
t t°l
+ apuste T I @pg utv st m (18)
1—xzquz (1 —xgsz)(1 — zquz)
Letting v = 1 in Equation (18), we get
m2qut
G(231,312) (l’, b, q,u, 17 S, t? Y, 2 £7 m) :PyéGG(231,312) (x7pa q,u, 13 S, ta Y, 2, g? m) 1— rqz
xzqut
+ ZmpG(231,312) (‘Tapz q,u, 17 s, t, Y, 2, f, m) 1
— zqz
2 4 2,2 2,2
t t°e
+ zpustl T TpgustIm (19)
1—2qz (1 —zqsz)(l — xqz)

Next we evaluate GG (231,312)(7, P, ¢, 4, v, 5,t,y,2,£,m), which appears in Case
(¢). If m, = n, then 7 = a ® 1, where o € S,_1(231,312) is any non-empty
(231, 312)-avoiding permutation. Note that we do not need to consider right-to-left
maxima for a. For n > 2, we divide the permutations into three classes depending
on the position of n — 1, which is the largest element of a.

Class A: m; = n — 1. In this case, we have the following subclasses.

Subclass 1: n = 2. In this case, we have 7 = 12 and the g.f. is z?puvst?.
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Subclass 2: n # 2. In this case, we have « = (n — 1) ---1. Similarly to Case (a),
we see that the corresponding g.f. is

x2qus?t
Tpuvtm———,
1 —xgsz

where 7, _om,_17, = 21n contributes to vl(w). So the g.f. for Class A is

2 02
requs“t
x2pu2vst2 + xpuvtmqi.
1 —zqsz

Class B:mpy =n—1and 1 < k' < n— 1. In this case, a = 7@ (1 & (), where
v € Skr—1(231,312) and 16¢ € S, is a decreasing non-empty (231, 312)-avoiding
permutation. For a« = v@® (16 (), because the structure is the same as in Case (b),
the g.f. is G(231,312) (2,1, ¢, u, 1, 5, t,y, 2,£,m). We see that the corresponding g.f. in
Class B is

rpuvtmG 231 312) (T, 0, ¢, u, 1, 8,1, y, 2,4, m),

where 7, _om,_17, contributes to vl(m).

Class C: mp,—1 = n — 1. In this case, the structure of « is the same as in Case (c),
so the g.f. for Class C is

prUtZUGG(Q?,LBm) (1‘7 p,q,u, 1a S, t) Y, =z, éa m)a

where 7, _am,_17, contributes to dasc(r). Classes A—C together give
GG(231,312) (1'7 D,q,u,v,8,t,Y, 2, ga m)

= xpuvtyGG@Bl,BlQ) (37, p,q,u, 1a 5, t) Y, =, ga m)
+ zpuvtmG(QSL?)lQ) (x7pa q,u, 17 5, ta Y, =, ga m)

x2qus?t

+ 2 putvst® + xpuvtm (20)

1—xgsz’
Letting v = 1 in Equation (20), we get

GG(231,312) (IL’, p,q,u, ]-a S, t,Y, 2, Ea m) :prtyGG(231,312) (‘T?pa q,u, ]-7 $,t,9, 2, ga m)
+ xpuztmG(QSl,SlQ) (.’E, p,q,u,1,5,1,y, 2, 67 m)

2 01 o2
t
+ z?pu?st® + xputm%. (21)
1 —xqgsz
Solving Equations (17)—(21) simultaneously, we obtain (16). O

Corollary 3. Let u=v =s=t=1. Then, by setting four out of the siz variables
D, ¢, Y, z, £, and m equal to one individually in Equation (16), we obtain the joint
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distributions of (asc,des), (dasc,ddes), and (pk,vl) over S, (231, 312):

" asc(m) des(m) _ C
DD D N i (= (e (E B 2

n>0 weSp(231,312)

Z Z mnydasc(rr)zddes(rr) _ 1+ xQ(l + I)(l _ y)(l — Z) + 33(1 —Yy- Z) (23)
= — —— ,
n>0 7€y (231,312) 1—a(y+2) —22(1 —yz)

D
E E 2" PR ) — (24)
— — — 2 _ (1 — 3)’
b res.@a1512) 1-2)1-2z+ (1—4tm)z?— (1 —L)ma3)

where C =1+ (1 —p—2q)z —q(2 = 2p — q)* — (1 = p)(1 — q)gz® — (1 — p)pga’,
and D =1 -2z 4+ (2 —tm)z? — (2 — £ —tm)z3 + (1 — £ — m + Im)z*.

2.4. Permutations in S,,(213,231)

We first describe the structure of a (213,231)-avoiding permutation. Let m =
m T, € Sp(213,231). If 1 = n, then 7 = n(n —1)---21. If 7z = n and
1<k <mn,then m <7y <--- < mp_1 in order to avoid 213. On the other hand, in
order to avoid 231, if k+1<i<mn, then m; > mp_1. If 7, =n, then 71 = 12---n.
So, for m € 5,(213,231), its structure is 7 = a @ (1 6 B), where o € Sg_; is an
increasing (213, 231)-avoiding permutation and 1 © 8 € S,,_x+1(213,231). We use
the structure of 7 to prove the following theorem.

Theorem 5. For S,(213,231), we have

So] IS

F(213,231)(x,p,q,u,v,S,t,y,z,ﬂ,m) = ) (25)

where

A =svz(qz(quaz — 1) + p*3u’z?y(U(m — 1)que — (y — 1) (quez — 1))
+ t(u(l — quaz)(1 + pgryz) + pgrz(fmque + y — quayz))
— pt?uz(—Lguvz — u(y — 1)(quez — 1) + (1 + pgzyz)(bmquz + y — quayz)))
— ¢s*tuv®2® (mptz(ptuzy — 1)(1 + (£ — 1)quzz) — (ptey — 1)((1 — 2)(quaz — 1)
+ ptuz(z(1 + lgvr — quzz) + y(z — 1)(quaz — 1))))
+ (ptuzy — 1) (Empgtva® — (1 — ptey) (1 — quaz))

and
B = (1 — ptuay)(1 — gsvez)((1 — ptzy)(1 — quaz) — bmpgtvz?).

Proof. Let m = my---m, € S,(213,231) . If n < 1, then we have the formula
F(213’231)(x,p, q,u,v,8,t,y,2,0,m) = 1 + zuvst. For n > 2, the permutations are
divided into three cases depending on the position of n.
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Case (a): If 1 = n, then 7 =16 3, where 8 € S,,_1(213,231) is non-empty. We
let the g.f. for the permutations in Case (a) be

G(213 231) (fE P, q,u,,s,1,y, 2, L, m) =

Z Z xnpasc(ﬂ')qdes(ﬂ)ulrmax(ﬂ'),Urlmax(Tr)Slrmin(w)trlmin(ﬂ')ydasc(w)dees(‘ir)fpk(ﬂ')mvl(ﬂ') .

Sn (7?13331)

Case (b): mzy = nand 1 < k < n. In this case, 7 = a ® (1 © B), where a =
12---(k—1) and 1 © 8 € Sp_k41 is the same as in Case (a). Note that we do not
need to consider left-to-right minima for 16 8. Next, we consider the following two
subcases.

Subcase (1): k = 2. In this case, a = 1, and the g.f. for 7 is

xpuStgG@lB,QSl) (J"7 b,q,u,v, 17 ta Y, %, f, m)>

where mymoms contributes to pk(mw).
Subcase (2): k > 2. In this case, « =12---(k — 1), and the g.f. is

G(213,231) (!L’7 p,q,u,v, 1a t? Y, =z, 67 m) Z :Ezpzqutz i—lg

i>2

2,22 12
T p u st yl
= G(213,231) (Jf‘apa q,u,0, 17 t7 Y, %, éa m)77

1 — xputy

where 7p_omp_17m, = (k — 2)(k — 1)n contributes to dasc(w) and m_17TE41 cOD-
tributes to pk(m). So the g.f. in Case (b) is

xpu‘StgG(Ql?;,Q?:l) (.’ﬂ, b, q,u,, 1, t,y, 2, f, m)

2,22 42
T p u st yl
+ G(213,231) ('xapa q,u,0, 1) t7 Y, vaa m) 1
— xputy
rpustl
:G ) ) ) ) )17t’ ) 7€7 :
(213,231)(1‘ p,q,u,v Y,z m)l — zputy

Case (c¢): m, =n. In thiscase, 7 =12---n
Subcase (1): n = 2. In this case, 7 = 12 and the g.f. is z2puvst?.

Subcase (2): If n > 2, then positions 1,2,...,(n — 2) are double ascents and the
g.f. for w is

Z 1,1 i— 1uzvstz i—2 _ x3p2u3v8t3y
= 1 — zputy
So the g.f. in Case (c) is

x3p2ugvst3y x2pulvst?

2 2 42
t = .
TputUstt 1 — xputy 1 — zputy
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Combining Cases (a)—(c), we have F(213231)(2,p,q,u,v, 8,t,y, 2,{,m)

= G(213,231)(x7p7 q,u,v,8,1,y, 2, 67 m)

rpustl
+ G(213,231) (.’Il,p, q,u,v, 1a tv Y,z 67 m) 1
— xputy
2,2, 42
t
+1+ zuvst + 2L (26)
1 — xputy

Next we evaluate G 213,231) (2, p, ¢, u, v, 5,1, y, 2, £,m), which appears in Case (a).
If 7y = n, then 7 = 1S 8, where 8 € S,,_1(213,231) is non-empty. Note that
we do not need to consider left-to-right maxima for 5. For n > 2, we divide the
permutations into three classes depending on the position of n — 1, which is the
largest element of 5.

Class A: my =n — 1. In this case, we consider the following two subclasses.

Subclass (1): n = 2. In this case, we have 7 = 21, and the g.f. is z2quv?s?t.

Subclass (2): n > 2. In this case, we have 8 =19, where ¢ € S,,_2(213,231) is

non-empty. Similarly to Case (a), we see that the corresponding g.f. is
qu’LLUSZG(2137231) (1[,’, b4, ]-7 v, S, tv Y, =, f, m)a

where m;mams contributes to ddes(w). So the g.f. for Class A is

quuv232t + (ECI’LLUSZG(2137231) (.’E, b q, 11 v, s, t, Y, %, & m)

Class B: mpy = n—1and 2 < ¥ < n. In this case, 8 = 7' @& (1 6 ('), where
16" € Sp_k41 is the same as in Case (a) and v/ = 1--- (k¥ — 2) is a non-empty
permutation. Note that we do not need to consider left-to-right maxima and left-
to-right minima for 1 © ¢’. We consider the following two subclasses of Class B.

Subclass (1): k' = 3. In this case, we have v/ = 1, and the g.f. is
x2pquvs2t£mG(213,23l) ('1:7 b:q, 17 v, 17 ta Y, %, 67 m)7

where mymoms = nl(n — 1) contributes to vl(7) and momsmy contributes to pk(w).

Subclass (2): k'’ > 3. In this case, we have position 1 is a valley, positions
2,3,..., (k' —2) are double ascents, and position k' — 1 is a peak. The g.f. for 7 is

G(213,231) (l‘,p, q, 17 v, 17 t7 Y, z, 67 m) Z xipi_lqu’USQti_lyi_2£
>3
3,2 242
rep quus tylm
:G(213,231)('xap7 q, 17 v, 17 tv Y, %, £7 m)
1 — xpty
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So the g.f. for Case B is

23p2quus?t?ylm
G(213 231) (x7pa q, 17 v, 1a t7 Y, =, Ea m) <'1:2qu1}52th + pqy) .
’ 1 — zpty

Class C: m, =n—1. In this case, r = nl--- (n—1), which is the same as Case (c),

so the corresponding g.f. is
x2pvst2
rquUSM———.
1 — zpty

Classes A—C together give

G(213,231) ("1;7177 q,u,v,5,t,y, 2, év m)

2 2
t
= :c2q1w282t + rquvszG (213,231) (%, D, ¢, 1, v, 8,8, 4, 2, £,m) + xquvsmw
’ 1 — zpty
x3p2quv32t2y€m)

1 — apty (27)

+ G(213,231) (-T,p, q, 17 v, 13 ta Y, 2z, Kv m) <x2pquvs2tfm +
Letting v = 1 in Equation (27), we get

G(213,231)(x7p7 q, ]-7 v, 8, Y, 2, g? m)

9 9 9 x?pust?
= 2 qus~t + 2quszG 213,231y (%, P, ¢, 1,0, 8, L, y, 2,£,m) + xqum%

x3p2qv52t2y€m> C(28)

+ G(213,231) (377p, q, 17 v, 1a t7 Y, %, é’ m) (.TquUSthm +
1 — zpty

Letting s = 1 in Equation (28), we get

G(213,231) (m7pa q, 17 v, 1a t) Y, =z, Ea m)

2 2
x°put
= l'2q’U2t + quZG(213,231)(x,pv q, 1, v, ]-7 ta Y, =, ‘ev m) +zqum

1 — zpty
x3p2qvt2y€m>

29
1 — zpty (29)

+ G(213,231) (mapa q, ]-7 v, ]-7 t? Y,z ea m) (xzpqvtém +

Solving Equations (26) and (29) simultaneously, we obtain (25). O
From Theorem 5 we have the following results.

Corollary 4. Let u=v =s=1t=1. Then, by setting four out of the siz variables
D, ¢, Y, z, £, and m equal to one individually in Equation (25), we obtain the joint
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distributions of (asc,des), (dasc,ddes), and (pk,vl) over S, (213,312):

ST arpemglen LY T o pr o (30)
1—pxr—qx ’
n>0 7€S,(213,231)

Z Z x'rLydaSC(Tr)deeS(ﬂ') _ ¢ (31)

1—a2 —azy—xz+ 22yz’
n>0 m€S,(213,231) Y y

)

Z Z ngok(m)vim) _ L= 2+ 2?2 —Ima? — 2% + €23 + ma® — Ima®
T m =

o 1— 22+ 22 — fma?
n>0 mes, (213,231)

(32)

2

whereC:1+x+:v2+;1c3—xy—x2y—x3y—xz—m z—x3z+x2yz+x3yz.

2.5. Permutations in S,,(213, 312)

We first describe the structure of a (213,312)-avoiding permutation. Let 7 =
m T € Sp(213,312). If m; = n, then m < w9 < -+ < m;—1 in order to avoid
213. On the other hand, in order to avoid 312, ;11 > W42 > -+ > m,. We use the
structure of 7 to prove the following theorem.

Theorem 6. For S,,(213,312), we have

24),02,.2
s“tuv‘x t
F(213 312) (xap7 q,u,0,S, t7 Y,z é’ m) =1+ g + pStUQ’UxQ
’ 1 —gsvxz 1 — ptuzy
lgst?uv?a?

+ (1 = ptuzy)(1 — puzy — quaz)
Lqsvx

. 33
- (1 — puzy — quzz)(1 — gsvzz) (33)

Proof. Let m = w1 -7y, € Sp(213,312). If n = 0, then we have the term of 1 in
Fo13,312)(2,p,q,u,v,8,t). If 7 =1, then the g.f. is zuvst. For n > 2, suppose that
m =14, T = n, and m, = j. We consider the following cases.

If i = n, namely k = 1, then 7 = n---1. The corresponding g.f. is

o]
E ann—luvnsntzn—Q.
n=2

If j = n, namely k = n, then 7 = 1---n. The corresponding g.f. is

oo
Z xnpnflun,ustnynfg
n=2
Next, let 2 < 4,5,k < n—1. If m; = 1, then in order to avoid 312, there are

(Z:ij) permutations whose g.f. is 2" pF=1g" ~kukyn—F+1stiyk=2,n=k=1 5o the g.f.
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in this case is

oo n—1ln—1 .
Z Z Z n—j—1 rph—Lgn—ky kL gpiy k=2 k=1
n—k—1

n=2j=2 k=j

If 71 # 1, then to avoid 213, there are (",151) permutations whose g.f. is

n k—lqn—kukvn—k+1szt

z"p k—QZn—k,—lg.

Y

Hence, the g.f. in this case is

oo n—1n+1—1 .
Z Z <” ; ¢ ; 1> xnpkf1qnfkukvnkarlSityk72zn7k71€.

In conclusion,
F(213,312) (xapy q,u,0,Ss, t7 Y, %, Za m)

oo oo
=1+ ztuvs + Z " u s 22 4 Z " sty 2
n=2

n=2
oo n—1n—1

n—j—1 I _ o ok
+Zzz<n_k_1>xnpk lqn kuk:,vn k+18tjyk 2Zn k—1

n=2 j=2 k=j

oo n—1n+1—1 .
+ Z Z (” ; ¢ ; 1) xnpk—lqn—kukvn—k—Hsityk'—QZn—k—lgl

Simplifying F(213,312) (2, D, ¢, u, v, 8, t,y, 2,£,m), we obtain (33). O

Corollary 5. Let u=v =s=1t=1. Then, by setting four out of the six variables
D, ¢, Y, z, £, and m equal to one indiidually in Equation (33), we obtain the joint
distributions of (asc,des), (dasc, ddes), and (pk,vl) over S, (213,312):

. 1- (1 - px — 2
Z Z xnpasc(w)qdeb(ﬂ') — ( pT +pr )( PT — qx + qx )7 (34)
(1 =pz)(1 - pz + qx)

A

Z Z xnydasc(ﬂ')zddes(ﬂ') _
_ _ 2,2 _ 2,1’
56 res.@ies) (1 —z2)(1 — 2zy + 22y? — xz + 22y2)

n>0 7es, (213,312)

(35)

2 3 3 4
Z Z o gok(m) V() 132 +42° — 4o° + lx° + Lx (36)

1 — 3z + 222 ’
n>0 weS,(213,312)

where

A=1—a% —2x(y+2) + 222+ v* + 3yz + 2°) + ' (1 + ¥° + 22 + y(—1 + 22))
— 23 (—1+ 32+ 322 +y(3 + 2%)).
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3. Concluding Remarks

In this paper, we determine the joint distributions of the statistics (asc, des, lrmax,
Irmin, rlmax, rlmin, dasc, ddes, pk, vl) on permutations avoiding any two patterns
of length 3. This generalizes several earlier results in [3, 4, 6], which considered,
respectively, one, two, and six statistics on the same sets of permutations. All gen-
erating functions derived in this paper are rational. It is noteworthy that we are
able to simultaneously control such a large number of statistics while still obtaining
explicit distribution results. This is achieved by considering a more refined struc-
ture of the permutations in question, which results in a larger number of cases and
subcases to be analyzed. We also note that, unlike the situation in [6], where com-
binatorial proofs of five equidistribution results are provided, we have not observed
any equidistributions in our more general setting.

Finally, studying (joint) distributions of statistics in other permutation classes,
such as those considered in the literature [7], is an interesting direction for further
research. For instance, our approach should be applicable to extending the joint
distribution results for separable permutations in [5], where up to four statistics are
simultaneously controlled.

Acknowledgement. The author is grateful to Sergey Kitaev for numerous helpful
discussions related to this paper.
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