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Abstract
We explore power series representing reciprocals of central binomial coefficients
multiplied by linear terms of differences or their squares, incorporating polynomial
functions, the arcsine function, and square roots. The results of this study generalize
those established by Sprugnoli.

1. Introduction

Central binomial coefficients are defined for n € N as

() -4

They possess many combinatorial properties and contribute to solving numerous
counting problems. For instance, Vandermonde’s identity, (2:) = ZZ:O (2)2, illus-
trates that the m-th central binomial coefficient equals the sum of the squares of
the coefficients from the n-th row of Pascal’s triangle. These coefficients are also
related to Catalan numbers, defined by

C_l 2n_2n_ 2n
" n+1\n/) \n n+1)’

which represent, for example, the number of ways of dividing an (n + 2)-gon into

triangles formed by connecting the vertices with non-crossing line segments. There
are many other interpretations for Catalan numbers; see for example [13].

In [4], it is shown that the generating function associated with the reciprocals of
the Catalan numbers is given by

= zF 2(z+38) 24\/x (VT
Db omil v e Ve Tk (2) |

DOI: 10.5281/zenodo.18153901



INTEGERS: 26 (2026) 2

This series also appears in [2, 12, 14, 20].

There exist many results [2, 3, 7, 10, 11, 19] regarding finite or infinite sums
that involve central binomial coefficients (or their reciprocals), Catalan numbers,
Fibonacci numbers, Lucas numbers, harmonic numbers, and other special sequences
that arise. Boyadzhiev [5, 6], for example, studied series of the forms

X gk k s 2K\ .k
274 I;I:x and Zi(k)x ,
= ) ik tml

where Hj, stands for the k-th harmonic number, expressing them in terms of ele-
mentary functions.
In 2006, Sprugnoli [17] proved, among other results, that

oo k ks = —
kzzz (k:ll)(%f) =22z — 1)\/iarctan (\/i) + 2z,

and

ad 4k k T T T 2
=4(1—x) arctan (, / 7) +dz (arctan \/ 7) —4zx.
kZ:Z(]{;_l)Z(Qkk) 1—=z 11—z 1—z

Both equalities hold for || < 1. These results provided the primary initial moti-
vation for the developments presented in this work. In fact, in the aforementioned
article, Sprugnoli does not specify the domains of validity for several of the results
he presents concerning the power series he studies. A more rigorous determination
of these domains can be obtained by differentiating and integrating the result of
Theorem 1 of [1], an article in which additional issues in Sprugnoli’s work were also
emphasized and discussed.

In 2018, Chu and Esposito [8, 9] obtained exact evaluations, in terms of elemen-
tary functions, for series of the form

)

— Am(k) 2mk
Z (2mk+2’y) (23’,‘)
k=0 mk—4-y

where A, (k) denotes a polynomial of degree m in k expressed in terms of falling
factorials.

In this paper, we find in Theorems 1 and 2 general results for sums of the form

> 4k gk > 4k gk
E ———— and E —_—,
k=n+1 (k - n) (QT:Lnkk) k=n+1 (k - TL)2 (%;nkk)

with m,n € N fixed. These series, which generalize Sprugnoli’s results, express
themselves using polynomial functions, inverse trigonometric functions, and radi-
cals, enabling more familiar manipulation of the expressions. The main idea is to
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apply a multisection to the series

i 4kxk  \/xarcsin (\/z) 1

) T -epz 11—

k=0

established by Lehmer [15]. Subsequently, by integrating such expressions, exact
results are obtained in terms of elementary functions for certain integrals that ap-
pear in the process. Moreover, appropriate manipulations are performed to simplify
summations, thus yielding the main results of the present work. As a special case,
we can compute infinite sums of the form

> 1 > 1
————— and _
2 e 2 G

or their respective alternating series.
The present work complements and extends the author’s previous study [21], in
which general results were obtained in terms of elementary functions, for series of

the form
k

i S and i Lk
(2k +n) () = ko)

k=0 mk mk

2. Definitions

Definition 1. Let n > 1 be an integer. We define the polynomials

Sp(x) := Z spah
k=0

of degree n such that their coefficients satisfy the following recursive relation

1

0= T

k—1-—n
= — ) Sk— fork=1,2,...,n.
Sk <k—7’l+1/2) Sk—1, or )4y ) TV

Remark 1. We have

22n+1
Sn = )
)
which implies
22n
Sn—1 = — 750y -
)

Indeed, by using Definition 1, we obtain

1 1/ k-1-n 22ntlpl2  gntl
:1/2—nH(k—n+1/2): el ()

Sn
k=1
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Table 1 shows the first few polynomials S, (z).

n Sp(x)
1 —244x
2 -2 _ 854 8,2
3 —%—%m—%ﬁ—i—%x?’
5 _2_ 20, 32,2 _ 64,3 _ 256,4 5125
9 63 637 T 37 T+ GET
6 _g_gx_&xz_@x:s_@xz;_1024x%+2048x6
11~ 33 231 231 231 231 231

Table 1: The first six polynomials S, (z).

Definition 2. Let n > 2 be an integer. We define the constant ¢, := % — 1. We
also define the polynomials

n—2
Th2(z) = Z tpa®
k=0

of degree n — 2, such that their coefficients satisfy the recursive relation

n— k+1—n)t 2
i l—cn; tk,lzz( + )t + 51/ , fork=n-2n-3,...,1.
2 k—n

tp—o:i=—

For n = 1, we agree ¢; := 1 and T—1(z) := 0.
Table 2 shows the first few values for ¢, and the first few polynomials T, _2(x).
Remark 2. By Remark 1, for n € N we have

47L
Cn = —5— — L.

)

Definition 3. Let n > 1 be an integer. We define the polynomials

n—1
M, _1(z) := kaxk
k=0

of degree n — 1, such that their coefficients satisfy the recursive relation

2
mo = ——;
RRDYRE R
2(k —n)
= M fork=1,2,...,n—1.
mg 2%k —on+ 1 mg—1, or ) y T

Table 3 shows the first few polynomials M,,_;(x).
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n Cn Tn,g(x)
1 1 0
2 5/3 ~1/3
3 11/5 ~1/10 - 3/5z
4 93/35 1y 9
5 193/63 Ca e T BT e
1 3? 18989 242 51 gg 081 4
6 793/231 Lty m0 2 s, am,

Table 2: The first six constants ¢, and polynomials T, _o(x).

n Mn—l(l‘)
1 2
2 %Jr%x
3 2+§I+L$2
2 512 15 16 215 32,.3

4 Z+£l’+*5$ +£

2, 16 32 27 128 256 .4
o 2 20+ 6356164(; 1205 Gj 3315 2; 4 1:512 5

Table 3: The first six polynomials M,,_1(x).

Definition 4. Let n > 2 be an integer. We define the constant d,, := % We
also define the polynomials

n—2

Nyp—ao(x) := ana:k
k=0

of degree n — 2 by

"l M, _1(x) —my_12" ! 12 My
N7— - ( e n )d = = .
() 2 / " * 2];)—n+k+l

For n =1, we agree dy := 1 and N_;(z) := 0.
Table 4 shows the first few constants d,, and the first few polynomials N,,_o(x)

Remark 3. Let n € N. We can prove that

4qn
dy = ——.
2n(2n)

n
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n d,, Np_o(x)

1 1 0

2 2/3 —-1/3

3 8/15 —(8x +3)/30

4 16/35 —(2422 + 92 +5)/105

5 128/315 —(768z3 + 28822 + 160z + 105)/3780

6 256/693 —(3840z* + 144023 + 80022 + 525z + 378) /20790

Table 4: The first six polynomials N, _o(z).

3. Auxiliary Results

Lemma 1. Forn > 1, we have

Tn—o(z)  arcsin(y/z) g

—n—1jparesin (Vz) B
/x T2y dx =log(x—1)+¢, log(z)+ o) + RSN (),
(1)
where the constant ¢, and the polynomials T,,—o(x) and S, (x) are as in Definitions 1

and 2.

Proof. For n = 1, the proof is straightforward. For n > 2, we must prove that the
derivative of the right-hand side of Equation (1) is equal to the integrand of the
left-hand side.

On the one hand, we have

d <T”2(w)) = nif(fn + k4 Dtz "tk

de \ an-1
k=0

On the other hand, we have

i(arcsin(\/f)Sn(a:))
dz \ zn=1/2\/T—¢
_d( arcsin(+/r) >S (2) + arcsin (1/x) i(S ()
T A\ 2o ) T e A de Y

B 23:5?1(12 ) * xnff;:jzrll(:/i;?,m ' ((na: —n+1/2)8,(x) +2(1 - m)S,’L(x))

Let us prove that
z(1 —2)S) (z) + (nx —n+1/2)S,(z) = 1. (2)
Indeed, Equation (2) holds if and only if

z(1—xz)(s14+2500+3s32% +- -+ ns,z" )+ (nz—n+1/2)(so+ 5104+ s,2") = 1,
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if and only if
so(—n+1/2) =1, ksp—(k—1)sg—1+ (—n+1/2)s; +nsx_1 =0,
for all 1 < k <n, and —ns, + ns, = 0, if and only if

1 k—1—n

= d = — .
YT )

Sk—1-
These two last equalities hold by the definition of the coefficients sg.
By letting = 1 in Equation (2), we have

isk = 2. (3)
k=0

The proof is complete if we can prove that

1 e =2 Sn(z)
—+ —n+k+ Dtz "+ —220 =,
+ +k§20( n+k+ 1)t (1= 2)

rz—1 T

Indeed, by comparing coefficients, this last equality holds if and only if

|
)

n

Sh
" ez W e -1+ (2 -1)) (—n+k+ Dt — # =0,
k=0
if and only if
1+Cn*87n = 07 —Cp—lp_2— 5712*1 = Oa (7n+k)tk—lf(7n+k+l)tkfs?k = Oa
forall 1 <k <n-—2,and
s
(n—1)to — 50 =0
if and only if
Sn Sp—1 (—m 4k + D)t + sx/2
= — — 1 _o = — — _1 = 4
Cn 2 3 tn 2 2 Cn, tk: 1 kE—n ) ( )
forall1 <k <n-—2, and
80/2
tg = ——. 5
0= 22 (5)

The equations in (4) hold by definition of the coefficients ¢,, and t;. Let us prove
(5) holds. Indeed, by using the recursive relation defining tx, we have

S0/2 (2—n)t1 +51/2
n—1 1-n

b
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if and only if
(80+81)/2 (37n)t2+82/2
— =t =
n—2 2—n
if and only if
(SQ+51+52)/2 — o — (4771)1534’53/2
n—3 T2 3—n

)

if and only if ...
(50 +s51+--+ 571,—2)/2
n—(n—-2+1)

th—2 = 5

if and only if
(so+ 81+ +8n_2) _ Sp—1

- — Cn,

2 - 2

if and only if
n—1
_ 2uk=0 5k
5

By Equation (3), this last equality holds if and only if

(2—5,)  sn
2 2 ’

Cp =

Cp = —
which in turn holds by definition of ¢,,. O

Lemma 2. Forn > 1, we have

/x7n71/2 arcsiln_(\ff) do = dy, log(x) — arcsin (\/Ex)n z(1—2) M, 1 (2)+ Ny_o(z)

where the constant d,, and the polynomials M, _1(x) and N,_o(x) are as in Defini-
tions 3 and 4.

Remark 4. For n =0,

/ml/ﬁw dx = (arcsin (v/))?.

Proof. For n = 1, the proof is straightforward. For n > 2, we must prove that
the derivative of the right-hand side of Equation (6) equals the integrand of the
left-hand side, i.e.,

dp (1 arcsin(y/x)(2x — 1)

2T g o) )Mn_l(x)x_" — arcsin (vr)y/z(1 — z)z" "M, _,(z)

xT

Ny _o(z)

Nn_g(m)

+narcsin (vz)/z(1 — )z " M, _1(z) +
xn

— 1
28 b (n+ 1)

R arcsin (v/x)
B Vi—z



INTEGERS: 26 (2026)

To do this, let us prove that

MMn_l(x)x*” +ny/a(l—2)z " My () —

z(l—x2)z™ "M, _,(z)

2y/z(1 —x)
x—n—l/Q
T Vi-w
(7)
and ,
I a2y M) (8)

x 2
Let us first consider Equation (8). We must prove that

((2—2n)z+ (2n — 1)) M,_1(z) + (22% — 22)M],_,(z) = 2. (9)
By comparing coefficients, we see that Equation (9) holds if and only if
2my—1 — 2nmy—1 + 2my,—1(n — 1) =0,

(2—=2n)mr_1 + (2n — V)my, + 2(k — 1)mp_1 — 2kmy, =0,
(2n — 1)mg = 2,

foralll1 <k <n,

if and only if
—2n + 2k
=— _ f N1<k<
Mg (2k72n+1>mk 1, fora <k <n,
2
O o1
which holds by definition of the coefficients of M,,_;(x). Replacing z = 1 in Equa-

n—1

Z mg = 2.

k=0

Let us now consider Equation (7), which is equivalent to

Njafe) = "N, a(a) (M";;(x) _ dn:c”Z).

tion (9) we have
(10)

This represents a first-order differential equation, whose solution is given by

Noya(@) = 2" /(W - ‘i) da.

By Definition 4 we know that d,, = ™%=*. Then

Mn— — My n—1
Np_o(z) = 2" /( 1(2) QxT 1% )d$7

which holds by Definition 4.
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Lemma 3. For every fived integer m > 1 and for all || < 4™, we have

> el 4,/y arcsin (/y/2) 4
kz:: ) ;( (4—y)>r2 +4—y)’ -

where y = w’ (4x)1/m depends on j, and w = €>™/™ is the m-th root of unity.

Proof. We know from Lehmer [15] that, for all |z| < 1,

R (1) 1—a

i 4kgk \/xarcsin (\/x) 1
k=0

This implies that, for |z| < 4,

= 2k 4 T arcsin 2 4
Z_: V7 (Vz/2)

(4 — )3/2 4— 1

Then we have for |z| < 4m~1,

3

1 ! 4,/y arcsin (1/y/2) 4 B lm% = wh (4a)k/m
P (S ) R S
1 = (dz)/m I8,
= *Z ( Q)k Zwkj'
miz (%) =0

Finally, since

we have that

which proves the result. [
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4. Main Results

Theorem 1. For any fized integers n > 1,m > 1, and for |z| < 4™, we have

2mk
k=n-+1 (k - n)(mk)
m—1
= gl/m=1g1/m Z Ton—2(2)w? + Z arcsm )Smn(2)
j=0 j=0
n—1 mn
A < 1 1 gr(i=m)p, 4k
+Z km  2mky | Z 5y Smn—k | T
k:l(k_n) 4 Gy : k:lk(k)
where z = AY/™ " Lwig/™ depends on j, w = €2>™/™ s the m-th root of unity,

the polynomials Typ—o and Sy, of degrees mn — 2 and mn, respectively, are as in
Definitions 1 and 2, and the coefficients Spyn—x correspond to those of the polynomial
S -

Proof. We start by considering Equation (11), which we multiply by 2" ~! and then
integrate with respect to z, which leads to

Z 4kl'k
E>n+1 (k—n) (QnTkk)
m—1 . m—1
_at —ne1 {4y arcsin (/y/2) z" / 4
m j—o/x (M) o w2 | =g
I
n—1
4l gk 4"z" log(x)
+Cmn7 - mn ’
ST G

where C' is a constant to be determined.
By letting y = w’ (4z)'/™ = 4z, which implies that = 4™~'2™, we have on the
one hand

zZ.

I =4 n(m— l)m L mn— 1/2arcsm(f)d
(-2

Then Lemma 1 leads to
L= 4"(m1)m(log(z — 1) + cmn log(z) + TZ;;i(lz) + szfﬁ(\/%smn(z))
On the other hand, by the same change of variable as before,
gm—1,m—1
I = m/ (m=D(n+1) (1 — 2)zm(ntD) dz
/ 1
4(m—1)” 2mntl(] — 2)

dz.
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By decomposing into partial fractions, we have

L__m 1 1 11 LYy,
2 J\CT i T T I )

m 1 1 1 1
= feon <log(z> “loglz =) -2 -5mgE T mnzmn)'

Continuing the calculations on Equation (12),

1. N (2mky
i1 (B —n) i)
m—1
—n(m— Trn—2(2) arcsin (1/z)
x jz:; 0g(z — 1) + cmn log(z) + pros B g VN B (2)
m—1
" 1 1 1 1
. 1 | B
s 5=0 (og(z) og(z ~ 1) z 222 328 mnzm">
n—1 k. .k n,_.n

n 4"z 4"z log(z)

+ Ca” — Z m - 2mn
k=0 (k - n) (2mkk) (mn)
Then, by Remark 2,

(1. N (2mk)

pomi (B —n) (i)
m—1 m—1 mn
—(m— 4mn 4"z" log(z) Cn(m—1 1
= gmq=(m=bn ( 5 log(z)> - —z"4 n(m=1) —
mn mn k
j=0 (mn) (mn) Jj=0 k=1 kz
m—1
n ,—n(m— Tmn—Q(Z) arcsin (\/E) n
+ama Y + Smn(2) | +C
x = omn—1 zm"’l/zm (2’) x
n—1 4k k

By letting z = 4/™1wiz!/™ and grouping and simplifying the first and second
terms on the right-hand side of the above expression, we obtain

m—1

(362;:7; ; ((nl1 —1)log(4) + 2;”) = ?2% ((1 —m)log(4) + wi(m — 1))
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On the other hand,

m—1 mn 1 mn 1 m—1 1
n4—n(m—1) - _ ,mng—n(m-1) -
z"4 . koK =z"4 ZS Z 41/m 1 1/m)9w§j
7=0 k=1 s=1 7=0
mn 1 m—1
_ ng—n(m—1) . —sj
g 1
_ mng—n(m—1)
=27 LA(d—m)k ok
k=1
B n an_k
o Z: kA (k—n)(1—m)
2 = R)aFon
Thus, we obtain
i 4k gk
k=n+1 (k—n) (Qr’fkk)
n,.n n—1 k
4"z
= W((l —m)log(4) + wi(m ) ey ET=Y
mn k:O (13)
1/m=1,1/m jarcsin (vz) [z n
+4 Z < mn—2(2)w’ +w . 17Z5mn(z) +Cx
i: 4k k
=N CEDICEON

The third term on the right-hand side equals

n—1
41/m 1 l/m T ? = Son ]
( JZO o Z arcsin ( T (2)

By comparing the coefficients of 2™ on both sides of Equation (13), we have

4" , [ [z
0=CH—-—— (an) ((1fm) 10g(4)+m(m71)) +Coefzn (Z arcsin (v/2) 1_ZSmn(z)>.

mn 7=0

We know that, from Melzak [16, p. 108] and Lehmer [15],

;; :(%) = /1 z  aresin(v/2). (14)
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Therefore,
m—1mn—1 ;
4qn 1 4mn7k5k(41/mfle)mn
C=———((1—m)log(4) + mi(m — 1)) — = ——
o 520 2 G WCD)
4n m " 4r=kg,
=————((1—m)log(4) + mi(m —1)) — —
(ot mitn =) =5 2 B )
4qn 4n(1—m) mnogk —
= — g (1= m) log(4) + mi(m — 1)) — “— Smn_k
( mn ) k=1 k( k )
By substituting into Equation (13), we have the desired result. O

Corollary 1. Forn € N fized and for |z| < 4, we have

- 4k gk T
7 = tTh-2(2 arcsin (vVx)S, (z
k;m (k—=n)(%) 2 H\/i (V@) Sh(2)
n—1 1 4k X 1 n 4k §
+an<1_(2:)>$ _<22k(2k)8”k>$5

k=0 k=1 k

where the polynomials T,,—2(x) and S, (x) are as in Definitions 1 and 2, and Sy
is the (n — k)-th coefficient of Sy,

For ease of discussion, from now on we denote by ty) the coefficient of 27 in the

polynomial T;(z), as defined in Definition 2. Similarly, we denote by sy), mgi), n§i)
the coefficients of 27 in the polynomials S;(z), M;(z), N;(x), as defined in Definitions

1, 3, and 4, respectively.

Theorem 2. For any fized integers m > 1,n > 1 and for |z| < 4™, we have that

oo

gk gk

k=n+1 (k—n)? (Qq;nkk)

m22n+1,n m—1 ) n—1
= Z (arcsin (v/2))? + Z rext 4 g™

(mn) 7=0 k=1
m—1 . mn—1
arcsin (v/z)v/z(1 — z n
— 47D gn ( (\Cgm ( )| Z Sfcm )ank1(2)2k>
j=0 k=0

where z = 41/l g /™ depends on j, w = €2™/™ s the m-th root of unity, the
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polynomial Mypn—r—1(2) is as in Definition 3, and

mn—2 mk—1 _(mn mn—I—1
P = A=) tfnk—l ) +} Z Sz( )mfnk_z_l ) 4F (L 1 )
’ (k‘ — n) 2 k—n (k _ ’I’L)2 4km (ka)

=0 mk
and
q:= m247n(m71)
22mn+1 mn—2 . gmn— 1 1 m'n,—l—l ,EZZI 1-1)
’ ( 2mn + Z ( )< 2(mn— l) 5 Z 2l1p) .
( l) ( mn—l1 p=1 p D + ) ( p )
Proof. By multiplying both sides of the equation in Theorem 1 by =", integrat-

ing and then again multiplying by z", we have
i 4kl‘k
2mk
k=n+1 (k - n)Q ( mk )

mn—1

41/7n 1 " Z wj/ 1/m—n— 1T ( )d
S [ O

+ 2" / T arcsm )Smn(2) dz — 77”
7=0 (k )2(2 k)

mk

(15)

n—1

<4n(1 M)y M gk g (m )k>
= — Sman " log(x) + Cz™,
o (k= n)2(2mkk) 2 k=1 k()

where C' is a constant to be determined.

+

On the one hand, in Equation (15) we have

/xl/mfnilen—Z(Z) dr = m4(m71)(1/m7")w7j /Z—mn mn—?(z) dz

mn—2
— malm=DA/m=n)y =i § mn=2) / h—mn g
k=0
mn—2 t;gmn—Z)Zk,mnle

— m4lm=D(/m=n) 3

k=0 k—mn+1
gg*”ﬂ/mme 4k(1/m—1)tl(cmn—Q)wk.jxk/m
k—mn+1

k=0
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Then the first term of the right-hand side of (15) equals

13/ T2 gk(1/m=1)(mn=2) i m—1 .
mal/m= m m J
Z k—mn+1 jz:(:) v

n— 14k(1 m)t(m’” 2) k

m(k — n)

=m
k=1

By Lemma 2, and expanding the second term of the right-hand side of Equation (15),
o z [

m—1 —mn—1/2 :
— mzn47’n(m*1) Z / Z arcsim (\/2) Smn(z) dZ
§=0

arcsm 'mn(2) dx

V1—2z

— mxn4—n(m—1)

- mn—1 .
(mn/ —(mn—k)—lmwd (mn) 41csin?
s 2+ s\ arcsin® (v/z) | (16)
;) ( Z V1i—2z

— mx"4~ n(m 1)

S5 st - I o

— pors Zmnfk
ji= =

Nmn—k—Q(Z)

* smn—k—1 ) + S%?Ln)(arcsin (\/2))2>

Let us expand one at a time the terms of this last expression. On the one hand,
since d,, = 2“(72:) for all n € N, we have

m—1mn—1

mam 47D NN S g g (2)

J=0 k=0
mn—1
= mxn4—n(m—1) ( m)log(4) + log(x) + im(m — 1)) ( Z S[(gmn)dmn k)
k=0
0 (1 ) % A5
= mam4 (M1 m)log(4) + log(z) + im(m — 1)) - %
= 2k(%)
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On the other hand, we have

m—1mn—1

mara 3D 3 s R
j=0 k=0 z

— mn) mn—k—2

m—1
— a4 (m=1) J;) ( Z ( o Z l(mn—k—l)ZlJrkJrl))

k=0 =0
m—1 /mn—2 Zs s w )
n4—n(m— (mn mn—k—2
= ma"4 ( Y Z ( xmn Sk Nk >
j=0 \ s=0 k=0
— mxn4—n(m—1)
mn—2
. Z <4(1/m1)(s+1mn)ml/m(s+lmn)( Z w](5+1 mn ) ZS(MW) gmz k— 2)>
s=0 j=0
- "R ny(mnoh—2)
n g —n(m—1) 1/m—1 m — mn mn—k—2
= m2gmg— Z (4( /m=1)(=mp) ,.—p Z sy nm(np)k1>
n—1 mk—1
= m?24—n(m Z (4k(1 m) Z Slmn ﬁn__ll__lz))xk
k=1
n—1 m) mk—1 (mn) (mn—I1-1)
— m24—n(m—1) 4rmm S Monk—1-1 2k
2 m(k —n) '
k=1 =0

The latter equality above is justified by the relation between the coefficients of
polynomials M(z) and N(x), as shown in Definition 4.

We still need to determine the value of C' in Equation (15). By comparing
coefficients of z™ in that equation, along with the calculations done up to this
point, we have

mn 4k (mn)
0=C+mad="" D ((1 - m)log(d) + mi(m — 1)) . S —mn—k
( )

m—1

+mda™ "= Coef yn (x" Z ) arcsin® \/E))
— A= =D e "<xn — arcsin (vz)1/z(1 — 2) ) SOt (m")an ne 1(z)zk>

Zmn
=0

Sprugnoli [17] showed that arcsin® (v/2) = 3 > 5, kz (M) so we have

m—1 (mn)ym—1 oo g/ 1/m—1, j\k k/m
4% (4
Coefl.n<x"s,($l”>§ arcsin® (\/§)> =Coefn <a: S;nn E E ( kQ(;lljc)) - )
k

i=o j=0 k=1

=0.
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On the other hand, by Equation (14), we obtain

, 1o dkzk 1
arcsin (v/2) z(l—z):§Z o —52

Then

m—1 mn—1
/2(1 —
Coefzn (:L'" > arcsin( zmn ?) E 50" Myn—1—1(2)z )
=0

<.

1 (mn) 4l lt1 —k—1__(mn—k—1) _p+k
Zmn ( (Z Y Zl 1 I 2l+1)( )) Z;n:n() mp zp ) )

(41/m le) n

|
Q
o
@
=5
8
3
/—\
<
< ,_.

4L (mn—k—1)
Lmn Zmn 1 mn) (m(mnfkfl) 1 mn—k—1 mn—k—l— 1)
mn—k—1 2 =1 l(2l+1)(2l) )

(41/mfle)mn

3

= Coefzn<
J

I
<}

mn—1 1 mn—2mn—Il—1 (mn)4p
mn) _(mn—l-1) (mn—1-1)
= S ——— < m
( § : l Myn—1-1 2 § : § : 2p+1 ) 'mn*l*p*l)
The proof is then complete by Remarks 1 and 3. O

Corollary 2. For every fized integer n > 1 and for all |x| < 1, we have

ok
k=n+1 (k- n)z(k)
22n+1xn n—1
- W(arcsm (Vz))? — arcsin (vz)/z(1 — ) ( Z s,in)Mn,k,l(x)xk)
n k=0
n—1
+> TRk +qa,
k=1
where
n—2 k—1 (n n—Il—1
. t£,1)+;zs§ ST, (i_ 1 )
b k—n = 2 k—n (k —mn)2 \ 4k (Qkk) 7

22n+1 n—2 n n—l 1 n—Il—1 4P (n—i—1)
q.=\| — + - o 7
! < 53 Zsl (n (=D 2 pz p(2p+1)(2,§’)m”“p)

=1

and the polynomial M, _1_1(x) is as in Definition 3.
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5. Applications

We present here some new results concerning sums in which the generalized central
binomial coefficient appears in the denominator, using the theory developed in this
work.

Let x = :I:i. By varying the values of m,n in Theorem 1, we have

S 1 13 w3
(a),;)(k—Z)(zkk) _%7178’

< (=)F 19 VE
(b) ,;1 W = 7300 + 0 arcsinh(1/2),

S 1 A aV4: V5 _
(c)kZQW—1*8—178—1—5arcsmh(1/2),

- (=1)*
d T oAk
()2;<k—2xx>

219 V34 N = B ey
:_4900_595<<2\/\/ﬁ+1_7\/\/ﬁ—1> arcsm( 1 )

2(ﬁ—3)+\/5—2\/§+\/5+2\/§>>
1 7

+<2\/\E7— 1+7\/\E+ 1) log (

> 1 - 2(vV21-3)+V7+V3
(e)zi(k_l)(e’k) :213()7()_718\65+21()<\/42(\/ﬁ+3)10g(\/( 4)+ + )
k=2 :

—1/42(v21 - 3) arcsin(ﬁz‘/g))

Let z = i. By varying the values of m,n in Theorem 2, we have

> 1 53 7T\/§ 2
@y — L BT
s (k- 2)2(2k) 108 12 108

= 1 41 w3 7?  5vbarcsinh(1/2) 2 9
b — =4 = — = arcsinh®(1/2
( )kzzz(kfl)Q(gZ) 276 9 3 aresinh™(1/2),
©) i‘“‘: 1 406705027 | 1823v3r w2 arcsinh®(1/2)

S (k—3)2() 11093751900 237160 8316 231

B 31375 arcsinh(1/2)
640332 ’
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> 1
(d)kzﬂ e
\ﬁf\/ﬁ)

3
S IR L 2TVE LT 2 062(2) 4 2 '2<
o5 " Ta00 T 120 5 o8 (2)F parcsin

1
+ Wlo arcsin (@) 231/3(2v/21 + 3) — 271/2v/21 — 3

: lolgo(g) 23\/3(2v21-3) 21221 + 3 - 3log” (@ +V7+V3)

12105(2) | 23/3(2V21 —3) 1 27V2VAL 1 3

) 200 ) '

+log ( 2(@—3)+\ﬁ+\/§) (
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