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Abstract

We explore power series representing reciprocals of central binomial coefficients

multiplied by linear terms of differences or their squares, incorporating polynomial

functions, the arcsine function, and square roots. The results of this study generalize

those established by Sprugnoli.

1. Introduction

Central binomial coefficients are defined for n ∈ N as(
2n

n

)
=

(2n)!

n!n!
.

They possess many combinatorial properties and contribute to solving numerous

counting problems. For instance, Vandermonde’s identity,
(
2n
n

)
=
∑n

k=0

(
n
k

)2
, illus-

trates that the n-th central binomial coefficient equals the sum of the squares of

the coefficients from the n-th row of Pascal’s triangle. These coefficients are also

related to Catalan numbers, defined by

Cn =
1

n+ 1

(
2n

n

)
=

(
2n

n

)
−
(

2n

n+ 1

)
,

which represent, for example, the number of ways of dividing an (n + 2)-gon into

triangles formed by connecting the vertices with non-crossing line segments. There

are many other interpretations for Catalan numbers; see for example [13].

In [4], it is shown that the generating function associated with the reciprocals of

the Catalan numbers is given by

∞∑
k=0

xk

Ck
=

2(x+ 8)

(4− x)2
+

24
√
x

(4− x)5/2
arcsin

(√
x

2

)
.
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This series also appears in [2, 12, 14, 20].

There exist many results [2, 3, 7, 10, 11, 19] regarding finite or infinite sums

that involve central binomial coefficients (or their reciprocals), Catalan numbers,

Fibonacci numbers, Lucas numbers, harmonic numbers, and other special sequences

that arise. Boyadzhiev [5, 6], for example, studied series of the forms

∞∑
k=0

4kHkx
k(

2k
k

) and

∞∑
k=0

(
2k
k

)
xk

k +m+ 1
,

where Hk stands for the k-th harmonic number, expressing them in terms of ele-

mentary functions.

In 2006, Sprugnoli [17] proved, among other results, that

∞∑
k=2

4kxk

(k − 1)
(
2k
k

) = 2(2x− 1)

√
x

1− x
arctan

(√ x

1− x

)
+ 2x,

and
∞∑
k=2

4kxk

(k − 1)2
(
2k
k

) = 4(1− x)

√
x

1− x
arctan

(√ x

1− x

)
+4x

(
arctan

√
x

1− x

)2
− 4x.

Both equalities hold for |x| < 1. These results provided the primary initial moti-

vation for the developments presented in this work. In fact, in the aforementioned

article, Sprugnoli does not specify the domains of validity for several of the results

he presents concerning the power series he studies. A more rigorous determination

of these domains can be obtained by differentiating and integrating the result of

Theorem 1 of [1], an article in which additional issues in Sprugnoli’s work were also

emphasized and discussed.

In 2018, Chu and Esposito [8, 9] obtained exact evaluations, in terms of elemen-

tary functions, for series of the form

∞∑
k=0

Λm(k)(
2mk+2γ
mk+γ

) (2x)2mk,

where Λm(k) denotes a polynomial of degree m in k expressed in terms of falling

factorials.

In this paper, we find in Theorems 1 and 2 general results for sums of the form

∞∑
k=n+1

4kxk

(k − n)
(
2mk
mk

) and

∞∑
k=n+1

4kxk

(k − n)2
(
2mk
mk

) ,
with m,n ∈ N fixed. These series, which generalize Sprugnoli’s results, express

themselves using polynomial functions, inverse trigonometric functions, and radi-

cals, enabling more familiar manipulation of the expressions. The main idea is to
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apply a multisection to the series

∞∑
k=0

4kxk(
2k
k

) =

√
x arcsin (

√
x)

(1− x)3/2
+

1

1− x

established by Lehmer [15]. Subsequently, by integrating such expressions, exact

results are obtained in terms of elementary functions for certain integrals that ap-

pear in the process. Moreover, appropriate manipulations are performed to simplify

summations, thus yielding the main results of the present work. As a special case,

we can compute infinite sums of the form

∞∑
k=n+1

1

(k − n)
(
2mk
mk

) and

∞∑
k=n+1

1

(k − n)2
(
2mk
mk

) ,
or their respective alternating series.

The present work complements and extends the author’s previous study [21], in

which general results were obtained in terms of elementary functions, for series of

the form
∞∑
k=0

xk

(2k + n)
(
2mk
mk

) and

∞∑
k=0

xk

k2
(
2mk
mk

) .
2. Definitions

Definition 1. Let n ≥ 1 be an integer. We define the polynomials

Sn(x) :=

n∑
k=0

skx
k

of degree n such that their coefficients satisfy the following recursive relation

s0 :=
1

1/2− n
;

sk :=
( k − 1− n

k − n+ 1/2

)
· sk−1, for k = 1, 2, . . . , n.

Remark 1. We have

sn =
22n+1(

2n
n

) ,

which implies

sn−1 = − 22n(
2n
n

) .
Indeed, by using Definition 1, we obtain

sn =
1

1/2− n

n∏
k=1

( k − 1− n

k − n+ 1/2

)
=

22n+1n!2

(2n)!
=

22n+1(
2n
n

) .
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Table 1 shows the first few polynomials Sn(x).

n Sn(x)

1 −2 + 4x
2 − 2

3 − 8
3x+ 16

3 x2

3 − 2
5 − 4

5x− 16
5 x2 + 32

5 x3

4 −2
7 − 16

35x− 32
35x

2 − 128
35 x3 + 256

35 x4

5 − 2
9 − 20

63x− 32
63x

2 − 64
63x

3 − 256
63 x4 + 512

63 x5

6 − 2
11 − 8

33x− 80
231x

2 − 128
231x

3 − 256
231x

4 − 1024
231 x5 + 2048

231 x6

Table 1: The first six polynomials Sn(x).

Definition 2. Let n ≥ 2 be an integer. We define the constant cn := sn
2 − 1. We

also define the polynomials

Tn−2(x) :=

n−2∑
k=0

tkx
k

of degree n− 2, such that their coefficients satisfy the recursive relation

tn−2 := −sn−1

2
− cn; tk−1 :=

(k + 1− n)tk + sk/2

k − n
, for k = n− 2, n− 3, . . . , 1.

For n = 1, we agree c1 := 1 and T−1(x) := 0.

Table 2 shows the first few values for cn and the first few polynomials Tn−2(x).

Remark 2. By Remark 1, for n ∈ N we have

cn =
4n(
2n
n

) − 1.

Definition 3. Let n ≥ 1 be an integer. We define the polynomials

Mn−1(x) :=

n−1∑
k=0

mkx
k

of degree n− 1, such that their coefficients satisfy the recursive relation

m0 :=
2

2n− 1
;

mk :=
2(k − n)

2k − 2n+ 1
·mk−1, for k = 1, 2, . . . , n− 1.

Table 3 shows the first few polynomials Mn−1(x).
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n cn Tn−2(x)

1 1 0
2 5/3 −1/3
3 11/5 −1/10− 3/5x
4 93/35 − 1

21 − 13
70x− 29

35x
2

5 193/63 − 1
36 − 17

189x− 11
42x

2 − 65
63x

3

6 793/231 − 1
55 − 7

132x− 89
693x

2 − 51
154x

3 − 281
231x

4

Table 2: The first six constants cn and polynomials Tn−2(x).

n Mn−1(x)

1 2
2 2

3 + 4
3x

3 2
5 + 8

15x+ 16
15x

2

4 2
7 + 12

35x+ 16
35x

2 + 32
35x

3

5 2
9 + 16

63x+ 32
105x

2 + 128
315x

3 + 256
315x

4

6 2
11 + 20

99x+ 160
693x

2 + 64
231x

3 + 256
693x

4 + 512
693x

5

Table 3: The first six polynomials Mn−1(x).

Definition 4. Let n ≥ 2 be an integer. We define the constant dn := mn−1

2 . We

also define the polynomials

Nn−2(x) :=

n−2∑
k=0

nkx
k

of degree n− 2 by

Nn−2(x) :=
xn−1

2
·
∫ (Mn−1(x)−mn−1x

n−1

xn

)
dx =

1

2

n−2∑
k=0

mkx
k

−n+ k + 1
.

For n = 1, we agree d1 := 1 and N−1(x) := 0.

Table 4 shows the first few constants dn and the first few polynomials Nn−2(x)

Remark 3. Let n ∈ N. We can prove that

dn =
4n

2n
(
2n
n

) .
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n dn Nn−2(x)

1 1 0
2 2/3 −1/3
3 8/15 −(8x+ 3)/30
4 16/35 −(24x2 + 9x+ 5)/105
5 128/315 −(768x3 + 288x2 + 160x+ 105)/3780
6 256/693 −(3840x4 + 1440x3 + 800x2 + 525x+ 378)/20790

Table 4: The first six polynomials Nn−2(x).

3. Auxiliary Results

Lemma 1. For n ≥ 1, we have∫
x−n−1/2 arcsin (

√
x)

(1− x)3/2
dx = log(x−1)+cn log(x)+

Tn−2(x)

xn−1
+

arcsin(
√
x)

xn−1/2
√
1− x

Sn(x),

(1)

where the constant cn and the polynomials Tn−2(x) and Sn(x) are as in Definitions 1

and 2.

Proof. For n = 1, the proof is straightforward. For n ≥ 2, we must prove that the

derivative of the right-hand side of Equation (1) is equal to the integrand of the

left-hand side.

On the one hand, we have

d

dx

(
Tn−2(x)

xn−1

)
=

n−2∑
k=0

(−n+ k + 1)tkx
−n+k.

On the other hand, we have

d

dx

(arcsin(√x)Sn(x)

xn−1/2
√
1− x

)
=

d

dx

(
arcsin(

√
x)

xn−1/2
√
1− x

)
Sn(x) +

arcsin (
√
x)

xn−1/2
√
1− x

d

dx
(Sn(x))

=
Sn(x)

2xn(1− x)
+

arcsin(
√
x)

xn+1/2(1− x)3/2
·
(
(nx− n+ 1/2)Sn(x) + x(1− x)S′

n(x)
)
.

Let us prove that

x(1− x)S′
n(x) + (nx− n+ 1/2)Sn(x) = 1. (2)

Indeed, Equation (2) holds if and only if

x(1−x)(s1+2s2x+3s3x
2+· · ·+nsnx

n−1)+(nx−n+1/2)(s0+s1x+· · ·+snx
n) = 1,
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if and only if

s0(−n+ 1/2) = 1, ksk − (k − 1)sk−1 + (−n+ 1/2)sk + nsk−1 = 0,

for all 1 ≤ k ≤ n, and −nsn + nsn = 0, if and only if

s0 =
1

1/2− n
and sk =

k − 1− n

k − n+ 1/2
· sk−1.

These two last equalities hold by the definition of the coefficients sk.

By letting x = 1 in Equation (2), we have

n∑
k=0

sk = 2. (3)

The proof is complete if we can prove that

1

x− 1
+

cn
x

+

n−2∑
k=0

(−n+ k + 1)tkx
−n+k +

Sn(x)

2xn(1− x)
= 0.

Indeed, by comparing coefficients, this last equality holds if and only if

xn + cnx
n−1(x− 1) + (x− 1)

n−2∑
k=0

(−n+ k + 1)tkx
k − Sn(x)

2
= 0,

if and only if

1+cn−
sn
2

= 0, −cn−tn−2−
sn−1

2
= 0, (−n+k)tk−1−(−n+k+1)tk−

sk
2

= 0,

for all 1 ≤ k ≤ n− 2, and

(n− 1)t0 −
s0
2

= 0

if and only if

cn =
sn
2

− 1, tn−2 = −sn−1

2
− cn, tk−1 =

(−n+ k + 1)tk + sk/2

k − n
, (4)

for all 1 ≤ k ≤ n− 2, and

t0 =
s0/2

n− 1
. (5)

The equations in (4) hold by definition of the coefficients cn and tk. Let us prove

(5) holds. Indeed, by using the recursive relation defining tk, we have

s0/2

n− 1
= t0 =

(2− n)t1 + s1/2

1− n
,
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if and only if
(s0 + s1)/2

n− 2
= t1 =

(3− n)t2 + s2/2

2− n
,

if and only if
(s0 + s1 + s2)/2

n− 3
= t2 =

(4− n)t3 + s3/2

3− n
,

if and only if ...

tn−2 =
(s0 + s1 + · · ·+ sn−2)/2

n− (n− 2 + 1)
,

if and only if
(s0 + s1 + · · ·+ sn−2)

2
= −sn−1

2
− cn,

if and only if

cn = −
∑n−1

k=0 sk
2

.

By Equation (3), this last equality holds if and only if

cn = − (2− sn)

2
=

sn
2

− 1,

which in turn holds by definition of cn.

Lemma 2. For n ≥ 1, we have∫
x−n−1/2 arcsin (

√
x)√

1− x
dx = dn log(x)−

arcsin (
√
x)
√
x(1− x)

xn
Mn−1(x)+

Nn−2(x)

xn−1
,

(6)

where the constant dn and the polynomials Mn−1(x) and Nn−2(x) are as in Defini-

tions 3 and 4.

Remark 4. For n = 0,∫
x−1/2 arcsin (

√
x)√

1− x
dx = (arcsin (

√
x))2.

Proof. For n = 1, the proof is straightforward. For n ≥ 2, we must prove that

the derivative of the right-hand side of Equation (6) equals the integrand of the

left-hand side, i.e.,

dn
x
−
(
1

2
− arcsin(

√
x)(2x− 1)

2
√
x(1− x)

)
Mn−1(x)x

−n − arcsin (
√
x)
√

x(1− x)x−nM ′
n−1(x)

+ n arcsin (
√
x)
√

x(1− x)x−n−1Mn−1(x) +
N ′

n−2(x)

xn−1
+ (−n+ 1)

Nn−2(x)

xn

= x−n−1/2 arcsin (
√
x)√

1− x
.
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To do this, let us prove that

(2x− 1)

2
√
x(1− x)

Mn−1(x)x
−n + n

√
x(1− x)x−n−1Mn−1(x)−

√
x(1− x)x−nM ′

n−1(x)

=
x−n−1/2

√
1− x

(7)

and
dn
x

− 1

2
Mn−1(x)x

−n +
N ′

n−2(x)

xn−1
+ (−n+ 1)

Nn−2(x)

xn
= 0. (8)

Let us first consider Equation (8). We must prove that(
(2− 2n)x+ (2n− 1)

)
Mn−1(x) + (2x2 − 2x)M ′

n−1(x) = 2. (9)

By comparing coefficients, we see that Equation (9) holds if and only if

2mn−1 − 2nmn−1 + 2mn−1(n− 1) = 0,

(2− 2n)mk−1 + (2n− 1)mk + 2(k − 1)mk−1 − 2kmk = 0, for all 1 ≤ k ≤ n,

(2n− 1)m0 = 2,

if and only if

mk =
( −2n+ 2k

2k − 2n+ 1

)
mk−1, for all 1 ≤ k ≤ n,

m0 =
2

2n− 1
,

which holds by definition of the coefficients of Mn−1(x). Replacing x = 1 in Equa-

tion (9) we have
n−1∑
k=0

mk = 2. (10)

Let us now consider Equation (7), which is equivalent to

N ′
n−2(x) =

n− 1

x
Nn−2(x) +

(
Mn−1(x)

2x
− dnx

n−2

)
.

This represents a first-order differential equation, whose solution is given by

Nn−2(x) = xn−1

∫ (
Mn−1(x)

2xn
− dn

x

)
dx.

By Definition 4 we know that dn = mn−1

2 . Then

Nn−2(x) = xn−1

∫ (Mn−1(x)−mn−1x
n−1

2xn

)
dx,

which holds by Definition 4.
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Lemma 3. For every fixed integer m ≥ 1 and for all |x| < 4m−1, we have

∞∑
k=0

4kxk(
2mk
mk

) =
1

m

m−1∑
j=0

(
4
√
y arcsin (

√
y/2)

(4− y)3/2
+

4

4− y

)
, (11)

where y = wj(4x)1/m depends on j, and w = e2πi/m is the m-th root of unity.

Proof. We know from Lehmer [15] that, for all |x| < 1,

∞∑
k=0

4kxk(
2k
k

) =

√
x arcsin (

√
x)

(1− x)3/2
+

1

1− x
.

This implies that, for |x| < 4,

∞∑
k=0

xk(
2k
k

) =
4
√
x arcsin (

√
x/2)

(4− x)3/2
+

4

4− x
.

Then we have for |x| < 4m−1,

1

m

m−1∑
j=0

(
4
√
y arcsin (

√
y/2)

(4− y)3/2
+

4

4− y

)
=

1

m

m−1∑
j=0

∞∑
k=0

wkj(4x)k/m(
2k
k

)
=

1

m

∞∑
k=0

(4x)k/m(
2k
k

) m∑
j=0

wkj .

Finally, since
m−1∑
j=0

wkj =

{
0 if k ̸ |m,

m if k|m,

we have that
1

m

∞∑
k=0

(4x)k/m(
2k
k

) m−1∑
j=0

wkj =

∞∑
l=0

(4x)l(
2ml
ml

) ,
which proves the result.
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4. Main Results

Theorem 1. For any fixed integers n ≥ 1,m ≥ 1, and for |x| < 4m−1, we have

∞∑
k=n+1

4kxk

(k − n)
(
2mk
mk

)
= 41/m−1x1/m

m−1∑
j=0

Tmn−2(z)w
j +

m−1∑
j=0

√
z

1− z
arcsin (

√
z)Smn(z)

+

n−1∑
k=1

4kxk

(k − n)

(
1

4km
− 1(

2mk
mk

))−

(
4n(1−m)m

2

mn∑
k=1

4k

k
(
2k
k

)smn−k

)
xn,

where z = 41/m−1wjx1/m depends on j, w = e2πi/m is the m-th root of unity,

the polynomials Tmn−2 and Smn of degrees mn− 2 and mn, respectively, are as in

Definitions 1 and 2, and the coefficients smn−k correspond to those of the polynomial

Smn.

Proof. We start by considering Equation (11), which we multiply by xn−1 and then

integrate with respect to x, which leads to∑
k≥n+1

4kxk

(k − n)
(
2mk
mk

)
=

xn

m

m−1∑
j=0

∫
x−n−1

(
4
√
y arcsin (

√
y/2)

(4− y)3/2

)
dx︸ ︷︷ ︸

I1

+
xn

m

m−1∑
j=0

∫
4

xn+1(4− y)
dx︸ ︷︷ ︸

I2

+ Cxn −
n−1∑
k=0

4kxk

(k − n)
(
2mk
mk

) − 4nxn log(x)(
2mn
mn

) ,

(12)

where C is a constant to be determined.

By letting y = wj(4x)1/m = 4z, which implies that x = 4m−1zm, we have on the

one hand

I1 = 4−n(m−1)m

∫
z−mn−1/2 arcsin (

√
z)

(1− z)3/2
dz.

Then Lemma 1 leads to

I1 = 4−n(m−1)m

(
log(z − 1) + cmn log(z) +

Tmn−2(z)

zmn−1
+

arcsin(
√
z)

zmn−1/2
√
1− z

Smn(z)

)
.

On the other hand, by the same change of variable as before,

I2 = m

∫
4m−1zm−1

4(m−1)(n+1)(1− z)zm(n+1)
dz

=
m

4(m−1)n

∫
1

zmn+1(1− z)
dz.



INTEGERS: 26 (2026) 12

By decomposing into partial fractions, we have

I2 =
m

4(m−1)n

∫ (
1

z
− 1

z − 1
+

1

z2
+

1

z3
+ · · ·+ 1

zmn+1

)
dz

=
m

4(m−1)n
·
(
log(z)− log(z − 1)− 1

z
− 1

2z2
− 1

3z3
− · · · − 1

mnzmn

)
.

Continuing the calculations on Equation (12),

∞∑
k=n+1

4kxk

(k − n)
(
2mk
mk

)
= xn4−n(m−1) ·

m−1∑
j=0

(
log(z − 1) + cmn log(z) +

Tmn−2(z)

zmn−1
+

arcsin (
√
z)

zmn−1/2
√
1− z

Smn(z)

)

+
xn

4(m−1)n
·
m−1∑
j=0

(
log(z)− log(z − 1)− 1

z
− 1

2z2
− 1

3z3
− · · · − 1

mnzmn

)

+ Cxn −
n−1∑
k=0

4kxk

(k − n)
(
2mk
mk

) − 4nxn log(x)(
2mn
mn

) .

Then, by Remark 2,

∞∑
k=n+1

4kxk

(k − n)
(
2mk
mk

)
= xn4−(m−1)n

m−1∑
j=0

(
4mn(
2mn
mn

) log(z))− 4nxn log(x)(
2mn
mn

) − xn4−n(m−1)
m−1∑
j=0

mn∑
k=1

1

kzk

+ xn4−n(m−1)
m−1∑
j=0

(
Tmn−2(z)

zmn−1
+

arcsin (
√
z)

zmn−1/2
√
1− z

Smn(z)

)
+ Cxn

−
n−1∑
k=0

4kxk

(k − n)
(
2mk
mk

) .
By letting z = 41/m−1wjx1/m, and grouping and simplifying the first and second

terms on the right-hand side of the above expression, we obtain

xn4n(
2mn
mn

) m−1∑
j=0

(
(
1

m
− 1) log(4) +

2πij

m

)
=

4nxn(
2mn
mn

)((1−m) log(4) + πi(m− 1)
)
.
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On the other hand,

xn4−n(m−1)
m−1∑
j=0

mn∑
k=1

1

kzk
= xn4−n(m−1)

mn∑
s=1

1

s

m−1∑
j=0

1

(41/m−1x1/m)swsj

= xn4−n(m−1)
mn∑
s=1

(
1

4(1/m−1)sxs/ms
·
m−1∑
j=0

w−sj

)

= xn4−n(m−1)
n∑

k=1

1

k4(1−m)kxk

=

n∑
k=1

xn−k

k4(k−n)(1−m)

=

n−1∑
k=0

xk

(n− k)4k(m−1)
.

Thus, we obtain

∞∑
k=n+1

4kxk

(k − n)
(
2mk
mk

)
=

4nxn(
2mn
mn

)((1−m) log(4) + πi(m− 1)
)
−

n−1∑
k=0

xk

(n− k)4k(m−1)

+ 41/m−1x1/m
m−1∑
j=0

(
Tmn−2(z)w

j + wj arcsin (
√
z)

z

√
z

1− z
Smn(z)

)
+ Cxn

−
n−1∑
k=0

4kxk

(k − n)
(
2mk
mk

) .

(13)

The third term on the right-hand side equals(
41/m−1x1/m

n−1∑
j=0

Tmn−2(z)w
j

)
+

m−1∑
j=0

arcsin (
√
z)

√
z

1− z
Smn(z).

By comparing the coefficients of xn on both sides of Equation (13), we have

0 = C+
4n(
2mn
mn

)((1−m) log(4)+πi(m−1)
)
+Coefxn

(
m−1∑
j=0

arcsin (
√
z)

√
z

1− z
Smn(z)

)
.

We know that, from Melzak [16, p. 108] and Lehmer [15],

1

2

∞∑
k=1

4kzk

k
(
2k
k

) =

√
z

1− z
arcsin(

√
z). (14)
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Therefore,

C = − 4n(
2mn
mn

)((1−m) log(4) + πi(m− 1)
)
− 1

2

m−1∑
j=0

mn−1∑
k=0

4mn−ksk(4
1/m−1wj)mn

(mn− k)
(
2(mn−k)
mn−k

)
= − 4n(

2mn
mn

)((1−m) log(4) + πi(m− 1)
)
− m

2

mn−1∑
k=0

4n−ksk

(mn− k)
(
2(mn−k)
mn−k

)
= − 4n(

2mn
mn

)((1−m) log(4) + πi(m− 1)
)
− m4n(1−m)

2

mn∑
k=1

4ksmn−k

k
(
2k
k

) .

By substituting into Equation (13), we have the desired result.

Corollary 1. For n ∈ N fixed and for |x| < 4, we have

∞∑
k=n+1

4kxk

(k − n)
(
2k
k

) = xTn−2(x) +

√
x

1− x
arcsin (

√
x)Sn(x)

+

n−1∑
k=0

1

k − n

(
1− 4k(

2k
k

))xk −

(
1

2

n∑
k=1

4k

k
(
2k
k

)sn−k

)
xn,

where the polynomials Tn−2(x) and Sn(x) are as in Definitions 1 and 2, and sn−k

is the (n− k)-th coefficient of Sn.

For ease of discussion, from now on we denote by t
(i)
j the coefficient of xj in the

polynomial Ti(x), as defined in Definition 2. Similarly, we denote by s
(i)
j ,m

(i)
j , n

(i)
j

the coefficients of xj in the polynomials Si(x),Mi(x), Ni(x), as defined in Definitions

1, 3, and 4, respectively.

Theorem 2. For any fixed integers m ≥ 1, n ≥ 1 and for |x| < 4m−1, we have that

∞∑
k=n+1

4kxk

(k − n)2
(
2mk
mk

)
=

m22n+1xn(
2mn
mn

) m−1∑
j=0

(arcsin (
√
z))2 +

n−1∑
k=1

rkx
k + qxn

− 4−n(m−1)mxn
m−1∑
j=0

(
arcsin (

√
z)
√
z(1− z)

zmn
·
mn−1∑
k=0

s
(mn)
k Mmn−k−1(z)z

k

)

where z = 41/m−1wjx1/m depends on j, w = e2πi/m is the m-th root of unity, the
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polynomial Mmn−k−1(z) is as in Definition 3, and

rk := m4k(1−m)

(
t
(mn−2)
mk−1

(k − n)
+

1

2

mk−1∑
l=0

s
(mn)
l m

(mn−l−1)
mk−l−1

k − n

)
+

4k

(k − n)2

( 1

4km
− 1(

2mk
mk

))
and

q := m24−n(m−1)

·

(
− 22mn+1(

2mn
mn

) +

mn−2∑
l=0

s
(mn)
l

(
4mn−l

(mn− l)
(
2(mn−l)
mn−l

) − 1

2

mn−l−1∑
p=1

4pm
(mn−l−1)
mn−l−1−p

p(2p+ 1)
(
2p
p

) )).
Proof. By multiplying both sides of the equation in Theorem 1 by x−n−1, integrat-

ing and then again multiplying by xn, we have

∞∑
k=n+1

4kxk

(k − n)2
(
2mk
mk

)
= 41/m−1xn

mn−1∑
j=0

wj

∫
x1/m−n−1Tmn−2(z) dx

+ xn
m−1∑
j=0

∫
x−n−1

√
z

1− z
arcsin (

√
z)Smn(z) dx−

n−1∑
k=0

4kxk

(k − n)2
(
2mk
mk

)
+

n−1∑
k=0

xk

(k − n)2
(
2mk
mk

) −(4n(1−m)m

2

mn∑
k=1

4ks
(mn)
mn−k

k
(
2k
k

) )
xn log(x) + Cxn,

(15)

where C is a constant to be determined.

On the one hand, in Equation (15) we have∫
x1/m−n−1Tmn−2(z) dx = m4(m−1)(1/m−n)w−j

∫
z−mnTmn−2(z) dz

= m4(m−1)(1/m−n)w−j
mn−2∑
k=0

t
(mn−2)
k

∫
zk−mn dz

= m4(m−1)(1/m−n)
mn−2∑
k=0

t
(mn−2)
k zk−mn+1

k −mn+ 1

= x−n+1/m
mn−2∑
k=0

4k(1/m−1)t
(mn−2)
k wkjxk/m

k −mn+ 1
.
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Then the first term of the right-hand side of (15) equals

m41/m−1x1/m
mn−2∑
k=0

(
4k(1/m−1)t

(mn−2)
k

k −mn+ 1
xk/m

m−1∑
j=0

wj(k+1)

)

= m2
n−1∑
k=1

4k(1−m)t
(mn−2)
mk−1 xk

m(k − n)
.

By Lemma 2, and expanding the second term of the right-hand side of Equation (15),

xn
m−1∑
j=0

∫
x−n−1

√
z

1− z
arcsin (

√
z)Smn(z) dx

= mxn4−n(m−1)
m−1∑
j=0

∫
z−mn−1/2 arcsin (

√
z)√

1− z
Smn(z) dz

= mxn4−n(m−1)

·
m−1∑
j=0

(
mn−1∑
k=0

s
(mn)
k

∫
z−(mn−k)−1/2 arcsin (

√
z)√

1− z
dz + s(mn)

mn arcsin2 (
√
z)

)
= mxn4−n(m−1)

·
m−1∑
j=0

(
mn−1∑
k=0

s
(mn)
k

(
dmn−k log(z)−

arcsin (
√
z)
√
z(1− z)

zmn−k
Mmn−k−1(z)

+
Nmn−k−2(z)

zmn−k−1

)
+ s(mn)

mn (arcsin (
√
z))2

)
.

(16)

Let us expand one at a time the terms of this last expression. On the one hand,

since dn = 4n

2n(2nn )
for all n ∈ N, we have

mxn4−n(m−1)
m−1∑
j=0

mn−1∑
k=0

s
(mn)
k dmn−k log(z)

= mxn4−n(m−1)
(
(1−m) log(4) + log(x) + iπ(m− 1)

)(mn−1∑
k=0

s
(mn)
k dmn−k

)

= mxn4−n(m−1)
(
(1−m) log(4) + log(x) + iπ(m− 1)

)
·
mn∑
k=1

4ks
(mn)
mn−k

2k
(
2k
k

) .
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On the other hand, we have

mxn4−n(m−1)
m−1∑
j=0

mn−1∑
k=0

s
(mn)
k

Nmn−k−2(z)

zmn−k−1

= mxn4−n(m−1)
m−1∑
j=0

(
mn−2∑
k=0

(s(mn)
k

zmn

mn−k−2∑
l=0

n
(mn−k−l)
l zl+k+1

))

= mxn4−n(m−1)
m−1∑
j=0

(
mn−2∑
s=0

zs+1

zmn

s∑
k=0

s
(mn)
k n

(mn−k−2)
s−k

)
= mxn4−n(m−1)

·
mn−2∑
s=0

(
4(1/m−1)(s+1−mn)x1/m(s+1−mn)

(m−1∑
j=0

wj(s+1−mn)
) s∑

k=0

s
(mn)
k n

(mn−k−2)
s−k

)

= m2xn4−n(m−1)
n−1∑
p=1

(
4(1/m−1)(−mp)x−p

m(n−p)−1∑
k=0

s
(mn)
k n

(mn−k−2)
m(n−p)−k−1

)

= m24−n(m−1)
n−1∑
k=1

(
4k(1−m)

mk−1∑
l=0

s
(mn)
l n

(mn−l−2)
mk−l−1

)
xk

= m24−n(m−1)
n−1∑
k=1

(
4k(1−m)

2

mk−1∑
l=0

s
(mn)
l m

(mn−l−1)
mk−l−1

m(k − n)

)
xk.

The latter equality above is justified by the relation between the coefficients of

polynomials M(x) and N(x), as shown in Definition 4.
We still need to determine the value of C in Equation (15). By comparing

coefficients of xn in that equation, along with the calculations done up to this
point, we have

0 = C +m4−n(m−1)
(
(1−m) log(4) + πi(m− 1)

)
·
mn∑
k=1

4ks
(mn)
mn−k

2k
(
2k
k

)
+m4−n(m−1) Coefxn

(
xn

m−1∑
j=0

s(mn)
mn arcsin2 (

√
z)
)

−m4−n(m−1) Coefxn

(
xn

m−1∑
j=0

arcsin (
√
z)
√

z(1− z)
∑mn−1

k=0 s
(mn)
k Mmn−n−1(z)z

k

zmn

)

Sprugnoli [17] showed that arcsin2 (
√
z) = 1

2

∑∞
k=1

4kzk

k2(2kk )
, so we have

Coefxn

(
xns(mn)

mn

m−1∑
j=0

arcsin2 (
√
z)

)
=Coefxn

(
xns

(mn)
mn

2

m−1∑
j=0

∞∑
k=1

4k(41/m−1wj)kxk/m

k2
(
2k
k

) )
= 0.
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On the other hand, by Equation (14), we obtain

arcsin (
√
z)
√
z(1− z) =

1

2

∞∑
k=1

4kzk

k
(
2k
k

) − 1

2

∞∑
k=1

4kzk+1

k
(
2k
k

)
= z − 1

2

∞∑
k=1

4kzk+1

k(2k + 1)
(
2k
k

) .
Then

Coefxn

(
xn

m−1∑
j=0

arcsin(
√
z)
√

z(1− z)

zmn

mn−1∑
k=0

s
(mn)
k Mmn−k−1(z)z

k
)

= Coefxn

(
m−1∑
j=0

∑mn−1
k=0

(
s
(mn)
k

(
z − 1

2

∑∞
l=1

4lzl+1

l(2l+1)(2ll )

)∑mn−k−1
p=0 m

(mn−k−1)
p zp+k

)
(41/m−1wj)mn

)

= Coefxn

(
m−1∑
j=0

zmn∑mn−1
k=0 s

(mn)
k

(
m

(mn−k−1)
mn−k−1 − 1

2

∑mn−k−1
l=1

4lm
(mn−k−1)
mn−k−l−1

l(2l+1)(2ll )

)
(41/m−1wj)mn

)

= m

(mn−1∑
l=0

s
(mn)
l m

(mn−l−1)
mn−l−1 − 1

2

mn−2∑
l=0

mn−l−1∑
p=1

s
(mn)
l 4p

p(2p+ 1)
(
2p
p

)m(mn−l−1)
mn−l−p−1

)
.

The proof is then complete by Remarks 1 and 3.

Corollary 2. For every fixed integer n ≥ 1 and for all |x| < 1, we have

∞∑
k=n+1

4kxk

(k − n)2
(
2k
k

)
=

22n+1xn(
2n
n

) (arcsin (
√
x))2 − arcsin (

√
x)
√

x(1− x)
( n−1∑

k=0

s
(n)
k Mn−k−1(x)x

k
)

+

n−1∑
k=1

rkx
k + qxn,

where

rk :=

(
t
(n−2)
k−1

k − n
+

1

2

k−1∑
l=0

s
(n)
l m

(n−l−1)
k−l−1

k − n

)
+

4k

(k − n)2

( 1

4k
− 1(

2k
k

));
q :=

(
− 22n+1(

2n
n

) +

n−2∑
l=0

s
(n)
l

(
4n−l

(n− l)
(
2(n−l)
n−l

) − 1

2

n−l−1∑
p=1

4p

p(2p+ 1)
(
2p
p

)m(n−l−1)
n−l−1−p

))
,

and the polynomial Mn−k−1(x) is as in Definition 3.
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5. Applications

We present here some new results concerning sums in which the generalized central

binomial coefficient appears in the denominator, using the theory developed in this

work.

Let x = ± 1
4 . By varying the values of m,n in Theorem 1, we have

(a)

∞∑
k=3

1

(k − 2)
(
2k
k

) =
13

36
− π

√
3

18
,

(b)

∞∑
k=4

(−1)k

(k − 3)
(
2k
k

) = − 19

200
+

√
5

10
arcsinh(1/2),

(c)

∞∑
k=2

1

(k − 1)
(
4k
2k

) =
7

18
− π

√
3

18
−

√
5

15
arcsinh(1/2),

(d)

∞∑
k=3

(−1)k

(k − 2)
(
4k
2k

)
= − 219

4900
−

√
34

595

((
2

√√
17 + 1− 7

√√
17− 1

)
arcsin

(√5− 2
√
2−

√
5 + 2

√
2

4

)

+

(
2

√√
17− 1+7

√√
17 + 1

)
log

(√2(
√
17− 3) +

√
5− 2

√
2 +

√
5 + 2

√
2

4

))
,

(e)

∞∑
k=2

1

(k − 1)
(
6k
3k

) = 37
200 − 7π

√
3

180 + 1
210

(√
42(

√
21 + 3) log

(√
2(

√
21−3)+

√
7+

√
3

4

)
−
√
42(

√
21− 3) arcsin

(√
7−

√
3

4

))
.

Let x = 1
4 . By varying the values of m,n in Theorem 2, we have

(a)

∞∑
k=3

1

(k − 2)2
(
2k
k

) = − 53

108
+

π
√
3

12
+

π2

108
,

(b)

∞∑
k=2

1

(k − 1)2
(
4k
2k

) = −41

27
+

π
√
3

6
+

π2

54
+

5
√
5 arcsinh(1/2)

9
− 2

3
arcsinh2(1/2),

(c)

∞∑
k=4

1

(k − 3)2
(
4k
2k

) = − 406705027

11093751900
+

1823
√
3π

237160
+

π2

8316
− arcsinh2(1/2)

231

− 3137
√
5 arcsinh(1/2)

640332
,
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(d)

∞∑
k=2

1

(k − 1)2
(
6k
3k

)
= −134

125
+

21π
√
3

200
+

π2

120
− 12

5
log2(2) +

3

5
arcsin2

(√7−
√
3

4

)
+

1

200
arcsin

(√7−
√
3

4

)(
23

√
3(2

√
21 + 3)− 27

√
2
√
21− 3

)

− log(2)

100

(
23

√
3(2

√
21−3)+27

√
2
√
21 + 3

)
−
3 log2

(√
2(
√
21− 3) +

√
7 +

√
3
)

5

+ log
(√

2(
√
21−3)+

√
7+

√
3
)(12 log(2)

5
+

23
√

3(2
√
21− 3) + 27

√
2
√
21 + 3

200

)
.
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