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Abstract

We give a short proof of the well-known Knuth’s old sum and provide some gen-

eralizations. Our approach utilizes the binomial theorem and integration formulas

derived using the Beta function. Several new polynomial identities and combinato-

rial identities are derived.

1. Introduction

There appears to be a renewed interest [1, 2, 7, 11, 14] in the famous Knuth’s old

sum (also known as the Reed Dawson identity),

n∑
k=0

(−1)k
(
n

k

)
2−k

(
2k

k

)
=

{
2−n

(
n

n/2

)
, if n is even;

0, if n is odd.
(1)

Many different proofs of this identity and various generalizations exist in the liter-

ature (see [10] for a survey).

In this paper we give a very short proof of Equation (1) and offer the following

generalization:

n∑
k=0

(−1)k
(
n

k

)
2−k−m

(
2(k +m)

k +m

)

=


⌊m/2⌋∑
k=0

(
m
2k

)
2−n−2k

(
2k+n

(2k+n)/2

)
, if n is even;

−
⌈m/2⌉∑
k=1

(
m

2k−1

)
2−n−2k+1

(
2k+n−1

(2k+n−1)/2

)
, if n is odd;

(2)

where m and n are non-negative integers and, as usual, ⌊z⌋ is the greatest integer

less than or equal to z while ⌈z⌉ is the smallest integer greater than or equal to z.
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The following special cases of Equation (2) were also reported by [12, p.72, Prob-

lem 4(b)]:

⌊n/2⌋∑
k=0

(
n

2k

)
2n−2k

(
2k

k

)
=

(
2n

n

)
, (3)

⌈n/2⌉∑
k=1

(
n

2k − 1

)
2n−2k

(
2k

k

)
=

1

2

(
2n+ 2

n+ 1

)
−
(
2n

n

)
=

n

n+ 1

(
2n

n

)
. (4)

Equation (3) corresponds to setting n = 0 in Equation (2) and re-labeling m as n;

while Equation (4) follows from setting n = 1 in Equation (2).

In Section 5, we will derive the following complements of Knuth’s old sum:

n∑
k=0

(−1)k
(
2k

k

)(
2 (n− k)

n− k

)
=

{
2n

(
n

n/2

)
, if n is even;

0, if n is odd;

and
n∑

k=0

(
2 (n− k)

n− k

)(
2k

k

)
= 22n. (5)

Equation (5) is the famous combinatorial identity concerning the convolution of

central binomial coefficients. Many different proofs of this identity exist in the

literature, (see Mikić [8] and the many references therein).

Equation (2) is itself a particular case of a more general identity, stated in The-

orem 2, which has many interesting consequences, including another generalization

of Knuth’s old sum, namely,

n∑
k=0

(−1)k
(
n

k

)
2−k

(
2k + v

(2k + v) /2

)(
k + v

v/2

)−1

=

{
2−n

(
n

n/2

)(
(n+v)/2

v/2

)−1
, if n is even;

0, if n is odd;

where v is a real number; as well as simple, apparently new combinatorial identities

such as
⌈n/2⌉∑
k=1

(
n

2k − 1

)
2n−2k Ck =

1

2
Cn+2 − Cn+1;

where, here and throughout this paper,

Cj =
1

j + 1

(
2j

j

)
,

defined for every non-negative integer j, is a Catalan number.
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Based on the binomial theorem, we will derive, in Section 7, some presumably

new polynomial identities, including the following:

n∑
k=0

(−1)n−k

(
n

k

)
2−k

(
2k

k

)
(1− x)

n−k
=

⌊n/2⌋∑
k=0

(
n

2k

)
2−2k

(
2k

k

)
xn−2k. (6)

Equation (6) subsumes Knuth’s old sum, Equation (1), (at x = 0), as well as

Equation (3) (at x = 1).

Finally, in Section 8, the polynomial identities will facilitate the derivation of

apparently new combinatorial identities such as

⌊n/2⌋∑
k=0

(
n

2k

)
1

2k + 1
=

2n−1

2n − 1

⌈n/2⌉∑
k=1

(
n

2k − 1

)
1

k
, n ̸= 0,

⌊n/2⌋∑
k=0

(
n

2k

)
2−2kCk =

2−n+1

n+ 2
(2n+ 1)Cn,

and
n∑

k=0

(−1)n−k

(
n

k

)
2 (2k + 1)

k + 2
Ck =

⌊n/2⌋∑
k=0

(
n

2k

)
Ck.

2. Required Identities

In order to give the short proof of Knuth’s old sum, we need a couple of definite

integrals which we establish in Lemma 1.

The binomial coefficients are defined, for non-negative integers m and n, by(
m

n

)
=


m!

n!(m− n)!
, m ≥ n

0, m < n,

the number of distinct sets of n objects that can be chosen from m distinct objects.

Generalized binomial coefficients are defined for complex numbers u and v, ex-

cluding the set of negative integers, by(
u

v

)
=

Γ (u+ 1)

Γ (v + 1)Γ (u− v + 1)
, (7)

where Γ(z) is the Gamma function defined by

Γ(z) =

∫ ∞

0

e−ttz−1dt =

∫ ∞

0

(log (1/t))
z−1

dt

and extended to the rest of the complex plain, excluding the non-positive integers,

by analytic continuation.
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Lemma 1. Let u and v be complex numbers such that ℜu > −1 and ℜv > −1. Let

m be a non-negative integer. Then∫ π

0

cosu(x/2) dx = 2−u π

(
u

u/2

)
=

∫ π

0

sinu(x/2) dx, (8)

∫ π

0

cosm x dx =

{
2−m π

(
m

m/2

)
, if m is even;

0, if m is odd;
(9)

and, more generally,

I(u, v) :=

∫ π

0

cosu
(x
2

)
sinv

(x
2

)
dx = 2−u−v π

(
u

u/2

)(
v

v/2

)(
(u+ v) /2

u/2

)−1

,

(10)

and

J(m, v) :=

∫ π

0

cosm x sinv x dx =

{
2−m−v π

(
m

m/2

)(
v

v/2

)(
(m+v)/2

m/2

)−1
, if m is even;

0, if m is odd.

(11)

Obviously I(v, u) = I(u, v), a symmetry property that is not possessed by J(m, v).

Proof. Identities (10) and (11) are immediate consequences of the well-known Beta

function integral [6, Entry 3.621.5]:

K(u, v) :=

∫ π/2

0

cosu x sinv x dx = 2−u−v−1 π

(
u

u/2

)(
v

v/2

)(
(u+ v) /2

u/2

)−1

, (12)

valid for ℜu > −1, ℜv > −1, with the symmetry property K(u, v) = K(v, u).

Equation (10) is obtained via a simple change of the integration variable from x

to y in Equation (12), with x = y/2.

To prove Equation (11), write

J(m, v) =

∫ π

0

cosm x sinv x dx =

∫ π/2

0

cosm x sinv x dx+

∫ π

π/2

cosm x sinv x dx.

Change the integration variable in the second integral on the right-hand side from

x to y via x = y + π/2; this gives

J(m, v) =

∫ π/2

0

cosm x sinv x dx+ (−1)m
∫ π/2

0

sinm y cosv y dy

= K(m, v) + (−1)mK(v,m)

= (1 + (−1)m)K(m, v);

and hence Equation (11).
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Remark 1. Since, for a real number u,

1 + (−1)u = 2 cos2
(πu

2

)
+ i sin (πu) ,

the J(m, v) stated in Equation (11) is a special case of the following more general

result:

J (u, v) =

∫ π

0

cosu x sinv x dx

=
π

2u+v+1

(
u

u/2

)(
v

v/2

)(
(u+ v) /2

u/2

)−1 (
2 cos2

(πu
2

)
+ i sin (πu)

)
,

which is valid for u > −1 and ℜv > −1.

3. A Short Proof of Knuth’s Old Sum

Theorem 1. If n is a non-negative integer, then

n∑
k=0

(−1)k
(
n

k

)
2−k

(
2k

k

)
=

{
2−n

(
n

n/2

)
, if n is even;

0, if n is odd.

Proof. Substitute − cosx− 1 for y in the binomial theorem

n∑
k=0

(
n

k

)
yk = (1 + y)n,

to obtain
n∑

k=0

(−1)k
(
n

k

)
2k cos2k(x/2) = (−1)n cosn x. (13)

Thus
n∑

k=0

(−1)k
(
n

k

)
2k

∫ π

0

cos2k(x/2) dx = (−1)n
∫ π

0

cosn x dx,

and hence Equation (1) on account of Equations (8) and (9).

4. A Generalization of Knuth’s Old Sum

In this section we extend Equation (1) by introducing an arbitrary non-negative

integer m and a real number v.
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Theorem 2. If m and n are non-negative integers and v is a real number, then

n∑
k=0

(−1)k
(
n

k

)
2−k−m

(
2k + 2m+ v

(2k + 2m+ v)/2

)(
k +m+ v

v/2

)−1

=


⌊m/2⌋∑
k=0

(
m
2k

)
2−n−2k

(
2k+n

(2k+n)/2

)(
(2k+n+v)/2
(2k+n)/2

)−1
, if n is even;

−
⌈m/2⌉∑
k=1

(
m

2k−1

)
2−n−2k+1

(
2k+n−1

(2k+n−1)/2

)(
(2k+n−1+v)/2
(2k+n−1)/2

)−1
, if n is odd.

(14)

In particular,

n∑
k=0

(−1)k
(
n

k

)
2−k−m

(
2(k +m)

k +m

)

=


⌊m/2⌋∑
k=0

(
m
2k

)
2−n−2k

(
2k+n

(2k+n)/2

)
, if n is even;

−
⌈m/2⌉∑
k=1

(
m

2k−1

)
2−n−2k+1

(
2k+n−1

(2k+n−1)/2

)
, if n is odd.

Proof. Since

(1 + cosx)
m

= 2m cos2m
(x
2

)
=

m∑
k=0

(
m

k

)
cosk x

and

sinv x = 2v sinv
(x
2

)
cosv

(x
2

)
,

multiplication of the left-hand side of Equation (13) by

2m+v cos2m+v
(x
2

)
sinv

(x
2

)
and the right-hand side by

sinv x

m∑
k=0

(
m

k

)
cosk x

gives

n∑
k=0

(−1)k
(
n

k

)
2k+m+v cos2k+2m+v(x/2) sinv(x/2)

= (−1)n
m∑

k=0

(
m

k

)
cosk+n x sinv x.
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Thus, we have

n∑
k=0

(−1)k
(
n

k

)
2k+m+v cos2k+2m+v(x/2) sinv(x/2)

= (−1)n
⌊m/2⌋∑
k=0

(
m

2k

)
cos2k+n x sinv x

+ (−1)n
⌈m/2⌉∑
k=1

(
m

2k − 1

)
cos2k−1+n x sinv x.

Equation (14) now follows by termwise integration from 0 to π, according to the

parity of n, using Lemma 1.

Corollary 1. If n is a non-negative integer and v is a real number, then

n∑
k=0

(−1)k
(
n

k

)
2−k

(
2k + v

(2k + v) /2

)(
k + v

v/2

)−1

=

{
2−n

(
n

n/2

)(
(n+v)/2

v/2

)−1
, if n is even;

0, if n is odd.

(15)

Corollary 2. If n is a non-negative integer and v is a real number, then

⌊n/2⌋∑
k=0

(
n

2k

)
2−2k

(
2k

k

)(
(2k + v) /2

k

)−1

= 2−n

(
2n+ v

(2n+ v) /2

)(
n+ v

v/2

)−1

, (16)

and

⌈n/2⌉∑
k=1

(
n

2k − 1

)
2n−2k

(
2k

k

)(
(2k + v) /2

k

)−1

=
1

2

(
2n+ v + 2

(2n+ v + 2) /2

)(
n+ v + 1

v/2

)−1

−
(

2n+ v

(2n+ v) /2

)(
n+ v

v/2

)−1

.

(17)

Proof. Equation (16) is obtained by setting n = 0 in Equation (14) and re-labeling

m as n while Equation (17) is the evaluation of Equation (14) at n = 1 with a

re-labeling of m as n.

Proposition 1. If n is a non-negative integer, then

⌈n/2⌉∑
k=1

(
n

2k − 1

)
1

2k + 1
=

2n+1

n+ 2
− 2n

n+ 1
, (18)

⌈n/2⌉∑
k=1

(
n

2k − 1

)
2n−2k Ck =

1

2
Cn+2 − Cn+1. (19)
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Proof. Evaluation of Equation (17) at v = 1 gives Equation (18) while evaluation

at v = 2 yields Equation (19). In deriving Equation (18), we used the following

relationships between binomial coefficients:(
r

1/2

)
=

22r+1

π

(
2r

r

)−1

, (20)(
r

r/2

)
=

22r

π

(
r

(r − 1) /2

)−1

, (21)(
r + 1/2

r

)
= (2r + 1) 2−2r

(
2r

r

)
, (22)

and

r

(
s

r

)
= s

(
s− 1

r − 1

)
; (23)

all of which can be derived by using the Gamma function identities:

Γ

(
u+

1

2

)
=

√
π 2−2u

(
2u

u

)
Γ (u+ 1) ,

and

Γ

(
−u+

1

2

)
= (−1)u 22u

(
2u

u

)−1 √
π

Γ (u+ 1)
,

together with the definition of the generalized binomial coefficients as given in Equa-

tion (7).

Proposition 2. If m and n are non-negative integers, then

n∑
k=0

(−1)k
(
n

k

)
2k+m

k +m+ 1
=


⌊m/2⌋∑
k=0

(
m
2k

)
1

2k+n+1 , if n is even;

−
⌈m/2⌉∑
k=1

(
m

2k−1

)
1

2k+n , if n is odd.

In particular,
n∑

k=0

(−1)k
(
n
k

)
2k

k + 1
=

{
1

n+1 , if n is even;

0, if n is odd;

and
n∑

k=0

(−1)k
(
n
k

)
2k+1

k + 2
=

{
1

n+1 , if n is even;

− 1
n+2 , if n is odd.

Proof. Evaluate Equation (14) at v = 1.
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5. Complements of Knuth’s Old Sum

Theorem 3. If n is a non-negative integer, then

n∑
k=0

(−1)k
(
2k

k

)(
2 (n− k)

n− k

)
=

{
2n

(
n

n/2

)
, if n is even;

0, if n is odd.
(24)

Proof. Set a = cos2(x/2) and b = − sin2(x/2) in the binomial theorem:

n∑
k=0

(
n

k

)
akbn−k = (a+ b)

n
, (25)

to obtain
n∑

k=0

(−1)n−k

(
n

k

)
cos2k

(x
2

)
sin2n−2k

(x
2

)
= cosn x, (26)

from which Equation (24) follows by term-wise integration using Lemma 1.

Theorem 4. If n is a non-negative integer, then

n∑
k=0

(
2n− 2k

n− k

)(
2k

k

)
= 22n.

Proof. Set a = cos2(x/2) and b = sin2(x/2) in Equation (25) to obtain

n∑
k=0

(
n

k

)
cos2k

(x
2

)
sin2n−2k

(x
2

)
= 1, (27)

from which the stated identity follows by term-wise integration using Lemma 1.

Next, we present a generalization of Equation (24).

Theorem 5. If n is a non-negative integer and v is a real number, then

n∑
k=0

(−1)k
(
n

k

)(
2k + v

(2k + v) /2

)(
2n− 2k + v

(2n− 2k + v) /2

)(
n+ v

(2k + v) /2

)−1

=

{
2n

(
n

n/2

)(
v

v/2

)(
(n+v)/2

v/2

)−1
, if n is even;

0, if n is odd.

Proof. Multiply through Equation (26) by sinv x and integrate from 0 to π, using

Lemma 1.

We conclude this section with a generalization of Equation (5).
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Theorem 6. If n is a non-negative integer and v is a real number, then

n∑
k=0

(
n

k

)(
2k + v

(2k + v) /2

)(
2n− 2k + v

(2n− 2k + v) /2

)(
n+ v

(2k + v) /2

)−1

= 22n
(

v

v/2

)
.

Proof. Multiply through Equation (27) by sinv x and integrate from 0 to π, using

Lemma 1.

6. Combinatorial Identities Associated with Polynomial Identities of a
Certain Type

In this section we derive some combinatorial identities associated with any polyno-

mial identity having the following form:

n∑
k=s

f(k) (1 + t)
p(k)

=

r∑
k=m

g(k) tq(k); (28)

where m, n, r, and s are non-negative integers, p(k) and q(k) are sequences of

non-negative integers, f(k) and g(k) are sequences, and t is a complex variable.

Theorem 7. Consider the polynomial identity given in Equation (28). Let u and

v be arbitrary complex numbers such that ℜu > −1 and ℜv > −1. Then

n∑
k=s

f(k)

(
p(k) + u+ v + 1

u+ 1

)−1

=
u+ 1

v + 1

r∑
k=m

(−1)q(k)g(k)

(
q(k) + u+ v + 1

v + 1

)−1

.

(29)

In particular,
n∑

k=s

f(k)

p(k) + 1
=

r∑
k=m

(−1)q(k)g(k)

q(k) + 1
.

Proof. Write −t for t in Equation (28) and multiply through by tu(1− t)v to obtain

n∑
k=s

f(k) (1− t)
p(k)+v

tu =

r∑
k=m

(−1)q(k)g(k) (1− t)
v
tq(k)+u;

from which Equation (29) follows after integrating from 0 to 1, using the Beta

function (variant of Equation (12)):∫ 1

0

(1− t)
x
ty dt =

1

x+ 1

(
x+ y + 1

x+ 1

)−1

, (30)

for ℜx > −1 and ℜy > −1.
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Theorem 8. Consider the polynomial identity given in Equation (28). Let u and

v be arbitrary complex numbers such that ℜv > −1, ℜ(2(u − p(j)) + v) > −1,

ℜ(2(u − q(j)) + v) > −1, and 2q(j) + ℜv > −1 for every non-negative integer j.

Then

n∑
k=s

f(k)22p(k)
(

2 (u− p(k)) + v

(2 (u− p(k)) + v) /2

)(
u− p(k) + v

v/2

)−1

=

(
v

v/2

)−1 r∑
k=m

g(k)A(u, v, q(k)),

(31)

and

r∑
k=m

(−1)q(k)g(k)22q(k)
(

2 (u− q(k)) + v

(2 (u− q(k)) + v) /2

)(
u− q(k) + v

v/2

)−1

=

(
v

v/2

)−1 n∑
k=s

(−1)p(k)f(k)B(u, v, p(k)),

(32)

where

A(u, v, q(k)) =

(
2 (u− q(k)) + v

(2 (u− q(k)) + v) /2

)(
2q(k) + v

(2q(k) + v) /2

)(
u+ v

(2q(k) + v) /2

)−1

and

B(u, v, p(k)) =

(
2 (u− p(k)) + v

(2 (u− p(k)) + v) /2

)(
2p(k) + v

(2p(k) + v) /2

)(
u+ v

(2p(k) + v) /2

)−1

.

In particular,

n∑
k=s

f(k)22p(k)
(
2 (u− p(k))

u− p(k)

)
=

r∑
k=m

g(k)

(
2 (u− q(k))

u− q(k)

)(
2q(k)

q(k)

)(
u

q(k)

)−1

and

r∑
k=m

(−1)q(k)g(k)22q(k)
(
2 (u− q(k))

u− q(k)

)
=

n∑
k=s

(−1)p(k)f(k)

(
2 (u− p(k))

u− p(k)

)(
2p(k)

p(k)

)(
u

p(k)

)−1

.

Proof. Substituting t = y/x in Equation (28) and multiplying through by xw gives

n∑
k=s

f(k)xu−p(k) (x+ y)
p(k)

=

r∑
k=m

g(k)xu−q(k)yq(k). (33)

Writing cos2 x for x and sin2 x for y in Equation (33), multiplying through by sinv x
and integrating from 0 to π/2 using Lemma 1 gives Equation (31). Equation (32)
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follows from the fact that the transformation y → y−x followed by x → −x causes
Equation (28) to become

r∑
k=m

(−1)u−q(k)g(k)xu−q(k) (x+ y)
q(k)

=

n∑
k=s

(−1)u−p(k)f(k)xu−p(k)yp(k).

Theorem 9. Consider the polynomial identity given in Equation (28). Let u and v
be arbitrary complex numbers such that ℜv > −1, ℜu−p(j) > −1, p(j)+ℜ(v) > −1,
and ℜu− q(j) > −1 for every non-negative integer j. Then

n∑
k=s

(−1)p(k)f(k)

(
u+ v

u− p(k)

)−1

=
u+ v + 1

v + 1

r∑
k=m

(−1)q(k)g(k)

(
u− q(k) + 1

v + 1

)−1

.

(34)
In particular,

n∑
k=s

(−1)p(k)f(k)

(
u

p(k)

)−1

= (u+ 1)

r∑
k=m

(−1)q(k)
g(k)

u− q(k) + 1
.

Proof. Set y = −1 in Equation (33) and multiply through by (1− x)v to obtain

n∑
k=s

(−1)p(k)f(k)xu−p(k) (1− x)
p(k)+v

=

r∑
k=m

(−1)q(k)g(k)xu−q(k) (1− x)
v
,

which upon integration from 0 to 1, using Equation (30), gives Equation (34).

Theorem 10. Consider the polynomial identity given in Equation (28). Let u and
v be arbitrary complex numbers such that ℜu > −1 and ℜv > −1. Then

n∑
k=s

f(k)

22p(k)

(
v

v/2

)(
2p(k) + u

(2p(k) + u) /2

)(
(2p(k) + u+ v) /2

v/2

)−1

=

r∑
k=m

(−1)q(k)g(k)

22q(k)

(
u

u/2

)(
2q(k) + v

(2q(k) + v) /2

)(
(2q(k) + u+ v) /2

u/2

)−1

.

(35)

In particular,

n∑
k=s

f(k)

22p(k)

(
2p(k)

p(k)

)
=

r∑
k=m

(−1)q(k)g(k)

22q(k)

(
2q(k)

q(k)

)
.

Proof. Write − sin2 t for t in Equation (28) and multiply through by cosu t sinv t to
obtain

n∑
k=s

f(k) cos2p(k)+u t sinv t =

r∑
k=m

(−1)q(k)g(k) cosu t sin2q(k)+v t,

from which Equation (35) follows upon integration from 0 to π/2 using Lemma 1.



INTEGERS: 26 (2026) 13

Theorem 11. Consider the polynomial identity given in Equation (28). Let v be
an arbitrary complex number such that ℜv > −1.

1. Suppose that, for every integer j, each of q(2j) and q(2j − 1) is a sequence
of non-negative integers having a particular parity but such that the parity of
q(2j) is different from the parity of q(2j − 1) for every integer j.

If q(2j) is an even integer for every integer j, then

n∑
k=s

f(k)

2p(k)

(
2p(k) + v

(2p(k) + v) /2

)(
p(k) + v

v/2

)−1

=

⌊r/2⌋∑
k=⌊(m+1)/2⌋

g(2k)

2q(2k)

(
q(2k)

q(2k)/2

)(
(q(2k) + v) /2

v/2

)−1

,

(36)

while if q(2j) is an odd integer for every integer j, then

n∑
k=s

f(k)

2p(k)

(
2p(k) + v

(2p(k) + v) /2

)(
p(k) + v

v/2

)−1

=

⌈r/2⌉∑
k=⌊(m+2)/2⌋

g(2k − 1)

2q(2k−1)

(
q(2k − 1)

q(2k − 1)/2

)(
(q(2k − 1) + v) /2

v/2

)−1

.

(37)

2. Suppose that, for every integer j, each of p(2j) and p(2j − 1) is a sequence
of non-negative integers having a particular parity but such that the parity of
p(2j) is different from the parity of p(2j − 1) for every integer j.

If p(2j) is an even integer for every integer j, then

r∑
k=m

g(k)(−1)q(k)

2q(k)

(
2q(k) + v

(2q(k) + v) /2

)(
q(k) + v

v/2

)−1

=

⌊n/2⌋∑
k=⌊(s+1)/2⌋

(−1)p(2k)f(2k)

2p(2k)

(
p(2k)

p(2k)/2

)(
(p(2k) + v) /2

v/2

)−1
(38)

while if p(2j) is an odd integer for every integer j, then

r∑
k=m

g(k)(−1)q(k)

2q(k)

(
2q(k) + v

(2q(k) + v) /2

)(
q(k) + v

v/2

)−1

=

⌈n/2⌉∑
k=⌊(s+2)/2⌋

(−1)p(2k−1)f(2k − 1)

2p(2k−1)

(
p(2k − 1)

p(2k − 1)/2

)(
(p(2k − 1) + v) /2

v/2

)−1

.

(39)
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Proof. Set t = cosx in Equation (28) and multiply through by sinv x to obtain

n∑
k=s

2p(k)+vf(k) cos2p(k)+v
(x
2

)
sinv

(x
2

)

=

⌊r/2⌋∑
k=⌊(m+1)/2⌋

g(2k) cosq(2k) x sinv x+

⌈r/2⌉∑
k=⌊(m+2)/2⌋

g(2k − 1) cosq(2k−1) x sinv x,

from which Equation (36) and Equation (37) follow after term-wise integration from
0 to π, using Lemma 1. Equations (38) and (39) are obtained from Equations (36)
and (37) since Equation (28) can be written in the following equivalent form:

r∑
k=m

(−1)q(k)g(k) (1 + t)
q(k)

=

n∑
k=s

(−1)p(k)f(k)tp(k).

Remark 2. We offer the following remarks.

(a) Suppose that, for every integer j, each of q(2j) and q(2j − 1) is a sequence of
non-negative integers having a particular parity but such that the parity of q(2j) is
different from the parity of q(2j − 1) for every integer j. If q(2j) is an even integer
for every integer j, then

n∑
k=s

f(k)

2p(k)

(
2p(k)

p(k)

)
=

⌊r/2⌋∑
k=⌊(m+1)/2⌋

g(2k)

2q(2k)

(
q(2k)

q(2k)/2

)
,

while if q(2j) is an odd integer for every integer j, then

n∑
k=s

f(k)

2p(k)

(
2p(k)

p(k)

)
=

⌈r/2⌉∑
k=⌊(m+2)/2⌋

g(2k − 1)

2q(2k−1)

(
q(2k − 1)

q(2k − 1)/2

)
.

(b) Suppose that, for every integer j, each of p(2j) and p(2j − 1) is a sequence of
non-negative integers having a particular parity but such that the parity of p(2j) is
different from the parity of p(2j − 1) for every integer j. If p(2j) is an even integer
for every integer j, then

r∑
k=m

g(k)(−1)q(k)

2q(k)

(
2q(k)

q(k)

)
=

⌊n/2⌋∑
k=⌊(s+1)/2⌋

f(2k)

2p(2k)

(
p(2k)

p(2k)/2

)
,

while if p(2j) is an odd integer for every integer j, then

r∑
k=m

g(k)(−1)q(k)

2q(k)

(
2q(k)

q(k)

)
=

⌈n/2⌉∑
k=⌊(s+2)/2⌋

(−1)p(2k−1)f(2k − 1)

2p(2k−1)

(
p(2k − 1)

p(2k − 1)/2

)
.
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Corollary 3. Let an arbitrary polynomial identity have the following form:

n∑
k=s

f(k) (1 + t)
k
=

r∑
k=m

g(k) tk, (40)

where m, n, r, and s are non-negative integers, f(k) and g(k) are sequences, and t
is a complex variable. Let v be an arbitrary real number. Then

n∑
k=s

f(k)

2k

(
2k + v

(2k + v) /2

)(
k + v

v/2

)−1

=

⌊r/2⌋∑
k=⌊(m+1)/2⌋

g(2k)

22k

(
2k

k

)(
(2k + v) /2

v/2

)−1

,

(41)
and

r∑
k=m

g(k)(−1)k

2k

(
2k + v

(2k + v) /2

)(
k + v

v/2

)−1

=

⌊n/2⌋∑
k=⌊(s+1)/2⌋

f(2k)

22k

(
2k

k

)(
(2k + v) /2

v/2

)−1

.

In particular,
n∑

k=s

f(k)

2k

(
2k

k

)
=

⌊r/2⌋∑
k=⌊(m+1)/2⌋

g(2k)

22k

(
2k

k

)
,

and
r∑

k=m

g(k)(−1)k

2k

(
2k

k

)
=

⌊n/2⌋∑
k=⌊(s+1)/2⌋

f(2k)

22k

(
2k

k

)
.

7. Polynomial Identities

In this section, by following the procedures outlined in Section 6, we derive new
polynomial identities associated with the binomial theorem.

Theorem 12. Let u and v be arbitrary complex numbers such that ℜu > −1 and
ℜv > −1. Let x be a complex variable. If n is a non-negative integer, then

n∑
k=0

(−1)n−k

(
n

k

)(
k + u+ v + 1

u+ 1

)−1

(1− x)
n−k

=
u+ 1

v + 1

n∑
k=0

(−1)k
(
n

k

)(
k + u+ v + 1

v + 1

)−1

xn−k.

(42)

In particular,

n∑
k=0

(−1)n−k

(
n
k

)
k + 1

(1− x)
n−k

=

n∑
k=0

(−1)k
(
n
k

)
k + 1

xn−k.
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Proof. Consider the following variation on the binomial theorem:

n∑
k=0

(−1)n−k

(
n

k

)
(1 + t)

k
(1− x)

n−k
=

n∑
k=0

(
n

k

)
tkxn−k. (43)

Use Equation (29) with

f(k) = (−1)n−k

(
n

k

)
(1− x)n−k, g(k) =

(
n

k

)
xn−k, s = 0 = m, r = n,

to obtain Equation (42).

Theorem 13. If n is a non-negative integer, v is a real number, and x is a complex
variable, then

n∑
k=0

(−1)n−k

(
n

k

)
2−k

(
2k + v

(2k + v) /2

)(
k + v

v/2

)−1

(1− x)
n−k

=

⌊n/2⌋∑
k=0

(
n

2k

)
2−2k

(
2k

k

)(
(2k + v) /2

k

)−1

xn−2k.

(44)

Proof. Making use of Equation (40) and with Equation (43) in mind, use Equa-
tion (41) with

f(k) = (−1)n−k

(
n

k

)
(1− x)n−k, g(k) =

(
n

k

)
xn−k, s = 0 = m, r = n,

to obtain Equation (44).

Corollary 4. If n is a non-negative integer and x is a complex variable, then

n∑
k=0

(−1)n−k

(
n

k

)
2k

k + 1
(1− x)

n−k
=

⌊n/2⌋∑
k=0

(
n
2k

)
2k + 1

xn−2k, (45)

n∑
k=0

(−1)n−k

(
n
k

)
k + 2

2−k

(
2 (k + 1)

k + 1

)
(1− x)

n−k
=

⌊n/2⌋∑
k=0

(
n
2k

)
k + 1

2−2k

(
2k

k

)
xn−2k. (46)

Proof. Equations (6), (45), and (46) correspond to the evaluation of Equation (44)
at v = 0, v = 1, and v = 2, respectively.

In deriving Equation (45), we use Equations (20)–(23) to obtain(
2k + 1

k + 1/2

)
=

24k+4

π (k + 1)

(
2 (k + 1)

k + 1

)−2(
2k + 1

k

)
,

(
k + 1

1/2

)
=

22k+3

π

(
2 (k + 1)

k + 1

)−1

,
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and (
2k + 1

k

)
=

1

2

(
2 (k + 1)

k + 1

)
.

Theorem 14. Let u and v be complex numbers such that ℜu > −1 and ℜv > −1.
If n is a non-negative integer, then(

v

v/2

) n∑
k=0

(−1)n−k

(
n

k

)
2−2k

(
2k + u

(2k + u) /2

)(
(2k + u+ v) /2

v/2

)−1

(1− x)
n−k

=

(
u

u/2

) n∑
k=0

(−1)k
(
n

k

)
2−2k

(
2k + v

(2k + v) /2

)(
(2k + u+ v) /2

u/2

)−1

xn−k.

(47)

Proof. With Equation (43) in mind, use

f(k) = (−1)n−k

(
n

k

)
(1− x)n−k, g(k) =

(
n

k

)
xn−k, s = 0 = m, r = n,

and p(k) = k = q(k) in Equation (35).

Corollary 5. If n is a non-negative integer, then

n∑
k=0

(−1)n−k

(
2k

k

)
2−2k

(
n

k

)
(1− x)

n−k
=

n∑
k=0

(−1)k
(
2k

k

)
2−2k

(
n

k

)
xn−k, (48)

n∑
k=0

(−1)n−k2−2k

(
n

k

)
Ck+1 (1− x)

n−k
=

n∑
k=0

(−1)k2−2k

(
n

k

)
Ck+1x

n−k. (49)

Proof. Evaluate Equation (47) at u = 0 = v and at u = 2 = v.

Theorem 15. If n is a non-negative integer, v is a real number and x is a complex
variable, then

n∑
k=0

(
n

k

)
2−k

(
2k + v

(2k + v) /2

)(
k + v

v/2

)−1

(1− x)
k
xn−k

=

⌊n/2⌋∑
k=0

(
n

2k

)
2−2k

(
2k

k

)(
(2k + v) /2

k

)−1

(1− x)2k.

(50)

Proof. Consider another variation on the binomial theorem:

n∑
k=0

(
n

k

)
(1− x)

k
(1 + y)

k
xn−k =

n∑
k=0

(
n

k

)
yk (1− x)

k
. (51)
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This identity has the form of Equation (40). Use Equation (41) with

f(k) =

(
n

k

)
(1− x)kxn−k, g(k) =

(
n

k

)
(1− x)k, s = 0 = m, r = n,

to obtain Equation (50).

Corollary 6. If n is a non-negative integer and x is a complex variable, then

n∑
k=0

(
n

k

)
2−k

(
2k

k

)
(1− x)

k
xn−k =

⌊n/2⌋∑
k=0

(
n

2k

)
2−2k

(
2k

k

)
(1− x)2k, (52)

n∑
k=0

(
n

k

)
2k

k + 1
(1− x)

k
xn−k =

⌊n/2⌋∑
k=0

(
n
2k

)
2k + 1

(1− x)2k, (53)

n∑
k=0

(
n

k

)
2−kCk+1 (1− x)

k
xn−k =

⌊n/2⌋∑
k=0

(
n

2k

)
2−2kCk (1− x)

2k
. (54)

Proof. Equations (52), (53), and (54) correspond to the evaluation of Equation (50)
at v = 0, v = 1, and v = 2, respectively.

Remark 3. The reader is invited to employ the procedures established in Theo-
rems 7–11 to discover more polynomial identities associated with Equation (51).

8. More Combinatorial Identities

8.1. Identities from the Binomial Theorem

Theorem 16. Let u and v be complex numbers such that ℜu > −1 and ℜv > −1.
If n is a non-negative integer, then

n∑
k=0

(−1)k
(
n

k

)(
k + u+ v + 1

u+ 1

)−1

=
u+ 1

v + 1

(
n+ u+ v + 1

v + 1

)−1

.

Proof. Set x = 0 in Equation (42).

Theorem 17. If n is an integer and v is a real number, then

n∑
k=0

(−1)k
(
n

k

)
2n−2k

(
2k + v

(2k + v) /2

)(
k + v

v/2

)−1

=

⌊n/2⌋∑
k=0

(
n

2k

)
2−2k

(
2k

k

)(
(2k + v) /2

k

)−1

,
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and

n∑
k=0

(
n

k

)
2−k

(
2k + v

(2k + v) /2

)(
k + v

v/2

)−1

=

⌊n/2⌋∑
k=0

(
n

2k

)
2n−4k

(
2k

k

)(
(2k + v) /2

k

)−1

.

Proof. Evaluate Equation (44) at x = −1 and x = 2, respectively.

Remark 4. Setting x = 0 in Equation (44) reproduces Equation (15) while setting
x = 1 reproduces Equation (16).

Proposition 3. If n is a non-negative integer, then

n∑
k=0

(−1)k
(
n

k

)
2n−2k

(
2k

k

)
=

⌊n/2⌋∑
k=0

(
n

2k

)
2−2k

(
2k

k

)
,

⌊n/2⌋∑
k=0

(
n

2k

)
1

2k + 1
=

2n−1

2n − 1

⌈n/2⌉∑
k=1

(
n

2k − 1

)
1

k
, n ̸= 0,

n∑
k=0

(−1)k
(
n

k

)
2k + 1

k + 2
2n−2k+1Ck =

⌊n/2⌋∑
k=0

(
n

2k

)
2−2kCk.

Proof. Set x = −1 in Equations (6), (45), and (46).

Proposition 4. If n is a non-negative integer, then

⌊n/2⌋∑
k=0

(
n

2k

)
2−2k

(
2k

k

)
= 2−n

(
2n

n

)
,

⌊n/2⌋∑
k=0

(
n
2k

)
2k + 1

=
2n

n+ 1
,

⌊n/2⌋∑
k=0

(
n
2k

)
k + 1

2−2k

(
2k

k

)
=

2−n+1

n+ 2
(2n+ 1)Cn.

Proof. Set x = 1 in Equations (6), (45), and (46).
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Proposition 5. If n is a non-negative integer, then

n∑
k=0

(
n

k

)
2−k

(
2k

k

)
=

⌊n/2⌋∑
k=0

(
n

2k

)
2n−4k

(
2k

k

)
,

⌊n/2⌋∑
k=0

(
n

2k

)
2n−2k+1 − 22k+1

2k + 1
=

⌈n/2⌉∑
k=1

(
n

2k − 1

)
22k−1

k
,

n∑
k=0

(
n

k

)
2k + 1

k + 2
2−k+1Ck =

⌊n/2⌋∑
k=0

(
n

2k

)
2n−4kCk.

Proof. Set x = 2 in Equations (6), (45), and (46).

Theorem 18. If n is a non-negative integer and v is a real number, then

n∑
k=0

(−1)n−k

(
n

k

)(
2k + v

(2k + v) /2

)(
k + v

v/2

)−1

=

⌊n/2⌋∑
k=0

(
n

2k

)(
2k

k

)(
(2k + v) /2

k

)−1

.

(55)

Proof. Set x = −1 in Equation (50).

Proposition 6. If n is a non-negative integer, then

n∑
k=0

(−1)n−k

(
n

k

)(
2k

k

)
=

⌊n/2⌋∑
k=0

(
n

k

)(
n− k

k

)
,

n∑
k=0

(−1)n−k

(
n

k

)
22k

k + 1
=

⌊n/2⌋∑
k=0

(
n

2k

)
22k

2k + 1
,

n∑
k=0

(−1)n−k

(
n

k

)
2 (2k + 1)

k + 2
Ck =

⌊n/2⌋∑
k=0

(
n

2k

)
Ck.

Proof. Set x = −1 in each of Equations (52)–(54) or what is the same thing, v = 0,
v = 1, and v = 2 in Equation (55).

Theorem 19. If n is a non-negative integer and v is a real number, then

n∑
k=0

(
2n

2k

)(
2 (n− k)

n− k

)(
2k + v

(2k + v) /2

)(
(2n+ v) /2

n− k

)−1

=

⌊n/2⌋∑
k=0

(
n

2k

)
22n−2k

(
2k

k

)(
2k + v

(2k + v) /2

)(
(4k + v) /2

k

)−1
(56)
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and

n∑
k=1

(
2n

2k − 1

)(
2 (n− k + 1)

n− k + 1

)(
2k − 1 + v

(2k − 1 + v) /2

)(
(2n+ v + 1) /2

n− k + 1

)−1

=

⌈n/2⌉∑
k=1

(
n

2k − 1

)
22n+1−2k

(
2k

k

)(
2k − 1 + v

(2k − 1 + v) /2

)(
(4k + v − 1) /2

k

)−1

.

(57)

In particular,

n∑
k=0

(
2n

2k

)(
2 (n− k)

n− k

)(
2k

k

)(
n

k

)−1

=

⌊n/2⌋∑
k=0

(
n

2k

)
22n−2k

(
2k

k

)
and

n∑
k=1

(
2n

2k − 1

)(
2 (n− k + 1)

n− k + 1

)(
2k − 1

(2k − 1) /2

)(
(2n+ 1) /2

n− k + 1

)−1

=

⌈n/2⌉∑
k=1

(
n

2k − 1

)
22n+1−2k

(
2k

k

)(
2k − 1

(2k − 1) /2

)(
(4k − 1) /2

k

)−1

.

Proof. Since (
cos

(x
2

)
+ sin

(x
2

))2m

= (1 + sinx)
m
,

the binomial theorem gives

2n∑
k=0

(
2n

k

)
cos2n−k

(x
2

)
sink

(x
2

)
=

n∑
k=0

(
n

k

)
sink x.

Thus,
2n∑
k=0

(
2n

k

)
cos2n−k x sink x =

n∑
k=0

(
n

k

)
2k cosk x sink x

and, therefore,

n∑
k=0

(
2n

2k

)
sin2k+v x cos2n−2k x+

n∑
k=1

(
2n

2k − 1

)
sin2k−1+v x cos2n−2k+1 x

=

⌊n/2⌋∑
k=0

(
n

2k

)
22k cos2k x sin2k+v x+

⌈n/2⌉∑
k=1

(
n

2k − 1

)
22k−1 cos2k−1 x sin2k−1+v x.

Integrating from 0 to π using Lemma 1 gives Equation (56) while multiplying
through by cosx and integrating from 0 to π gives Equation (57).
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8.2. Identities from Waring’s Formulas

Waring’s formula and its dual [4, Equations (22) and (1)] are

⌊n/2⌋∑
k=0

(−1)k
n

n− k

(
n− k

k

)
(xy)k(x+ y)n−2k = xn + yn (58)

and
⌊n/2⌋∑
k=0

(−1)k
(
n− k

k

)
(xy)k(x+ y)n−2k =

xn+1 − yn+1

x− y
. (59)

Equation (58) holds for every positive integer n while Equation (59) holds for every
non-negative integer n.

Theorem 20. If n is a non-negative integer and v is a real number, then

⌊n/2⌋∑
k=0

(−1)k
n

n− k

(
n− k

k

)
2−4k

(
2k + v

(2k + v) /2

)

=

(
2n+ v

(2n+ v) /2

)(
v

v/2

)
21−2n

(
n+ v

v/2

)−1

.

(60)

In particular,

⌊n/2⌋∑
k=0

(−1)k
n

n− k

(
n− k

k

)
2−4k

(
2k

k

)
= 2−2n+1

(
2n

n

)
.

Proof. Write cos2(x/2) for x and sin2(y/2) for y in Equation (58) and multiply
through by sinv x to obtain

⌊n/2⌋∑
k=0

(−1)k
n

n− k

(
n− k

k

)
2−2k sin2k+v x = 2v cos2n+v

(x
2

)
sinv

(x
2

)
+ 2v sin2n+v

(x
2

)
cosv

(x
2

)
,

from which, upon term-wise integration from 0 to π, Equation (60) follows.

By writing cos2(x/2) for x and − sin2(y/2) for y, the reader is invited to discover
a combinatorial identity associated with Equation (59).

8.3. Identities from an Identity of Simons

Simons [13] proved an identity that is equivalent to the following:

n∑
k=0

(−1)n−k

(
n

k

)(
n+ k

k

)
(1 + t)

k
=

n∑
k=0

(
n

k

)(
n+ k

k

)
tk. (61)
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On choosing

f(k) = (−1)n−k

(
n

k

)(
n+ k

k

)
, g(k) =

(
n

k

)(
n+ k

k

)
,

s = m = 0, and r = n in Equation (40), Equation (41) gives the result stated in
the next proposition.

Proposition 7. If n is a non-negative integer and v is a real number, then

n∑
k=0

(−1)n−k

(
n

k

)
2−k

(
n+ k

k

)(
2k + v

(2k + v) /2

)(
k + v

v/2

)−1

=

⌊n/2⌋∑
k=0

(
n

2k

)
2−2k

(
n+ 2k

2k

)(
2k

k

)(
(2k + v) /2

v/2

)−1

.

(62)

In particular,

n∑
k=0

(−1)n−k

(
n

k

)
2−k

(
n+ k

k

)(
2k

k

)
=

⌊n/2⌋∑
k=0

(
n

2k

)
2−2k

(
n+ 2k

2k

)(
2k

k

)
.

The same set of sequences and parameters, f(k) etc. that led to Equation (62),
when used in Equation (35) gives the following result.

Proposition 8. If n is a non-negative integer and u and v are real numbers, then

n∑
k=0

(−1)n−k

(
n

k

)
2−2k

(
n+ k

k

)(
v

v/2

)(
2k + u

(2k + u) /2

)(
(2k + u+ v) /2

v/2

)−1

=

n∑
k=0

(−1)k
(
n

k

)
2−2k

(
n+ k

k

)(
u

u/2

)(
2k + v

(2k + v) /2

)(
(2k + u+ v) /2

u/2

)−1

.

Remark 5. Chapman [3], Gould [5], Munarini [9], and many other authors gave
different proofs and generalizations of the identity of Simons, Equation (61). Results
similar to those stated in Propositions 7 and 8 can be derived from their results.

Acknowledgement. Thanks are due to an anonymous referee for a careful reading
and useful comments.
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