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Abstract

Finding the distributions of permutation statistics across classes of permutations
that avoid certain patterns has attracted significant interest in the literature. In
particular, Bukata et al. found the distribution of a single statistic among ascents
(asc), descents (des), double ascents (dasc), double descents (ddes), peaks (pk), and
valleys (vl) over permutations avoiding any two patterns of length 3. Moreover, Han
and Kitaev found the joint distribution of six classical statistics (asc, des, lrmax,
lrmin, rlmax, rlmin) over the same classes of permutations. In this paper, we
generalize all of these results by deriving explicit formulas for the joint distributions
of all of the above-mentioned statistics over permutations avoiding any two patterns
of length 3. All the multivariate generating functions we obtain are rational.

1. Introduction

Let [n] := {1, 2, . . . , n}. A permutation of length n is a rearrangement of the set [n].

Denote by Sn the set of permutations of [n]. A permutation π1π2 · · ·πn ∈ Sn avoids

a pattern p = p1p2 · · · pk ∈ Sk if there is no subsequence πi1πi2 · · ·πik such that

πij < πim if and only if pj < pm. For example, the permutation 45123 avoids the

pattern 132. Let Sn(τ, ρ) denote the set of permutations in Sn that avoid patterns

τ and ρ. For a comprehensive review of the field of permutation patterns, which

has received considerable attention in the literature, we direct the reader to [7] and

references therein.

Of interest to us are the following classical permutation statistics. For 1 ≤ i ≤
n − 1, we say that i is an ascent (resp., descent) in π ∈ Sn if πi < πi+1 (resp.,

πi > πi+1) and asc(π) (resp., des(π)) is the number of ascents (resp., descents) in

π. Also, πi is a right-to-left maximum (resp., right-to-left minimum) in π if πi is

greater (resp., smaller) than any element to its right. Note that πn is always a right-

to-left maximum and a right-to-left minimum. Denote by rlmax(π) and rlmin(π)
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the number of right-to-left maxima and right-to-left minima in π, respectively. We

define left-to-right maxima, counted by lrmax(π), and left-to-right minima, counted

by lrmin(π), in a similar way. For 1 ≤ i ≤ n − 2, we say that i is a double ascent

(resp., double descent) in π ∈ Sn if πi < πi+1 < πi+2 (resp., πi > πi+1 > πi+2).

We denote by dasc(π) (resp., ddes(π)) the number of double ascents (resp., double

descents) in π. For 1 ≤ i ≤ n − 2, i is a peak (resp., valley) in π ∈ Sn if πi <

πi+1 > πi+2 (resp., πi > πi+1 < πi+2), and pk(π) (resp., vl(π)) is the number of

peaks (resp., valleys) in π. For example, if π = 453126, then des(π) = 2, lrmin(π) =

lrmax(π) = rlmin(π) = asc(π) = 3, and rlmax(π) = dasc(π) = ddes(π) = pk(π) =

vl(π) = 1.

In the literature, there is a research trend focused on determining the distri-

butions of permutation statistics within classes of permutations avoiding certain

patterns (see, for example, [1, 2, 3, 4, 6] and the references therein). In par-

ticular, Bukata et al. [3] found the distribution of a single statistic in the set

{asc, des,dasc, ddes, pk, vl} over permutations avoiding any two patterns of length

3. Moreover, Han and Kitaev [6] found the joint distribution of six statistics (asc,

des, lrmax, lrmin, rlmax, rlmin) over the same classes of permutations. In this

paper, we generalize all of these results by finding explicit formulas for joint distri-

bution of (asc, des, lrmax, lrmin, rlmax, rlmin, dasc, ddes, pk, vl) over permutations

avoiding any two patterns of length 3. All the multivariate generating functions we

have derived are rational.

In what follows, we let g.f. stand for “generating function”. We will derive closed
form expressions for the following g.f.’s:

F(τ,ρ)(x, p, q, u, v, s, t, y, z, ℓ,m) :=∑
n≥0

∑
π∈Sn(τ,ρ)

xnpasc(π)qdes(π)ulrmax(π)vrlmax(π)slrmin(π)trlmin(π)ydasc(π)zddes(π)ℓpk(π)mvl(π)

for all τ and ρ in S3.

The following results appear in [8].

Theorem 1 ([8]). Let An(τ, ρ) be the number of elements in Sn(τ, ρ). Then,

(a) An(123, 132) = An(123, 213) = An(321, 231) = An(321, 312) = 2n−1;

(b) An(231, 312) = An(132, 213) = 2n−1;

(c) An(213, 312) = An(132, 231) = 2n−1;

(d) An(213, 231) = An(132, 312) = 2n−1;

(e) An(132, 321) = An(123, 231) = An(123, 312) = An(213, 321) = 1 +
(
n
2

)
;

(f) An(123, 321) =


0 if n ≥ 5

n if n = 1 or n = 2

4 if n = 3 or n = 4.

In order to determine the distribution of the statistics over Sn(τ, ρ), for every
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τ, ρ ∈ S3, based on the properties of the g.f.’s discussed in [3, 6] (which are estab-

lished using trivial bijections), it is sufficient to examine the distributions of the

statistics over the first pair in each of (a)–(e) in Theorem 1 (the case (f) is trivial

and does not require consideration).

This paper is organized as follows. In Section 2, we derive all our distribution

results, which are summarized in Table 1. To illustrate the applicability of our

general formulas, we specialize them to pairs of corresponding statistics that appear

in [3]; see Table 2 for references. Finally, in Section 3, we provide concluding

remarks.

(asc, des, lrmax, lrmin, rlmax, rlmin, dasc,ddes, pk, vl)
Sn(123, 132) Theorem 2
Sn(132, 321) Theorem 3
Sn(231, 312) Theorem 4
Sn(213, 231) Theorem 5
Sn(213, 312) Theorem 6

Table 1: G.f.’s for joint distributions of the statistics over Sn(τ, ρ)

(asc, des) (dasc, ddes) (pk, vl)
Sn(123, 132) (5) (6) (7)
Sn(132, 321) (13) (14) (15)
Sn(231, 312) (22) (23) (24)
Sn(213, 231) (30) (31) (32)
Sn(213, 312) (34) (35) (36)

Table 2: References to formulas for the g.f.’s of the distributions of pairs of statistics
over Sn(τ, ρ)

2. Distributions over Sn(τ, ρ)

In this section, we find joint distribution of 10 classical statistics over five classes

of pattern-avoiding permutations. Given permutations α ∈ Sa and β ∈ Sb, let

α ⊕ β ∈ Sa+b denote the direct sum of α and β, and let α ⊖ β ∈ Sa+b denote the

skew-sum of α and β, defined as follows [3]:

α⊕ β =

{
α(i), 1 ≤ i ≤ a

a+ β(i− a), a+ 1 ≤ i ≤ a+ b,

α⊖ β =

{
α(i) + b, 1 ≤ i ≤ a

β(i− a), a+ 1 ≤ i ≤ a+ b.
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For example, if α = 231 ∈ S3 and β = 3241 ∈ S4, then α ⊕ β = 2316574 and

α⊖ β = 6753241.

2.1. Permutations in Sn(123, 132)

We first describe the structure of a (123, 132)-avoiding permutation. Let π =

π1 · · ·πn ∈ Sn(123, 132). If πk = n, 1 < k ≤ n, then π1 > π2 > · · · > πk−1

in order to avoid 123. On the other hand, in order to avoid 132, if i < k, then

πi > n − k. Hence, πi = n − i for 1 ≤ i ≤ k − 1, while πk+1πk+2 · · ·πn must be a

(123, 132)-avoiding permutation in Sn−k. So π = (α⊕ 1)⊖ β, where α ∈ Sk−1 is a

decreasing permutation and β ∈ Sn−k is a (123,132)-avoiding permutation. We use

the structure of π to prove the following theorem.

Theorem 2. For Sn(123, 132), we have

F(123,132)(x, p, q, u, v, s, t, y, z, ℓ,m) =
A

1− ℓmpqsvx2 − qsxz − qsvxz + q2s2vx2z2
,

(1)

where

A =1 + sx(tuv + pt2u2vx− q(ℓmpvx+ z + vz)) + q2s3tuv2x3(ℓpux(m− z)

+ z(−1−mptux+ z + ptuxz)) + qs2vx2(qz2 + pt2ux(m(u+ v)− u(1 + v)z)

+ tu(−z − v(−1 + ℓp(m− u)x+ z))).

Proof. Let π = π1 · · ·πn ∈ Sn(123, 132). If n = 0, the empty permutation con-

tributes 1 to F(123,132)(x, p, q, u, v, s, t, y, z, ℓ,m). If n = 1, the only permutation

contributes xuvst to F(123,132)(x, p, q, u, v, s, t, y, z, ℓ,m). Now, we consider three

cases based on where the element n, n ≥ 2, appears in π.

Case (a): π1 = n. In this case, we let the g.f. for these permutations be

G(123,132)(x, p, q, u, v, s, t, y, z, ℓ,m) :=∑
n≥2

∑
π∈Sn(132,321)

π1=n

xnpasc(π)qdes(π)ulrmax(π)vrlmax(π)slrmin(π)trlmin(π)ydasc(π)zddes(π)ℓpk(π)mvl(π).

Case (b): πn = n. In this case, π = (n−1)(n−2) · · · 1n, and we have the following

three subcases.

Subcase (1): n = 2. In this case, the term corresponding to π = 12 is x2pu2vst2.

Subcase (2): n = 3. In this case, x3pqu2vs2t2m corresponds to π = 213.

Subcase (3): n ≥ 4. In this case, the corresponding g.f. is∑
i≥4

xipqi−2u2vsi−1t2zi−3m =
x4pq2u2vs3t2zm

1− xqzs
,
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where positions 1, 2, . . . , (n − 3) are double descents, and πn−2πn−1πn = 21n con-

tributes to vl(π). So the g.f. for permutations in Case (b) is

x2pu2vst2 + x3pqu2vs2t2m+
x4pq2u2vs3t2zm

1− xqzs
= x2pu2vst2 +

x3pqu2vs2t2m

1− xqzs
.

Case (c): πk = n and 1 < k < n. In this case, we have π1 > π2 > · · · > πk−1 and

πi = n − i for 1 ≤ i ≤ k − 1. Then π = (α ⊕ 1) ⊖ β, where the structure of 1 ⊖ β

is the same as in Case (a). Note that, in this case, π2 = n is not a left-to-right

minimum. Next, we consider three subcases based on k.

Subcase (1): k = 2. In this case, π1 = n− 1 < π2 = n, and we obtain the g.f.

xpuℓG(123,132)(x, p, q, u, v, s, t, y, z, ℓ,m),

where π1 = n− 1 < π2 = n > π3 contributes to pk(π).

Subcase (2): k = 3. In this case, π1 = n − 1 > π2 = n − 2 < π3 = n and

π2 = n− 2 < π3 = n > π4. We see that the corresponding g.f. in this case is

x2pqusmℓG(123,132)(x, p, q, u, v, s, t, y, z, ℓ,m).

Subcase (3): k ≥ 4. In this case, positions 1, 2, . . . , k− 3 are double descents. We

see that the corresponding g.f. in this case is∑
i≥3

xipqi−1usi−1zi−2mℓG(123,132)(x, p, q, u, v, s, t, y, z, ℓ,m)

=
x3pq2us2zmℓ

1− xqsz
G(123,132)(x, p, q, u, v, s, t, y, z, ℓ,m),

where πk−2πk−1πk contributes to vl(π) and πk−1πkπk+1 contributes to pk(π). So
the g.f. for permutations in Case (c) is

xpuℓG(123,132)(x, p, q, u, v, s, t, y, z, ℓ,m) + x2pqusmℓG(123,132)(x, p, q, u, v, s, t, y, z, ℓ,m)

+
x3pq2us2zmℓ

1− xqsz
G(123,132)(x, p, q, u, v, s, t, y, z, ℓ,m)

=xpuℓG(123,132)(x, p, q, u, v, s, t, y, z, ℓ,m)

+
x2pqusmℓ

1− xqsz
G(123,132)(x, p, q, u, v, s, t, y, z, ℓ,m).

Summarizing Cases (a)–(c) yields

F(123,132)(x, p, q, u, v, s, t, y, z, ℓ,m) =1 + xuvst+G(123,132)(x, p, q, u, v, s, t, y, z, ℓ,m)

+ xpuℓG(123,132)(x, p, q, u, v, s, t, y, z, ℓ,m)

+
x2pqusmℓ

1− xqsz
G(123,132)(x, p, q, u, v, s, t, y, z, ℓ,m)

+ x2pu2vst2 +
x3pqu2vs2t2m

1− xqzs
. (2)
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Next we compute G(123,132)(x, p, q, u, v, s, t, y, z, ℓ,m), which appears in Case (a). If

π1 = n, then π = 1⊖β, and the element n is the only left-to-right maximum, a left-

to-right minimum, and a right-to-left maximum, and we do not need to consider

left-to-right maxima for β. Note that, in this case, n − 1 is not a left-to-right

minimum. If n = 2, then π = 21, and the respective term in the g.f. is x2quv2s2t.

Next, we consider three subcases based on where the element n− 1, n ≥ 3, appears

in π.

Subcase (1): π2 = n − 1. In this case, the structure of β is the same as in Case

(a), and we obtain the g.f.

xquvszG(123,132)(x, p, q, 1, v, s, t, y, z, ℓ,m),

where π1 > π2 > π3 contributes to ddes(π).

Subcase (2): πk′ = n − 1. In this case, β = (ζ ⊕ 1) ⊖ γ, where ζ = (k′ − 1) · · · 1,
and the structure of 1⊖γ is the same as in Case (a). We then consider the following

two subsubcases.

Subsubcase (i): k′ = 3. In this case, π1 = n > π2 = n − 2 < π3 = n − 1

contributes to vl(π) and π2 = n− 2 < π3 = n− 1 > π4 contributes to pk(π). So the

term corresponding to π is

x2pquvsmℓG(123,132)(x, p, q, 1, v, s, t, y, z, ℓ,m).

Subsubcase (ii): k′ ≥ 4. In this case, positions 1, 2, . . . , (k′ − 3) are double

descents, so the term corresponding to π is∑
i≥3

xipqi−1uvsi−1zi−2mℓG(123,132)(x, p, q, 1, v, s, t, y, z, ℓ,m)

=
x3pq2uvs2zmℓ

1− xqsz
G(123,132)(x, p, q, 1, v, s, t, y, z, ℓ,m).

So the g.f. for permutations in Subcase (2) is given by(
x2pquvsmℓ+

x3pq2uvs2zmℓ

1− xqsz

)
G(123,132)(x, p, q, 1, v, s, t, y, z, ℓ,m)

=
x2pquvsmℓ

1− xqsz
G(123,132)(x, p, q, 1, v, s, t, y, z, ℓ,m).

Subcase (3): πn = n − 1. In this case, the structure is the same as in Case (c).

The corresponding g.f. is∑
i≥3

xipqi−2uv2si−1t2zi−3m =
x3pquv2s2t2m

1− xqzs
.
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Summarizing Subcases (1)–(3) yields

G(123,132)(x, p, q, u, v, s, t, y, z, ℓ,m) =xquvszG(123,132)(x, p, q, 1, v, s, t, y, z, ℓ,m)

+
x2pquvsmℓ

1− xqsz
G(123,132)(x, p, q, 1, v, s, t, y, z, ℓ,m)

+
x3pquv2s2t2m

1− xqzs
+ x2quv2s2t. (3)

Letting u = 1 in Equation (3), we obtain

G(123,132)(x, p, q, 1, v, s, t, y, z, ℓ,m) =xqvszG(123,132)(x, p, q, 1, v, s, t, y, z, ℓ,m)

+
x2pqvsmℓ

1− xqsz
G(123,132)(x, p, q, 1, v, s, t, y, z, ℓ,m)

+
x3pqv2s2t2m

1− xqzs
+ x2qv2s2t. (4)

By simultaneously solving (2)–(4) we obtain the desired result.

Corollary 1. Let u = v = s = t = 1. By setting four of the six variables p, q, y, z,
ℓ, and m equal to 1 in Equation (1), we obtain the joint distributions of (asc, des),
(dasc, ddes), and (pk, vl) over Sn(123, 132):∑

n≥0

∑
π∈Sn(123,132)

xnpasc(π)qdes(π) =
1 + x− 2qx+ px2 − qx2 − pqx2 + q2x2

1− 2qx− pqx2 + q2x2
, (5)

∑
n≥0

∑
π∈Sn(123,132)

xnydasc(π)zddes(π) =
1 + x2 + x3 − xz − x2z − x3z

1− x− xz
, (6)

∑
n≥0

∑
π∈Sn(123,132)

xnℓpk(π)mvl(π) =
1− x+ (1− ℓm)x2 − (1−m)x3 (2− ℓ+ (ℓ− 1)x)

1− 2x+ x2 − ℓmx2
. (7)

2.2. Permutations in Sn(132, 321)

We first describe the structure of a (132, 321)-avoiding permutation. Let π =

π1 · · ·πn ∈ Sn(132, 321). If π1 = n, then π = n12 · · · (n − 1). If πk = n and

1 < k < n, then πk+1 < πk+2 < · · · < πn in order to avoid 321. On the other

hand, in order to avoid 132, if 1 ≤ i ≤ k − 1, then πi = n− k + i. If πn = n, then

π1π2 · · ·πn−1 ∈ Sn−1(132, 321). So π = (α⊕1)⊖β, where α⊕1 ∈ Sk and β ∈ Sn−k

are two increasing (132, 321)-avoiding permutations. We use the structure of π to

prove the following theorem.

Theorem 3. For Sn(132, 321), we have

F(132,321)(x, p, q, u, v, s, t, y, z, ℓ,m) =
A

(1− ptxy)(1− puxy)(1− ptuxy)
, (8)
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where

A =1 + stuvx+ pst2u2vx2 + qs2tuv2x2 +mpqs2t2u2vx3 +mpqs2t2uv2x3 + ℓpqs2tu2v2x3

+ ℓmp2qs2t2u3vx4 + ℓmp2qs2t2u2v2x4 − ptxy − puxy − pqs2tu2v2x3y − pst2uvx2y

− pstu2vx2y − pst2u2vx2y − p2st3u2vx3y − p2st2u3vx3y − pqs2t2uv2x3y − ptuxy

− pqs2t2u2v2x3y −mp2qs2t2u3vx4y − ℓp2qs2t2u2v2x4y −mp2qs2t2u2v2x4y

−mp2qs2t3u2v2x4y − ℓp2qs2t2u3v2x4y − ℓmp3qs2t3u3v2x5y + p2tux2y2 + p2t2ux2y2

+ p2tu2x2y2 + p2st2u2vx3y2 + p2st3u2vx3y2 + p2st2u3vx3y2 + p3st3u3vx4y2

+ p2qs2t2u2v2x4y2 + p2qs2t3u2v2x4y2 + p2qs2t2u3v2x4y2 + ℓp3qs2t3u3v2x5y2

+mp3qs2t3u3v2x5y2 − p3t2u2x3y3 − p3st3u3vx4y3 − p3qs2t3u3v2x5y3.

Proof. Let π = π1 · · ·πn ∈ Sn(132, 321). If n ≤ 1, then the corresponding g.f. is

1 + xuvst. For n ≥ 2, we consider the following three cases.

Case (a): π1 = n. In this case, π = n12 · · · (n − 1). The element n is the only

left-to-right maximum, a left-to-right minimum, and a right-to-left maximum. So

lrmax(π) = 1, and we consider the following three subcases.

Subcase (1): n = 2. In this case, π = 21 and the g.f. is x2quv2s2t.

Subcase (2): n = 3. In this case, π = 312 and 1 is a valley, so the g.f. is

x3pquv2s2t2m.

Subcase (3): n ≥ 4. In this case, 1 is a valley and 2, 3, . . . , (n − 2) are double

ascents, so the g.f. in this case is∑
i≥4

xipi−2quv2s2ti−1myi−3 =
x4p2quv2s2t3my

1− xpty
.

Hence, the g.f. of permutations with π1 = n is given by

x2quv2s2t+ x3pquv2s2t2m+
x4p2quv2s2t3my

1− xpty
= x2quv2s2t+

x3pquv2s2t2m

1− xpty
.

Case (b): πk = n and 1 < k < n. In this case, π = (α⊕1)⊖β, where α ∈ Sk−1 and

β ∈ Sn−k are two increasing (132, 321)-avoiding permutations. Note that πk−1πk

is an ascent, and when k ≥ 3, we have that 1, 2, . . . , (k− 2) are double ascents. The

g.f. for the permutation α ∈ Sk−1 is

xpusℓ+
∑
i≥2

xipiuisℓyi−1 =
xpusℓ

1− xpuy
.

By Case (a), we obtain that the g.f. for 1⊖ β ∈ Sn−k+1 is

x2quv2t+
x3pquv2t2m

1− xpty
,
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noting that, in this case, n is not a left-to-right minimum. So the g.f. of the per-

mutations in Case (b) is

xpusℓ

1− xpuy

(
x2quv2t+

x3pquv2t2m

1− xpty

)
.

Case (c): πn = n. In this case, we let the g.f. for these permutations be
G(132,321)(x, p, q, u, v, s, t, y, z, ℓ,m) :=∑
n≥2

∑
π∈

Sn(132,321)
πn=n

xnpasc(π)qdes(π)ulrmax(π)vrlmax(π)slrmin(π)trlmin(π)ydasc(π)zddes(π)ℓpk(π)mvl(π).

Considering Cases (a)–(c), we conclude that

F(132,321)(x, p, q, u, v, s, t, y, z, ℓ,m) =1 + xuvst+ x2quv2s2t+
x3pquv2s2t2m

1− xpty

+
xpusℓ

1− xpuy

(
x2quv2t+

x3pquv2t2m

1− xpty

)
+G(132,321)(x, p, q, u, v, s, t, y, z, ℓ,m). (9)

Next we evaluate G(132,321)(x, p, q, u, v, s, t, y, z, ℓ,m), which appears in Case (c).

If πn = n, then π = α ⊕ 1 and rlmax(π) = 1. Any non-empty permutation in

Sn−1(132, 321) is possible for α and we do not need to consider right-to-left maxima

of α. We now divide the permutations into three classes depending on the position

of n− 1.

Class A: π1 = n− 1. In this case, we have the following three subclasses.

Subclass (1): n = 2. In this case, π = 12, and the g.f. is x2pu2vst2.

Subclass (2): n = 3. In this case, π = 213 and 1 is a valley, so the g.f. is

x3pqu2vs2t2m.

Subclass (3): n ≥ 4. In this case, 1 is a valley and 2, 3, . . . , (n − 2) are double

ascents, so the g.f. in this case is∑
i≥4

xipi−2qu2vs2ti−1myi−3 =
x4p2qu2vs2t3my

1− xpty
.

Hence, the g.f. for the permutations in Class A is

x2pu2vst2 + x3pqu2vs2t2m+
x4p2qu2vs2t3my

1− xpty
= x2pu2vst2 +

x3pqu2vs2t2m

1− xpty
.

Class B: πk′ = n−1 and 1 < k′ < n−1. In this case, we have π = ((ζ⊕1)⊖γ)⊕1,

where ζ and γ are non-empty increasing permutations. Now, πk′−1 < πk′ = n−1 >

πk′+1 and 1, . . . , (k′ − 2), (k′ +1), . . . , (n− 2) are double ascents. So the g.f. for ζ is∑
i≥1

xipiuisℓyi−1 =
xpusℓ

1− xpuy
.
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The g.f. for γ is similar to that for Class A. Note that n − 1 is not a left-to-right

minimum, so the g.f. for the permutations in this case is

xpusℓ

1− xpuy
· x

3pqu2vst2m

1− xpty
=

x4p2qu3vs2t2mℓ

(1− xpuy)(1− xpty)
.

Class C: πn−1 = n− 1. In this case, we let the g.f. for these permutations be

GG(132,321)(x, p, q, u, v, s, t, y, z, ℓ,m) :=∑
n≥3

∑
π∈

Sn(132,321)
πn=n

πn−1=n−1

xnpasc(π)qdes(π)ulrmax(π)vrlmax(π)slrmin(π)trlmin(π)ydasc(π)zddes(π)ℓpk(π)mvl(π).

Considering Classes A–C, we conclude that

G(132,321)(x, p, q, u, v, s, t, y, z, ℓ,m) =x2pu2vst2 +
x3pqu2vs2t2m

1− xpty

+
x4p2qu3vs2t2mℓ

(1− xpuy)(1− xpty)
+GG(132,321)(x, p, q, u, v, s, t, y, z, ℓ,m). (10)

Next, we evaluate GG(132,321)(x, p, q, u, v, s, t, y, z, ℓ,m), which appears in Class C.

Now π = α′ ⊕ 12, and any non-empty permutation in Sn−2(132, 321) is possible for

α′. We do not need to consider right-to-left maxima of α′, since rlmax(π) = 1. We

divide the permutations into three subclasses depending on the position of n− 2.

Subclass (1): π1 = n− 2. In this case, we have the following two subsubcases.

Subsubcase (i): n = 3. In this case, π = 123 and 1 is a double ascent, so the g.f.

is x3p2u3vst3y.

Subsubcase (ii): n ≥ 4. In this case, π = (n− 2)12 · · · (n− 3)(n− 1)n, so 1 is a

valley and 2, 3, . . . , (n− 2) are double ascents. Thus, the g.f. in this case is∑
i≥4

xipi−2qu3vs2ti−1myi−3 =
x4p2qu3vs2t3my

1− xpty
.

So the g.f. for the permutations in Subclass (1) is

x3p2u3vst3y +
x4p2qu3vs2t3my

1− xpty
.

Subclass (2): πk′′ = n−2 and 1 < k′ < n−2. In this case, we have π = ((ζ ′⊕1)⊖
γ′)⊕12, where ζ ′ ∈ Sk′′−1 and γ′ ∈ Sn−k′′−2 are non-empty increasing permutations.

Now, πk′′−1 < πk′′ = n − 2 > πk′′+1 and 1, . . . , (k′′ − 2), (k′′ + 1), . . . , (n − 2) are

double ascents. So the g.f. for ζ ′ is∑
i≥1

xipiuisℓyi−2 =
xpusℓ

1− xpuy
.
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The g.f. for γ′ is x4p2qu3vst3my
1−xpty . Note that n− 2 is not a left-to-right minimum, so

the g.f. for the permutations in this case is

xpusℓ

1− xpuy

x4p2qu3vst3my

1− xpty
=

x5p3qu4vs2t3mℓy

(1− xpuy)(1− xpty)
.

Subclass (3): πn−2 = n− 2. In this case, the g.f. for these permutations is

xpuvtyGG(132,321)(x, p, q, u, 1, s, t, y, z, ℓ,m),

where n gives xpuvty(πn−2 = n− 2 < πn−1 = n− 1 < πn = n) and we do not need

to consider right-to-left maxima of π1 · · ·πn−1.

Considering Subclasses (1)–(3), we conclude that

GG(132,321)(x, p, q, u, v, s, t, y, z, ℓ,m) =xpuvtyGG(132,321)(x, p, q, u, 1, s, t, y, z, ℓ,m)

+ x3p2u3vst3y +
x4p2qu3vs2t3my

1− xpty

+
x5p3qu4vs2t3mℓy

(1− xpuy)(1− xpty)
. (11)

Letting v = 1 in Equation (11), we get

GG(132,321)(x, p, q, u, 1, s, t, y, z, ℓ,m) =xputyGG(132,321)(x, p, q, u, 1, s, t, y, z, ℓ,m)

+ x3p2u3st3y +
x4p2qu3s2t3my

1− xpty

+
x5p3qu4s2t3mℓy

(1− xpuy)(1− xpty)
. (12)

By simultaneously solving (9)–(12), we obtain the desired result.

Corollary 2. Let u = v = s = t = 1. Then, by setting four out of the six variables
p, q, y, z, ℓ, and m equal to one individually in Equation (8), we obtain the joint
distributions of (asc, des), (dasc, ddes), and (pk, vl) over Sn(132, 321):∑

n≥0

∑
π∈Sn(132,321)

xnpasc(π)qdes(π) =
1 + x− 3px− 2px2 + 3p2x2 + qx2 + p2x3 − p3x3

(1− px)3
,

(13)∑
n≥0

∑
π∈Sn(132,321)

xnydasc(π)zddes(π) =
B

(1− xy)3
, (14)

∑
n≥0

∑
π∈Sn(132,321)

xnℓpk(π)mvl(π) =
C

(1− x)3
, (15)

where

B = 1+x(1−3y)+x2(2−3y+3y2)+x3(3−5y+3y2−y3)+x4(2−y)(1−y)2−x5(1−y)2y,

and C = 1− 2x+ 2x2 − (3− ℓ− 2m)x3 + (3− 2ℓ)(1−m)x4 − (1− ℓ−m+ ℓm)x5.
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2.3. Permutations in Sn(231, 312)

We first describe the structure of a (231, 312)-avoiding permutation. Let π =

π1 · · ·πn ∈ Sn(231, 312). If π1 = n, then π = n(n − 1) · · · 21. If πk = n and

1 < k < n, then πk+1 > πk+2 > · · · > πn in order to avoid 312. On the other

hand, in order to avoid 231, πi = n + k − i if k + 1 ≤ i ≤ n, and π1π2 · · ·πk−1

must be a permutation in Sk−1(231, 312). If πn = n, then π1π2 · · ·πn−1 must be

a permutation in Sn−1(231, 312). Namely, for π ∈ Sn(231, 312), its structure is

π = α ⊕ (1 ⊖ β), where α ∈ Sk−1(231, 312) and 1 ⊖ β ∈ Sn−k+1 is a decreasing

(231, 312)-avoiding permutation. We use the structure of π to prove the following

theorem.

Theorem 4. For Sn(231, 312), we have

F(231,312)(x, p, q, u, v, s, t, y, z, ℓ,m) =
A

B
(16)

where

A =(1− qvxz)(ℓmpqtux2 − (1− ptuxy)(1− qxz)) + q2s3tuv2x3z(mptux((1− qxz)(1− qvxz)

+ ℓqx(−1 + v + z − qvxz2)) + (1− qxz)((1− z)(1− qvxz)− ptux(z(1 + ℓqvx− qvxz)

+ y(1− z)(1− qvxz)))) + sx(q(1 + v)z(1− qxz)(1− qvxz) + v(−1 + qx(1− py)z

+ pt2u2vx((1− y)(1− qxz)(−1 + qvxz) + ℓqx(m−mqvxz + v(−1 + qxz)))

− tu(−1 + qvxz)(pqxz(−ℓmqx+ y(−1 + qxz)) + pq2x2z(−ℓm+ yz))))

+ qs2vx2(−qz2(1− qxz)(1− qvxz) + tu(−1 + qvxz)(v(1− z)(1− qxz)

+ z(−1 + qx(1− py)z + pq2x2z(−ℓm+ yz))) + pt2u2x(−((−1 + qxz)(z − yz

+ qv2x(ℓ+ y(−1 + z)− z)z + v(y + z + ℓqxz − yz − qxz2 + qxyz2)))

+m(−1− (−1 + ℓ)q(1 + v)xz + q2vx2z(−z + ℓ(1− v(1− z) + z))))),

and

B = (1− qsxz)(1− qvxz)(1− qsvxz)(ℓmqtux2 − (1− ptuxy)(1− qxz)).

Proof. Let π = π1 · · ·πn ∈ Sn(231, 312). If n ≤ 1, then the corresponding g.f. is

1 + xuvst. For n ≥ 2, the permutations are divided into three cases depending on

the position of n.

Case (a): π1 = n. In this case, π = n(n−1) · · · 21. If n = 2, then the corresponding

g.f. is x2quv2s2t. If n ≥ 3, then positions 1, 2, . . . , (n − 2) are double descents, so

the corresponding g.f. is∑
i≥3

xiqi−1uvisitzi−2 =
x3q2uv3s3tz

1− xqvsz
.

Therefore, the g.f. in Case (a) is

x2quv2s2t+
x3q2uv3s3tz

1− xqvsz
=

x2quv2s2t

1− xqvsz
.
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Case (b): πk = n and 1 < k < n. In this case, we let the g.f. be

G(231,312)(x, p, q, u, v, s, t, y, z, ℓ,m) :=∑
n≥3

∑
π∈

Sn(231,312)
πk=n

xnpasc(π)qdes(π)ulrmax(π)vrlmax(π)slrmin(π)trlmin(π)ydasc(π)zddes(π)ℓpk(π)mvl(π).

Case (c): πn = n. In this case, we let the g.f. for these permutations be

GG(231,312)(x, p, q, u, v, s, t, y, z, ℓ,m) :=∑
n≥2

∑
π∈

Sn(231,312)
πn=n

xnpasc(π)qdes(π)ulrmax(π)vrlmax(π)slrmin(π)trlmin(π)ydasc(π)zddes(π)ℓpk(π)mvl(π).

Combining Cases (a)–(c), we have

F(231,312)(x, p, q, u, v, s, t, y, z, ℓ,m) =GG(231,312)(x, p, q, u, v, s, t, y, z, ℓ,m)

+G(231,312)(x, p, q, u, v, s, t, y, z, ℓ,m)

+ 1 + xuvst+
x2quv2s2t

1− xqvsz
. (17)

Next we evaluate G(231,312)(x, p, q, u, v, s, t, y, z, ℓ,m), which appears in Case (b).

If πk = n and 1 < k < n, then π = α ⊕ (1 ⊖ β), where α ∈ Sk−1(231, 312)

and 1 ⊖ β ∈ Sn−k+1 is a decreasing non-empty (231, 312)-avoiding permutation.

Note that we do not need to consider left-to-right minima for 1⊖β and right-to-left

maxima for α. For n ≥ 3, we divide the permutations into three subcases depending

on the position of k − 1 which is the largest element of α.

Subcase (1): π1 = k − 1. In this case, we have the following two subsubcases.

Subsubcase (i): k = 2. In this case, we have π = 1n · · · 2. For 1⊖β = (n−1) · · · 1,
similarly to Case (a), we see that the corresponding g.f. is

xpustl
x2quv2t

1− xqvz
.

Subsubcase (ii): k ̸= 2. In this case, we have π = (k − 1) · · · 1n · · · k. Similarly

to Case (a), we see that the corresponding g.f. is

ℓmp
x2qus2t

1− xqsz

x2quv2t

1− xqvz
=

x4pq2u2v2s2t2ℓm

(1− xqsz)(1− xqvz)
,

where πk−2πk−1πk = 21n contributes to vl(π), πk−1πkπk+1 = 1n(n−1) contributes

to pk(π), and πk−1πk = 1n contributes to asc(π).

So the g.f. in Subcase (1) is

xpustℓ
x2quv2t

1− xqvz
+

x4pq2u2v2s2t2ℓm

(1− xqsz)(1− xqvz)
.
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Subcase (2): πk′ = k − 1 and 1 < k′ < k − 1. In this case, α = γ ⊕ (1⊖ ζ), where

γ ∈ Sk′−1(231, 312) and 1⊖ζ ∈ Sk−k′ is a decreasing non-empty (231, 312)-avoiding

permutation. For α = γ⊕ (1⊖ ζ), because the structure is the same as in Case (b),

we obtain the g.f. G(231,312)(x, p, q, u, 1, s, t, y, z, ℓ,m). For 1⊖ β, similarly to Case

(a), we see that the corresponding g.f. in Subcase (2) is

ℓmpG(231,312)(x, p, q, u, 1, s, t, y, z, ℓ,m)
x2quv2t

1− xqvz
,

where πk−2πk−1πk contributes to vl(π), πk−1πkπk+1 contributes to pk(π), and

πk−1πk contributes to asc(π).

Subcase (3): πk−1 = k− 1. In this case, the structure of α is the same as in Case

(c), so the g.f. in Subcase (3) is

pyℓGG(231,312)(x, p, q, u, 1, s, t, y, z, ℓ,m)
x2quv2t

1− xqvz
,

where πk−2πk−1πk contributes to dasc(π), πk−1πkπk+1 contributes to pk(π), and

πk−1πk contributes to asc(π).
Combining Subcases (1)–(3), we have

G(231,312)(x, p, q, u, v, s, t, y, z, ℓ,m) =pyℓGG(231,312)(x, p, q, u, 1, s, t, y, z, ℓ,m)
x2quv2t

1− xqvz

+ ℓmpG(231,312)(x, p, q, u, 1, s, t, y, z, ℓ,m)
x2quv2t

1− xqvz

+ xpustℓ
x2quv2t

1− xqvz
+

x4pq2u2v2s2t2ℓm

(1− xqsz)(1− xqvz)
. (18)

Letting v = 1 in Equation (18), we get

G(231,312)(x, p, q, u, 1, s, t, y, z, ℓ,m) =pyℓGG(231,312)(x, p, q, u, 1, s, t, y, z, ℓ,m)
x2qut

1− xqz

+ ℓmpG(231,312)(x, p, q, u, 1, s, t, y, z, ℓ,m)
x2qut

1− xqz

+ xpustℓ
x2qut

1− xqz
+

x4pq2u2s2t2ℓm

(1− xqsz)(1− xqz)
. (19)

Next we evaluate GG(231,312)(x, p, q, u, v, s, t, y, z, ℓ,m), which appears in Case

(c). If πn = n, then π = α ⊕ 1, where α ∈ Sn−1(231, 312) is any non-empty

(231, 312)-avoiding permutation. Note that we do not need to consider right-to-left

maxima for α. For n ≥ 2, we divide the permutations into three classes depending

on the position of n− 1, which is the largest element of α.

Class A: π1 = n− 1. In this case, we have the following subclasses.

Subclass 1: n = 2. In this case, we have π = 12 and the g.f. is x2pu2vst2.
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Subclass 2: n ̸= 2. In this case, we have α = (n − 1) · · · 1. Similarly to Case (a),

we see that the corresponding g.f. is

xpuvtm
x2qus2t

1− xqsz
,

where πn−2πn−1πn = 21n contributes to vl(π). So the g.f. for Class A is

x2pu2vst2 + xpuvtm
x2qus2t

1− xqsz
.

Class B: πk′ = n − 1 and 1 < k′ < n − 1. In this case, α = γ ⊕ (1 ⊖ ζ), where

γ ∈ Sk′−1(231, 312) and 1⊖ζ ∈ Sn−k′ is a decreasing non-empty (231, 312)-avoiding

permutation. For α = γ⊕ (1⊖ ζ), because the structure is the same as in Case (b),

the g.f. is G(231,312)(x, p, q, u, 1, s, t, y, z, ℓ,m). We see that the corresponding g.f. in

Class B is

xpuvtmG(231,312)(x, p, q, u, 1, s, t, y, z, ℓ,m),

where πn−2πn−1πn contributes to vl(π).

Class C: πn−1 = n− 1. In this case, the structure of α is the same as in Case (c),

so the g.f. for Class C is

xpuvtyGG(231,312)(x, p, q, u, 1, s, t, y, z, ℓ,m),

where πn−2πn−1πn contributes to dasc(π). Classes A–C together give

GG(231,312)(x, p, q, u, v, s, t, y, z, ℓ,m)

= xpuvtyGG(231,312)(x, p, q, u, 1, s, t, y, z, ℓ,m)

+ xpuvtmG(231,312)(x, p, q, u, 1, s, t, y, z, ℓ,m)

+ x2pu2vst2 + xpuvtm
x2qus2t

1− xqsz
. (20)

Letting v = 1 in Equation (20), we get

GG(231,312)(x, p, q, u, 1, s, t, y, z, ℓ,m) =xputyGG(231,312)(x, p, q, u, 1, s, t, y, z, ℓ,m)

+ xputmG(231,312)(x, p, q, u, 1, s, t, y, z, ℓ,m)

+ x2pu2st2 + xputm
x2qus2t

1− xqsz
. (21)

Solving Equations (17)–(21) simultaneously, we obtain (16).

Corollary 3. Let u = v = s = t = 1. Then, by setting four out of the six variables
p, q, y, z, ℓ, and m equal to one individually in Equation (16), we obtain the joint
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distributions of (asc, des), (dasc, ddes), and (pk, vl) over Sn(231, 312):∑
n≥0

∑
π∈Sn(231,312)

xnpasc(π)qdes(π) =
C

(1− qx)(1− qx(1 + x)− px(1− qx))
, (22)

∑
n≥0

∑
π∈Sn(231,312)

xnydasc(π)zddes(π) =
1 + x2(1 + x)(1− y)(1− z) + x(1− y − z)

1− x(y + z)− x2(1− yz)
, (23)

∑
n≥0

∑
π∈Sn(231,312)

xnℓpk(π)mvl(π) =
D

(1− x)(1− 2x+ (1− ℓm)x2 − (1− ℓ)mx3)
, (24)

where C = 1 + (1 − p − 2q)x − q(2 − 2p − q)x2 − (1 − p)(1 − q)qx3 − (1 − p)pqx4,

and D = 1− 2x+ (2− ℓm)x2 − (2− ℓ− ℓm)x3 + (1− ℓ−m+ ℓm)x4.

2.4. Permutations in Sn(213, 231)

We first describe the structure of a (213, 231)-avoiding permutation. Let π =

π1 · · ·πn ∈ Sn(213, 231). If π1 = n, then π = n(n − 1) · · · 21. If πk = n and

1 < k < n, then π1 < π2 < · · · < πk−1 in order to avoid 213. On the other hand, in

order to avoid 231, if k + 1 ≤ i ≤ n, then πi > πk−1. If πn = n, then π = 12 · · ·n.
So, for π ∈ Sn(213, 231), its structure is π = α ⊕ (1 ⊖ β), where α ∈ Sk−1 is an

increasing (213, 231)-avoiding permutation and 1 ⊖ β ∈ Sn−k+1(213, 231). We use

the structure of π to prove the following theorem.

Theorem 5. For Sn(213, 231), we have

F(213,231)(x, p, q, u, v, s, t, y, z, ℓ,m) =
A

B
, (25)

where

A =svx(qz(qvxz − 1) + p2t3u2x2y(ℓ(m− 1)qvx− (y − 1)(qvxz − 1))

+ t(u(1− qvxz)(1 + pqxyz) + pqxz(ℓmqvx+ y − qvxyz))

− pt2ux(−ℓquvx− u(y − 1)(qvxz − 1) + (1 + pqxyz)(ℓmqvx+ y − qvxyz)))

− qs2tuv2x2(mptx(ptuxy − 1)(1 + (ℓ− 1)qvxz)− (ptxy − 1)((1− z)(qvxz − 1)

+ ptux(z(1 + ℓqvx− qvxz) + y(z − 1)(qvxz − 1))))

+ (ptuxy − 1)(ℓmpqtvx2 − (1− ptxy)(1− qvxz))

and

B = (1− ptuxy)(1− qsvxz)((1− ptxy)(1− qvxz)− ℓmpqtvx2).

Proof. Let π = π1 · · ·πn ∈ Sn(213, 231) . If n ≤ 1, then we have the formula

F(213,231)(x, p, q, u, v, s, t, y, z, ℓ,m) = 1 + xuvst. For n ≥ 2, the permutations are

divided into three cases depending on the position of n.
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Case (a): If π1 = n, then π = 1⊖ β, where β ∈ Sn−1(213, 231) is non-empty. We
let the g.f. for the permutations in Case (a) be

G(213,231)(x, p, q, u, v, s, t, y, z, ℓ,m) :=∑
n≥2

∑
π∈

Sn(213,231)
π1=n

xnpasc(π)qdes(π)ulrmax(π)vrlmax(π)slrmin(π)trlmin(π)ydasc(π)zddes(π)ℓpk(π)mvl(π).

Case (b): πk = n and 1 < k < n. In this case, π = α ⊕ (1 ⊖ β), where α =

12 · · · (k − 1) and 1⊖ β ∈ Sn−k+1 is the same as in Case (a). Note that we do not

need to consider left-to-right minima for 1⊖β. Next, we consider the following two

subcases.

Subcase (1): k = 2. In this case, α = 1, and the g.f. for π is

xpustℓG(213,231)(x, p, q, u, v, 1, t, y, z, ℓ,m),

where π1π2π3 contributes to pk(π).

Subcase (2): k > 2. In this case, α = 12 · · · (k − 1), and the g.f. is

G(213,231)(x, p, q, u, v, 1, t, y, z, ℓ,m)
∑
i≥2

xipiuistiyi−1ℓ

= G(213,231)(x, p, q, u, v, 1, t, y, z, ℓ,m)
x2p2u2st2yℓ

1− xputy
,

where πk−2πk−1πk = (k − 2)(k − 1)n contributes to dasc(π) and πk−1πkπk+1 con-

tributes to pk(π). So the g.f. in Case (b) is

xpustℓG(213,231)(x, p, q, u, v, 1, t, y, z, ℓ,m)

+G(213,231)(x, p, q, u, v, 1, t, y, z, ℓ,m)
x2p2u2st2yℓ

1− xputy

=G(213,231)(x, p, q, u, v, 1, t, y, z, ℓ,m)
xpustℓ

1− xputy
.

Case (c): πn = n. In this case, π = 12 · · ·n.

Subcase (1): n = 2. In this case, π = 12 and the g.f. is x2pu2vst2.

Subcase (2): If n > 2, then positions 1, 2, . . . , (n − 2) are double ascents and the

g.f. for π is ∑
i≥3

xipi−1uivstiyi−2 =
x3p2u3vst3y

1− xputy
.

So the g.f. in Case (c) is

x2pu2vst2 +
x3p2u3vst3y

1− xputy
=

x2pu2vst2

1− xputy
.
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Combining Cases (a)–(c), we have F(213,231)(x, p, q, u, v, s, t, y, z, ℓ,m)

= G(213,231)(x, p, q, u, v, s, t, y, z, ℓ,m)

+G(213,231)(x, p, q, u, v, 1, t, y, z, ℓ,m)
xpustℓ

1− xputy

+ 1 + xuvst+
x2pu2vst2

1− xputy
. (26)

Next we evaluate G(213,231)(x, p, q, u, v, s, t, y, z, ℓ,m), which appears in Case (a).

If π1 = n, then π = 1 ⊖ β, where β ∈ Sn−1(213, 231) is non-empty. Note that

we do not need to consider left-to-right maxima for β. For n ≥ 2, we divide the

permutations into three classes depending on the position of n − 1, which is the

largest element of β.

Class A: π2 = n− 1. In this case, we consider the following two subclasses.

Subclass (1): n = 2. In this case, we have π = 21, and the g.f. is x2quv2s2t.

Subclass (2): n ≥ 2. In this case, we have β = 1⊖ ζ, where ζ ∈ Sn−2(213, 231) is

non-empty. Similarly to Case (a), we see that the corresponding g.f. is

xquvszG(213,231)(x, p, q, 1, v, s, t, y, z, ℓ,m),

where π1π2π3 contributes to ddes(π). So the g.f. for Class A is

x2quv2s2t+ xquvszG(213,231)(x, p, q, 1, v, s, t, y, z, ℓ,m).

Class B: πk′ = n − 1 and 2 < k′ < n. In this case, β = γ′ ⊕ (1 ⊖ ζ ′), where

1 ⊖ ζ ′ ∈ Sn−k′+1 is the same as in Case (a) and γ′ = 1 · · · (k′ − 2) is a non-empty

permutation. Note that we do not need to consider left-to-right maxima and left-

to-right minima for 1⊖ ζ ′. We consider the following two subclasses of Class B.

Subclass (1): k′ = 3. In this case, we have γ′ = 1, and the g.f. is

x2pquvs2tℓmG(213,231)(x, p, q, 1, v, 1, t, y, z, ℓ,m),

where π1π2π3 = n1(n− 1) contributes to vl(π) and π2π3π4 contributes to pk(π).

Subclass (2): k′ > 3. In this case, we have position 1 is a valley, positions

2, 3, . . . , (k′ − 2) are double ascents, and position k′ − 1 is a peak. The g.f. for π is

G(213,231)(x, p, q, 1, v, 1, t, y, z, ℓ,m)
∑
i≥3

xipi−1quvs2ti−1yi−2ℓ

=G(213,231)(x, p, q, 1, v, 1, t, y, z, ℓ,m)
x3p2quvs2t2yℓm

1− xpty
.
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So the g.f. for Case B is

G(213,231)(x, p, q, 1, v, 1, t, y, z, ℓ,m)

(
x2pquvs2tℓm+

x3p2quvs2t2yℓm

1− xpty

)
.

Class C: πn = n−1. In this case, π = n1 · · · (n−1), which is the same as Case (c),

so the corresponding g.f. is

xquvsm
x2pvst2

1− xpty
.

Classes A–C together give

G(213,231)(x, p, q, u, v, s, t, y, z, ℓ,m)

= x2quv2s2t+ xquvszG(213,231)(x, p, q, 1, v, s, t, y, z, ℓ,m) + xquvsm
x2pvst2

1− xpty

+G(213,231)(x, p, q, 1, v, 1, t, y, z, ℓ,m)

(
x2pquvs2tℓm+

x3p2quvs2t2yℓm

1− xpty

)
. (27)

Letting u = 1 in Equation (27), we get

G(213,231)(x, p, q, 1, v, s, t, y, z, ℓ,m)

= x2qv2s2t+ xqvszG(213,231)(x, p, q, 1, v, s, t, y, z, ℓ,m) + xqvsm
x2pvst2

1− xpty

+G(213,231)(x, p, q, 1, v, 1, t, y, z, ℓ,m)

(
x2pqvs2tℓm+

x3p2qvs2t2yℓm

1− xpty

)
. (28)

Letting s = 1 in Equation (28), we get

G(213,231)(x, p, q, 1, v, 1, t, y, z, ℓ,m)

= x2qv2t+ xqvzG(213,231)(x, p, q, 1, v, 1, t, y, z, ℓ,m) + xqvm
x2pvt2

1− xpty

+G(213,231)(x, p, q, 1, v, 1, t, y, z, ℓ,m)

(
x2pqvtℓm+

x3p2qvt2yℓm

1− xpty

)
. (29)

Solving Equations (26) and (29) simultaneously, we obtain (25).

From Theorem 5 we have the following results.

Corollary 4. Let u = v = s = t = 1. Then, by setting four out of the six variables

p, q, y, z, ℓ, and m equal to one individually in Equation (25), we obtain the joint
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distributions of (asc, des), (dasc, ddes), and (pk, vl) over Sn(213, 312):∑
n≥0

∑
π∈Sn(213,231)

xnpasc(π)qdes(π) =
1 + x− px− qx

1− px− qx
, (30)

∑
n≥0

∑
π∈Sn(213,231)

xnydasc(π)zddes(π) =
C

1− x2 − xy − xz + x2yz
, (31)

∑
n≥0

∑
π∈Sn(213,231)

xnℓpk(π)mvl(π) =
1− x+ x2 − ℓmx2 − x3 + ℓx3 +mx3 − ℓmx3

1− 2x+ x2 − ℓmx2
,

(32)

where C = 1 + x+ x2 + x3 − xy − x2y − x3y − xz − x2z − x3z + x2yz + x3yz.

2.5. Permutations in Sn(213, 312)

We first describe the structure of a (213, 312)-avoiding permutation. Let π =

π1 · · ·πn ∈ Sn(213, 312). If πi = n, then π1 < π2 < · · · < πi−1 in order to avoid

213. On the other hand, in order to avoid 312, πi+1 > πi+2 > · · · > πn. We use the

structure of π to prove the following theorem.

Theorem 6. For Sn(213, 312), we have

F(213,312)(x, p, q, u, v, s, t, y, z, ℓ,m) =1 +
qs2tuv2x2

1− qsvxz
+ pstu2vx2 t

1− ptuxy

+
ℓqst2uv2x2

(1− ptuxy)(1− puxy − qvxz)

+
ℓqsvx

(1− puxy − qvxz)(1− qsvxz)
. (33)

Proof. Let π = π1 · · ·πn ∈ Sn(213, 312). If n = 0, then we have the term of 1 in

F(213,312)(x, p, q, u, v, s, t). If π = 1, then the g.f. is xuvst. For n ≥ 2, suppose that

π1 = i, πk = n, and πn = j. We consider the following cases.

If i = n, namely k = 1, then π = n · · · 1. The corresponding g.f. is

∞∑
n=2

xnqn−1uvnsntzn−2.

If j = n, namely k = n, then π = 1 · · ·n. The corresponding g.f. is

∞∑
n=2

xnpn−1unvstnyn−2.

Next, let 2 ≤ i, j, k ≤ n − 1. If π1 = 1, then in order to avoid 312, there are(
n−j−1
n−k−1

)
permutations whose g.f. is xnpk−1qn−kukvn−k+1stjyk−2zn−k−1, so the g.f.



INTEGERS: 26 (2026) 21

in this case is

∞∑
n=2

n−1∑
j=2

n−1∑
k=j

(
n− j − 1

n− k − 1

)
xnpk−1qn−kukvn−k+1stjyk−2zn−k−1.

If π1 ̸= 1, then to avoid 213, there are
(
n−i−1
k−2

)
permutations whose g.f. is

xnpk−1qn−kukvn−k+1sityk−2zn−k−1ℓ.

Hence, the g.f. in this case is

∞∑
n=2

n−1∑
i=2

n+1−i∑
k=2

(
n− i− 1

k − 2

)
xnpk−1qn−kukvn−k+1sityk−2zn−k−1ℓ.

In conclusion,

F(213,312)(x, p, q, u, v, s, t, y, z, ℓ,m)

= 1 + xtuvs+

∞∑
n=2

xnqn−1uvnsntzn−2 +

∞∑
n=2

xnpn−1unvstnyn−2

+

∞∑
n=2

n−1∑
j=2

n−1∑
k=j

(
n− j − 1

n− k − 1

)
xnpk−1qn−kukvn−k+1stjyk−2zn−k−1

+

∞∑
n=2

n−1∑
i=2

n+1−i∑
k=2

(
n− i− 1

k − 2

)
xnpk−1qn−kukvn−k+1sityk−2zn−k−1ℓ.

Simplifying F(213,312)(x, p, q, u, v, s, t, y, z, ℓ,m), we obtain (33).

Corollary 5. Let u = v = s = t = 1. Then, by setting four out of the six variables

p, q, y, z, ℓ, and m equal to one individually in Equation (33), we obtain the joint

distributions of (asc, des), (dasc, ddes), and (pk, vl) over Sn(213, 312):∑
n≥0

∑
π∈Sn(213,312)

xnpasc(π)qdes(π) =
(1− px+ px2)(1− px− qx+ qx2)

(1− px)(1− px+ qx)
, (34)

∑
n≥0

∑
π∈Sn(213,312)

xnydasc(π)zddes(π) =
A

(1− xz)(1− 2xy + x2y2 − xz + x2yz)
,

(35)∑
n≥0

∑
π∈Sn(213,312)

xnℓpk(π)mvl(π) =
1− 3x+ 4x2 − 4x3 + ℓx3 + ℓx4

1− 3x+ 2x2
, (36)

where

A =1− x5z − 2x(y + z) + x2(2 + y2 + 3yz + z2) + x4(1 + y2 + z2 + y(−1 + 2z))

− x3(−1 + 3z + y2z + y(3 + z2)).
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3. Concluding Remarks

In this paper, we determine the joint distributions of the statistics (asc, des, lrmax,

lrmin, rlmax, rlmin, dasc, ddes, pk, vl) on permutations avoiding any two patterns

of length 3. This generalizes several earlier results in [3, 4, 6], which considered,

respectively, one, two, and six statistics on the same sets of permutations. All gen-

erating functions derived in this paper are rational. It is noteworthy that we are

able to simultaneously control such a large number of statistics while still obtaining

explicit distribution results. This is achieved by considering a more refined struc-

ture of the permutations in question, which results in a larger number of cases and

subcases to be analyzed. We also note that, unlike the situation in [6], where com-

binatorial proofs of five equidistribution results are provided, we have not observed

any equidistributions in our more general setting.

Finally, studying (joint) distributions of statistics in other permutation classes,

such as those considered in the literature [7], is an interesting direction for further

research. For instance, our approach should be applicable to extending the joint

distribution results for separable permutations in [5], where up to four statistics are

simultaneously controlled.
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