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Abstract
We give a short proof of the well-known Knuth’s old sum and provide some gen-
eralizations. Our approach utilizes the binomial theorem and integration formulas
derived using the Beta function. Several new polynomial identities and combinato-
rial identities are derived.

1. Introduction

There appears to be a renewed interest [1, 2, 7, 11, 14] in the famous Knuth’s old
sum (also known as the Reed Dawson identity),

Xn: (—1)* <n) 9k <2k) _ 2—n (n7/12), if n is even; O
k=0 K k 0, if n is odd.
Many different proofs of this identity and various generalizations exist in the liter-

ature (see [10] for a survey).
In this paper we give a very short proof of Equation (1) and offer the following

generalization:
" (k) gk (20 m)
k=0 k k+m
[m/2]
> (;)2_71_%((22]?;3/2)7 if n is even; (2)
B /21 m \o—n—2k+1( 2k+n-—1 i is odd:
- 2 (Qk—l) ((2k+n_1)/2), if n is odd,;

where m and n are non-negative integers and, as usual, |z| is the greatest integer
less than or equal to z while [z] is the smallest integer greater than or equal to z.
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The following special cases of Equation (2) were also reported by [12, p.72, Prob-

lem 4(b)]:
L:Z:J (2,;) _— (2:) _ (2:)7 )

[n/2]
(e () -0 - () -t @

Equation (3) corresponds to setting n = 0 in Equation (2) and re-labeling m as n;
while Equation (4) follows from setting n = 1 in Equation (2).

In Section 5, we will derive the following complements of Knuth’s old sum:
- k(2K (2(n—k) 2 ( 72), if n is even;

> (-1 =4
— k n—k 0, if n is odd;

k=0
Z": <2 Ezn—kk)) (2;) _ g )

k=0

and

Equation (5) is the famous combinatorial identity concerning the convolution of
central binomial coefficients. Many different proofs of this identity exist in the
literature, (see Mikié¢ [8] and the many references therein).

Equation (2) is itself a particular case of a more general identity, stated in The-
orem 2, which has many interesting consequences, including another generalization
of Knuth’s old sum, namely,

B (e ()

B {2n( n )((nJUr;JZ)M)_l7 if n is even;

0, if n is odd;

where v is a real number; as well as simple, apparently new combinatorial identities
such as

[n/2] n 1
2n—2k C. == " _ Cn .
> (50 1) 2700 = 5 Cuia O

where, here and throughout this paper,

1 (25
J+1\J

defined for every non-negative integer j, is a Catalan number.
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Based on the binomial theorem, we will derive, in Section 7, some presumably
new polynomial identities, including the following:

(/2]

Z: (=) *" (Z) 27k (2:) (1—a)" "= kZ:O (;{) 9—2k (i’f) % (6)

k

Equation (6) subsumes Knuth’s old sum, Equation (1), (at = = 0), as well as
Equation (3) (at x = 1).

Finally, in Section 8, the polynomial identities will facilitate the derivation of
apparently new combinatorial identities such as

anm n\ 1 2n1“’2/21 n VL
Pt 2%k 2k+1’2n—1k:1 2% —1/k’ ’

Lan o2, = 2 gt 1)
2k AP " w

k=0

and

n n/2]
ek (M\20@k+1) n
k:o( 1 (k) Fr2 ChT 2 ok ) O

k=0

2. Required Identities

In order to give the short proof of Knuth’s old sum, we need a couple of definite
integrals which we establish in Lemma 1.
The binomial coefficients are defined, for non-negative integers m and n, by

<m> =< nl(m—n)!’ mzn
0, m < n,

the number of distinct sets of n objects that can be chosen from m distinct objects.
Generalized binomial coefficients are defined for complex numbers v and v, ex-
cluding the set of negative integers, by

u I'(u+1)
= — ) (7)
v Fw+)T(u—v+1)
where I'(z) is the Gamma function defined by

[(z) = /OOO e tF 1 dt = /OOO (log (1/t))* " dt

and extended to the rest of the complex plain, excluding the non-positive integers,

by analytic continuation.
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Lemma 1. Let u and v be complex numbers such that ®u > —1 and Rv > —1. Let
m be a non-negative integer. Then

/07r cos(z/2)dr =27 W(uz/cz) = /OTr sin®(z/2) da, (8)

/W cos™ xdr = 2= 71-(mrr/tz)a Z:fm Zs even; -
0 0, if m is odd;

and, more generally,

ro = Lo (G (3 an=2o (1) () (1)

(10)
and

T —m—v m v (m+wv)/2 -1 . . .

J(m,v) := / cos™ xsin’ xdx = 2 T (m/2) (“/2)( m/2 ) ifm is even;
0 0 if m is odd.

(11)

Obviously I(v,u) = I(u,v), a symmetry property that is not possessed by J(m,v).

)

Proof. Identities (10) and (11) are immediate consequences of the well-known Beta
function integral [6, Entry 3.621.5]:

K (u,v) := /OW/Q cos® zsin’ z dg = 274~ 7r<u1;2) (vz/)2> ((“ Z/UQ) /2> _1, (12)

valid for Ru > —1, Rv > —1, with the symmetry property K (u,v) = K(v,u).
Equation (10) is obtained via a simple change of the integration variable from x
to y in Equation (12), with z = y/2.
To prove Equation (11), write

T /2 T
J(m,v) = / cos" zsin” zdr = / cos™ zsin” zdzx + / cos™ zsin” z dz.
0 0 /2
Change the integration variable in the second integral on the right-hand side from
x to y via x = y + 7/2; this gives
w/2 /2
J(m,v) = / cos™ xsin” x dx + (—1)m/ sin™ y cos’ y dy
0 0

= K(m,v) + (-1)"K(v,m)
= 1+ (=1)™) K(m,v);

and hence Equation (11). O
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Remark 1. Since, for a real number u,
1+ (—1)* = 2cos? (%u) + isin (mu),

the J(m,v) stated in Equation (11) is a special case of the following more general
result:

s
J (u,v) = / cos" xsin’ x dx
0

s () () (1) (ot () 1)

which is valid for © > —1 and v > —1.

3. A Short Proof of Knuth’s Old Sum
Theorem 1. If n is a non-negative integer, then

- vk (P ok 2k _ 2_"(n72), if nis even;
g( D (k>2 </€>_{07 if n is odd.

k=0

Proof. Substitute —cosx — 1 for y in the binomial theorem

3 (1) =+

k=0
to obtain .
(=1)* <Z> 2k cos?* (2/2) = (—1)" cos™ x. (13)
k=0

Thus .

Z (—=1)* (n) 2’“/ cos?(x/2) dx = (—1)”/ cos” x dx,

P k 0 0
and hence Equation (1) on account of Equations (8) and (9). O

4. A Generalization of Knuth’s Old Sum

In this section we extend Equation (1) by introducing an arbitrary non-negative
integer m and a real number v.
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Theorem 2. If m and n are non-negative integers and v is a real number, then

S () )

k=0
[m/2] m\o—n—2k 2k+n (2k+n+wv)/2 -1 . .
2_30 (34)2 ((2k+n)/2)( (2k—+n)/2 ) if n is even;
=) 2

m —n— n— n— v -1 . .
(21@71)2 2kt ((2&271)1/2) ((2(’;Z+niJ{)/)2/2) , ifn is odd.
(14)

In particular,

S (e ()

k=0
2] m\o—n—2k( 2k+n . .
kz;o (34)2 ((2k+n)/2), if n is even;
=) w2
-2 (21:11)2_n_2k+1((221_6;171_71)1/2), if n is odd.

Proof. Since

and

2m+v Cos2m+v (g) sin? g)
and the right-hand side by
v - m k
sin ‘T’Z <k) cos” T
k=0
gives

Z (_1)k (Z) 2k+m+v COSQk+27n+v (.’1?/2) sin? (33/2)

=(-1)" Z (7:) cosP+™ sin® .

k=0
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Thus, we have

Z (_1)k (Z) 2k+m+v C082k+2m+v (.%’/2) sin® (Z‘/Q)

k=0

Lm/2]
_ n m 2k+n S U
=(-1) E <2k) oS xsin’ x

k=0
[m/2]

+ (=" Z <2kﬂ1 1) cos?F 714 g gin? .

k=1

Equation (14) now follows by termwise integration from 0 to 7, according to the
parity of n, using Lemma 1. O

Corollary 1. Ifn is a non-negative integer and v is a real number, then

g:_o (-1 (Z) 27k <(2]§I:-—Z;) /2) (ka/r;) h

— n (n+v)/2 -1 . . (15)
:{2 n(n/2)( v/2 ) , if n is even;

0, if n is odd.
Corollary 2. Ifn is a non-negative integer and v is a real number, then

S (") () O

k=0

:/21] <2kn— 1) gn 2 (2:> ((% -;v) /2) -1

1 2n+v+2 n+v+1 717 2n 4+ v n+ov\ "
S 2\(2n+v+2)/2 v/2 (2n+wv)/2)\ v/2 '
Proof. Equation (16) is obtained by setting n = 0 in Equation (14) and re-labeling

m as n while Equation (17) is the evaluation of Equation (14) at n = 1 with a
re-labeling of m as n. O

and

—

(17)

Proposition 1. Ifn is a non-negative integer, then

"”Z/Q-‘ n 1 - 2n+1 on (18)
= \2k -1 2%k+1 n+2 n+1’
[n/2] n 1

k=1
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Proof. Evaluation of Equation (17) at v = 1 gives Equation (18) while evaluation
at v = 2 yields Equation (19). In deriving Equation (18), we used the following
relationships between binomial coefficients:

<1;2) B 22T+1 (2:> 17_ (20)
(752) B % ((r —rl) /2) ! (21)

(T + 1/2> —(2r41)27% (2:), (22)

Q-0

all of which can be derived by using the Gamma function identities:

and

F<u+;> :\/772—2“(2;>F(u+1),

(o) e (2)

together with the definition of the generalized binomial coefficients as given in Equa-
tion (7). O

and

Proposition 2. If m and n are non-negative integers, then

m/2]
n L(n\ 2k kzo (on) 3o if n is even;
> (1) (k:)k+m+1: /2] 1
-2

(™)) gis if m s odd.

In particular,

"L (—1)R(7)2" {n}H, if n is even;

— k+1 0, if n is odd;

and
zn: (—1)k(7)2r+! {n_li_l, if n is even;

7, 5 = 1 . .
= k42 —r3s i nis odd.

Proof. Evaluate Equation (14) at v = 1. O
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5. Complements of Knuth’s Old Sum
Theorem 3. If n is a non-negative integer, then

- k(2K 2(n—k:)>_ 2”(n72), if n is even;
go( 2 <k>( n—k _{0, if n is odd. (24)

k

Proof. Set a = cos?(x/2) and b = —sin®(z/2) in the binomial theorem:

; (”> a*b"F = (a + b)", (25)

k
k=0
to obtain .
n x x
Z (—1)""“( ) cos?® (7) sin?n—2k (7) = cos" z, (26)
= k 2 2
from which Equation (24) follows by term-wise integration using Lemma 1. O

Theorem 4. If n is a non-negative integer, then

SeEoRe

k=0

Proof. Set a = cos?(x/2) and b = sin*(x/2) in Equation (25) to obtain

(1) o () s (5) =1 o

from which the stated identity follows by term-wise integration using Lemma 1. [

>

n
k=0
Next, we present a generalization of Equation (24).

Theorem 5. If n is a non-negative integer and v is a real number, then

3 () (o 2) (oo oye) )

k=0
—1
_)?" (n72) (vi/)2) ((nj)_/UQ)/Q) , if nis even;
0, if n is odd.

Proof. Multiply through Equation (26) by sin” z and integrate from 0 to 7, using
Lemma 1. O

We conclude this section with a generalization of Equation (5).
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Theorem 6. If n is a non-negative integer and v is a real number, then

3 (1) (e ) () (0 2) =)

Proof. Multiply through Equation (27) by sin’ « and integrate from 0 to , using
Lemma 1. O

6. Combinatorial Identities Associated with Polynomial Identities of a
Certain Type

In this section we derive some combinatorial identities associated with any polyno-
mial identity having the following form:

n T

ST F) A+ 5P =S (k) t1®); (28)

k=s k=m

where m, n, r, and s are non-negative integers, p(k) and ¢(k) are sequences of
non-negative integers, f(k) and g(k) are sequences, and ¢ is a complex variable.

Theorem 7. Consider the polynomial identity given in Equation (28). Let u and
v be arbitrary complex numbers such that Ru > —1 and v > —1. Then

J+utv+1
Zf ( u—+1 )

B Zj: > (1) ®g(k) (q(k) J;“;;v + 1)—

k=m

In particular,
§= Sy~ 00
—=p = ak)+1

Proof. Write —t for ¢t in Equation (28) and multiply through by ¢t*“(1—%)" to obtain

r

Zf (1=t = N7 (1) ® (k) (1 — 1) B+

k=m

from which Equation (29) follows after integrating from 0 to 1, using the Beta
function (variant of Equation (12)):

1 -1
z 1 z+y+1
1—t)"tYdt = 30

/0( ) z+1( z+1 ) ’ (30)
for Rx > —1 and Ry > —1. O
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Theorem 8. Consider the polynomial identity given in Equation (28). Let u and
v be arbitrary complex numbers such that Rv > —1, R(2(u — p(j)) + v) > -1,
R(2(u—q(j)) +v) > —1, and 2q(j) + Rv > —1 for every non-negative integer j.

Then
e 2—p() +v \ (u—p(k) + 0\
2102 (<2<u—p<k>>+v>/z>< 02 ) -
-1 r
=" (k)A(u, v, q(k)),
(v/2> ,;" I
and
~ k) sqky [ 2(w—q(k)) +v u—q(k) +v\ "'
2, 0Ptk <<2<uq<k>>+v>/2)< v/2 ) -
-1 n
(1) X 0B (),
k=s
where
w B 2(u—q(k))+wv 2q(k) + v u+wv -t
Al v a(k) = ((2 (u— g(k)) +v) /2) (<2q<k> o) /2) <<2q<k> o) /2)
and

B 2(u—p(k))+v 2p(k) +v utv -
Blu,vp(k) = ((2 (u—p(k)) + v) /2) <<2p<k> +) /2> <<2p<k> +) /2) |

In particular,
n r -1
1y92p(h) (2 (u —P(k))> _ i (2 (u— Q(k))> <2Q(k)) < u )
2 1) u—pty ) = 229w ) Lo Naow
and
oo (L ) E e () () )
Proof. Substituting ¢ = y/2 in Equation (28) and multiplying through by z% gives

n T

ST k) PE (2 4y = 3 g(k)arm 1By, (33)

k=s k=m

Writing cos? 2 for z and sin” z for y in Equation (33), multiplying through by sin® z
and integrating from 0 to 7/2 using Lemma 1 gives Equation (31). Equation (32)
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follows from the fact that the transformation y — y — x followed by x — —z causes
Equation (28) to become
Z (=1)*1®) g (k)24 1®) (2 + y><I(k) — Z (=1)u=P) f (k) g PR yp(R)
k=m k=s
O

Theorem 9. Consider the polynomial identity given in Equation (28). Let u and v
be arbitrary complex numbers such that Rv > —1, Ru—p(j) > —1, p(j)+R(v) > -1,

and Ru — q(j) > —1 for every non-negative integer j. Then
n -1 T —1
1)) ¢ u+v _utv+l 190 g u—gq(k)+1
S eormsn(, ) = X e
(34)
In particular,
n u -1 T g(k)
SO () =D o =
Proof. Set y = —1 in Equation (33) and multiply through by (1 — x)” to obtain
n T
> (PO fR)an PO (=2 = S (1) W gk (1 - )",
k=s k=m

which upon integration from 0 to 1, using Equation (30), gives Equation (34). O

Theorem 10. Consider the polynomial identity given in Equation (28). Let u and
v be arbitrary complex numbers such that Ru > —1 and fv > —1. Then

é 2 (k) (v/Q) (( 2?15;{12;/2) <(2P(’f) J;;;Jf ’ /2> 71 (35)

-3 S ) () (P )

k=m

In particular,

z": f(k) (217(1”»)) _ i (1)1 ®g(k) <2Q(k)>
2p(k - 2q(k :
2eom\ p(k) ) ~ A2\ (k)
Proof. Write —sin®t for t in Equation 28) and multiply through by cos" ¢ sin’ ¢ to
obtain

Z F (k) cos M+ tsin® ¢ = 37 (—1)70) g (k) cos ¢ sin®1 )+
k=m
from which Equation (35) follows upon integration from 0 to 7/2 using Lemma 1.
O
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Theorem 11. Consider the polynomial identity given in Equation (28). Let v be
an arbitrary complex number such that Rv > —1.

1. Suppose that, for every integer j, each of q(25) and q(2j — 1) is a sequence
of non-negative integers having a particular parity but such that the parity of
q(2j) is different from the parity of q(2j — 1) for every integer j.

If q(2j) is an even integer for every integer j, then

S 28 () ()

/2] - (36)
B g2h)(42h) ) ((a28) 572
iml(mrny2) 2100 \A(2R)/2 v/2 |
while if q(27) is an odd integer for every integer j, then
SR (k) +o ) ((pk) F o\
2 (<2p<k> ) /2> ( v/2 )
37
I AT CLUAR /2)‘1 o
20(2k=1) \g(2k —1)/2 v/2 '

k=[(m+2)/2]

2. Suppose that, for every integer j, each of p(2j) and p(2j — 1) is a sequence
of non-negative integers having a particular parity but such that the parity of
p(27) is different from the parity of p(2§ — 1) for every integer j.

If p(24) is an even integer for every integer j, then

~ g(k)(=1)2¥) 2q(k) +v q(k) + v\
k;z 210 ((2q(k)+v)/2)< v/2 )

In/2] ok o, (38)
. (=)t 2if(%) ( p(2k) )((p(%) +0) /2>
LT 2] 20(2k) p(2k)/2 v/2

while if p(2j) is an odd integer for every integer j, then
~ g(k) (D)™™ 2(k) o (k) + o\
2w <<2q<k>+v>/2>< v/2 )

A ek 1) (p(k - 1) (k- 1) +0) /2)

- 2 T ) ()

k=|(s+2)/2]
(39)
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Proof. Set t = cosx in Equation (28) and multiply through by sin” z to obtain

Z 2PNV F (k) cos?P (g) sin? (g)

Lr/2] [r/2]
= Z 9(2k) cos1®®) g sin? 2 + Z g(2k — 1) cos?® =D zsin? o,
k=[(m+1)/2] k=[(m+2)/2]

from which Equation (36) and Equation (37) follow after term-wise integration from
0 to 7, using Lemma 1. Equations (38) and (39) are obtained from Equations (36)
and (37) since Equation (28) can be written in the following equivalent form:

T n

ST (=0 gk 1+ 67 =37 (—1)PE f (k)™

k=m k=s

Remark 2. We offer the following remarks.

(a) Suppose that, for every integer j, each of ¢(25) and ¢(2j — 1) is a sequence of
non-negative integers having a particular parity but such that the parity of ¢(2j) is
different from the parity of (25 — 1) for every integer j. If ¢(25) is an even integer
for every integer j, then

k) 2ok RS g(2k) [ a(2k)
2 <p<k> ) =2 <q<2k>/2)’

k=[(m+1)/2]

while if ¢(27) is an odd integer for every integer j, then

) (2p(R)) N g(2k—1) [ g(2k—1)
kZzs 20(F) (p<k> > - k_[(mzﬂ)/gj 24(2k—1) (g(?k - 1>/2)'

(b) Suppose that, for every integer j, each of p(2j) and p(2j — 1) is a sequence of
non-negative integers having a particular parity but such that the parity of p(2j) is
different from the parity of p(2j — 1) for every integer j. If p(2j) is an even integer
for every integer j, then

o)1) (200 _ K F2R) (p(2R)
Z g ot ) = B (omys2):

while if p(27) is an odd integer for every integer j, then

gk 2q(k) L (CapC p(ok — 1) [ p(2k — 1)
Z 2q<k> (q(k))_ 2 2p(2k=1) (p(%—l)ﬂ)'

k=[(s+2)/2]
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Corollary 3. Let an arbitrary polynomial identity have the following form:

n T

YoFR A+ = gkt (40)

k=s k=m

where m, n, r, and s are non-negative integers, f(k) and g(k) are sequences, and t
1s a complex variable. Let v be an arbitrary real number. Then

S () -8 ()

k=s k=|(m+1)/2]
(41)

B () () - 5, e

k=[(s+1)/2]

In particular,

SA()- 2 )

k=|(m+1)/2]

S - S (),

k=[(s+1)/2]

and

7. Polynomial Identities

In this section, by following the procedures outlined in Section 6, we derive new
polynomial identities associated with the binomial theorem.

Theorem 12. Let w and v be arbitrary complex numbers such that Ru > —1 and
Ro > —1. Let x be a complex variable. If n is a non-negative integer, then

Z”: <><k+zizl)+1> 1(1%)%;@

k=0

u+1 W\ (k+u+o+1\"" 4
= -1 ek
v-l—lz( )<k>< v+ 1 ) v

k=0

In particular,

> (—1)”"“/162’1)1 1-2)" " =) (- "k,

k=0 k=0
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Proof. Consider the following variation on the binomial theorem:

Zn: ) k( ) QA+t a—a) "= i (Z)th”_k. (43)

=0 k=0

Use Equation (29) with

1) = o (Do g = (3o s=0=m, r=n,

to obtain Equation (42). O

Theorem 13. Ifn is a non-negative integer, v is a real number, and x is a complex
variable, then

:0 ()2 (re ) (k;) (=

BRI

Proof. Making use of Equation (40) and with Equation (43) in mind, use Equa-
tion (41) with

(44)

10 = o () a—ar s )= (1) s=0=m. r=n

to obtain Equation (44). O

Corollary 4. Ifn is a non-negative integer and = is a complex variable, then

= n—k [T 2k n—k s (27;@) n—2k
> (DT, G > k10 (45)
k=0 k=0

n [n/2] n
2(k+1 nek o 2k _
2 (=" kk+k 2% k( ,(1<:+1)) - k(2+k)12 %(k)xn " o)

k=0

Proof. Equations (6), (45), and (46) correspond to the evaluation of Equation (44)
at v =0, v =1, and v = 2, respectively.
In deriving Equation (45), we use Equations (20)-(23) to obtain

(1)~ i) )

<k14/—21> _ 225:3 (2 gf ++11)) —17
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<2k; 1> _ % (2 ;k:ll)).

Theorem 14. Let u and v be complexr numbers such that ®u > —1 and Rv > —1.
If n is a non-negative integer, then

(ur2) ,; () () (0 ) S

= (i) é(”k@ﬂ(@zi; ) (s /2>1m”'

Proof. With Equation (43) in mind, use

and

O

(47)

10 = o () a-ar g = (1) s=0=m. r=n

and p(k) = k = ¢(k) in Equation (35). O

Corollary 5. If n is a non-negative integer, then

i(—l)”"f(Q:)z—?k (Z) 1-2)" i (2k>2—2k <k>m =k (48)

k=0 k=0
> (-nnhen 2k< )Ck+1 1—a2)" "= (-2 <k> Crp1z™ ™% (49)
k=0 k=0

Proof. Evaluate Equation (47) at v =0 =v and at u =2 = v. O

Theorem 15. If n is a non-negative integer, v is a real number and x is a complex

variable, then
" n\. . 2k+v k+ov\ ok ok
S (1) (arrn ) () 0ot

k=0 ) L%é <2k)2 o (2:) <(2k +kv) /2) 71(1 _ )

Proof. Consider another variation on the binomial theorem:

n

3 (Z) 1—a2)" 1 +y) anF = zn: (Z)y’“ (1—2)". (51)

k=0 k=0
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This identity has the form of Equation (40). Use Equation (41) with

n

s = (1)a-ake g = (})a-at s=0=m r=n

to obtain Equation (50). O

Corollary 6. If n is a non-negative integer and x is a complex variable, then

> (D)t () a-nter - 3 () (o o

k=0 k=0
n L”/ZJ n
n\ 2~ k_n—k (2k) 2k
1— n—k — 2K/ (1 _
S (W)rrt-mtet =3 gt 6
k=0 k=0
- n k a2 n 2k
ok 1— n—k — 272k (1 — . 4
D S VAR

Proof. Equations (52), (53), and (54) correspond to the evaluation of Equation (50)
at v =0, v =1, and v = 2, respectively. O

Remark 3. The reader is invited to employ the procedures established in Theo-
rems 7-11 to discover more polynomial identities associated with Equation (51).

8. More Combinatorial Identities

8.1. Identities from the Binomial Theorem

Theorem 16. Let u and v be complex numbers such that ®u > —1 and Rv > —1.
If n is a non-negative integer, then

Zn:( l)k n\ (k+ut+v+1 _1_u—|—1 ntutuv+1\ "
k u+1 Tu+1 v+1 ’

k=0

Proof. Set x =0 in Equation (42). O

Theorem 17. Ifn is an integer and v is a real number, then

g(_”k@ 2 (o 2) (’“72)
nl )
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and
" (n ok 2k +v k+o\
pars k 2k +v)/2) \ v/2
_ % 1 g (2 (@h+0) /2!
2k k k '
Proof. Evaluate Equation (44) at = —1 and x = 2, respectively. O

Remark 4. Setting © = 0 in Equation (44) reproduces Equation (15) while setting
x = 1 reproduces Equation (16).

Proposition 3. Ifn is a non-negative integer, then

(e ()£ )

k=0 k=0
Lgéj n\ 1 2l r”z/? nVL L
2k)2k+1 27 —1 2k —1) k’ ’
k=0 k=1
n [n/2]
2k+1 0 oky1 o\ 5—2k
Z (>k+22 Cr=> op )2 Cre
=0 k=0
Proof. Set x = —1 in Equations (6), (45), and (46). O

Proposition 4. If n is a non-negative integer, then

an/2j 0\ g2k 2k _9-n 2n
2k k n)’
k=0

k=0

Proof. Set x =1 in Equations (6), (45), and (46). O
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Proposition 5. Ifn is a non-negative integer, then

R HES ]

k=0
/2] (n) gn—2k+1 _g2ktl “Lz/? ( n >22k—1
— 2k 2k +1 Pt 2k —1 k
n [n/2]
n>2k+1 ka1 <n> 4k
27O, = Y 2Ry,
P </€ k+2 P 2k
Proof. Set x = 2 in Equations (6), (45), and (46). O

Theorem 18. If n is a non-negative integer and v is a real number, then

ki_o(_”nk(:) (ren) ) @2)

55)
B “’f ( n) (%) ((Qk +0) /2) -
N 2k) \ k k '
k=0
Proof. Set x = —1 in Equation (50). O

Proposition 6. Ifn is a non-negative integer, then

RSB RIE!

n
= k=0

D

k=0

n

Z (n) 92k L”z/? (n) 92k
= k) k+1 Pt 2k ) 2k +1

n n/2]
k(M) 2 (2k+1) , n
k:0< 2 (k> hra CFT 2 o) O

k=0

(1)
(-1

Proof. Set x = —1 in each of Equations (52)—(54) or what is the same thing, v = 0,
v =1, and v = 2 in Equation (55). O

Theorem 19. If n is a non-negative integer and v is a real number, then
i 2n\ (2(n—k) 2k + v (2n+v) /2\
= \2k n—k (2k +v) /2 n—k

[n/2]

B @ ) (0
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and

B ()

k=1
S ) () ()
(57)

In particular,
OO -E @)
k; (2:” 1) (2 Ezn—_kkj 11)) <(2zk_1)1/2) <(72zn+kl+)/12)_1

- (:Z/Qj <2kn 1) 92n+1-2k (2:) ((sz—l)l/2> ((4k —kl) /2) 71.

s (3) e (3))" = 0

the binomial theorem gives

i (2}21) cos?"k (g) sin® (g) = "O (Z) sin® z.

k=0

and

Proof. Since

Thus

)
n

2n
2
Z ( kn) cos® F g sin® z = E (Z) 2F cos? x sin® x

k= k=0
and, therefore,

n

n
2n\ . _ 2n . ok _
Z sin? Y g cos? 2 1 4 Z Sin?P 1Y g cog?n 2R L o
2k £ \2k—1

k=0
ln/2] ( n ) [n/2] n
= Z 22k 05k £ ginF TV + Z ( )2%_1 cos?F 1 pgin? 1+ o,
2k — 2k —1

Integrating from 0 to 7 using Lemma 1 gives Equation (56) while multiplying
through by cosz and integrating from 0 to 7 gives Equation (57). O
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8.2. Identities from Waring’s Formulas

Waring’s formula and its dual [4, Equations (22) and (1)] are

e/l n (n—k
S 0 (Mt =y (58)
k=0
and [n/2]
n/2
n—k B xn-&-l _ ,n+l
) <—1>’“( )@cy)’“(x T it (59)
= k T—y

Equation (58) holds for every positive integer n while Equation (59) holds for every
non-negative integer n.

Theorem 20. If n is a non-negative integer and v is a real number, then

S () ()

k=0
() ()2 () 1'
S oy (e ) - ()

Proof. Write cos?(z/2) for x and sin®(y/2) for y in Equation (58) and multiply
through by sin” z to obtain

In particular,

L2/ n (n—k x x
kz—o (—1)kn _ ( i )2_% sin®f T 1 = 2Y cos?" TV (5) sin” <§)
2V g 2n+v (E) v (f)
+ 27 sin 5 cos )
from which, upon term-wise integration from 0 to 7, Equation (60) follows. O

By writing cos?(x/2) for z and — sin?(y/2) for y, the reader is invited to discover
a combinatorial identity associated with Equation (59).

8.3. Identities from an Identity of Simons

Simons [13] proved an identity that is equivalent to the following:

S50 @

k
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s =co (D () aw= () ("),

s =m = 0, and r = n in Equation (40), Equation (41) gives the result stated in
the next proposition.

On choosing

Proposition 7. Ifn is a non-negative integer and v is a real number, then

g: (1) (Z) o~k (n —I: k> <(22/1+U;)/2> (T;;) -1
G ER
In particular,

n [n/2]
vk (M gk (MR (2K _ N\ _op [N+ 2k\ (2K
2D (k)2 ( k )(k =2 2%k )? 2k k)
k=0 k=0
The same set of sequences and parameters, f(k) etc. that led to Equation (62),
when used in Equation (35) gives the following result.

(62)

Proposition 8. Ifn is a non-negative integer and u and v are real numbers, then

D RN (R Gy
S )

Remark 5. Chapman [3], Gould [5], Munarini [9], and many other authors gave
different proofs and generalizations of the identity of Simons, Equation (61). Results
similar to those stated in Propositions 7 and 8 can be derived from their results.

Acknowledgement. Thanks are due to an anonymous referee for a careful reading
and useful comments.
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