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Abstract

We study colored versions of integer partitions and compositions in which each
part is assigned a color given by a composition or partition of the same size as
the part. We introduce several families of such objects and establish bijections
with permutations, set partitions, and multisets. As a consequence, we recover
classical sequences such as Bell numbers and factorials. In the second part, we
define the notion of admissible sets of compositions and prove a generalization of
Euler’s partition theorem in this context. These results extend recent work of Goyal
and are established through bijective arguments.

1. Introduction

A partition of a positive integer n is a nonincreasing sequence X\ = (A1, Ao, ..., \g)
of positive integers such that Zle Ai = n. For example, the partitions of 4 are
(4), (3,1), (2,2), (2,1,1), and (1,1,1,1), so that p(4) = 5, where p(n) denotes the
number of partitions of n. A composition of n is an ordered sequence of positive
integers that sum to n. For example, the compositions of 3 are (3), (2,1), (1,2), and
(1,1,1). The number of compositions of n is ¢(n) = 2"~ for n > 1, with ¢(0) = 1
(see [14, p. 18]).

Euler’s partition theorem asserts that the number of partitions of n into distinct
parts equals the number of partitions into odd parts (cf. [4]). A similar identity
holds for compositions: the number of compositions of n into odd parts equals the
number of compositions into parts greater than one [8].

DOLI: 10.5281/zenodo.18305059



INTEGERS: 26 (2026) 2

A classical variation of integer partitions allows each part of size m to appear
in up to m distinct copies. These are known as colored partitions. In this con-
text, each part of size m may occur in m different colors, denoted by m;, where
1 < i < m indicates the color. Colored partitions appeared implicitly in the work of
MacMahon [10, Chapters 11-12], and were later recognized in the study of the hard
hexagon model—specifically in Regime III—as noted by Andrews and Paule [5].
The first explicit study of colored partitions was carried out by Agarwal and An-
drews [2, 3]. For example, the colored partitions of 3 are

(Sl)a (32)7 (33)a (21711)7 (22711)7 (11711711)-
The corresponding generating function is (cf. [2, 3])

o) - 00 1

where p.(n) denotes the number of colored partitions of n. This generating function
also counts the number of plane partitions (cf. [11]).

Similarly, a colored composition of n is a composition in which each summand
of size m can appear in one of m different colors. Let c.(n) denote the number of
colored compositions of n. For instance, ¢.(3) = 8, with colored compositions:

(31), (32), (33), (21,11), (22,11), (11,21), (11,22), (11,11,11).

This notion was introduced by Agarwal [1], who showed that the number of colored
compositions of n is the Fibonacci number Fb,,.

Recently, Goyal [7] introduced the notion of split n-color partitions, where each
part is assigned a color obtained by splitting its index into at most two summands.
She showed, among other results, that the number of such partitions of an integer
into distinct parts coincides with the number of split n-color partitions in which
even parts are not allowed to be colored by a split whose summands are both odd.

In this paper, we study new variations of colored partitions and compositions in
which the colors themselves are given by integer compositions or partitions. We
consider families where parts are colored by compositions with a bounded number
of summands, by partitions into distinct or restricted parts, or more generally,
by admissible sets (defined in Section 3) specified through parity-based closure
properties. These constructions allow us to extend classical results such as Euler’s
partition theorem in rich new directions.

In the first part of the paper, we explore structural properties of these colored
partitions, including several bijections to well-known combinatorial objects. For
instance, we show that certain classes of colored partitions are in bijection with
permutations, set partitions, and multisets. In particular, we recover Bell numbers
and factorial numbers through natural encodings of coloring constraints.
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In the second part, we introduce a general framework based on admissible sets,
which unifies many earlier results, including the extension proposed by Goyal [7],
and leads to a general colored version of Euler’s theorem.

2. Colored Partitions and Compositions

2.1. Colored Partitions with Restrictions

A colored partition has different colors if no two parts are assigned the same color.
Let pdc.(n) denote the number of such colored partitions of n. For example,
pdc.(5) = 12, and the corresponding partitions are

(51)7 (52)7 (53)’ (54)7 (55)7 (42711)7 (43711)7
(44711)’ (32521)5 (33721>7 (31;22); (33722)-
The number pdc.(n) equals the number of colored compositions of n in which the

sequence of colors is strictly increasing. This set was enumerated by Bala [6], and
its generating function is

o0

l-q+q"
D pdec(n) " = ] —— =
n>0 n=1 q

The following table shows the first few values of pdc.(n):

n |1 2 3 4 5 6 7 8 9 10
pde.(n) |1 2 4 7 12 20 33 53 84 131 °

This sequence corresponds to A126348 in the OEIS [13]. We now define the size of
a colored part p; to be p. For example, the size of the part 125 is 12. Let P<,, be
the set of colored partitions in which each part has a distinct color and size at most
n. For example,

P<z ={(11), (21), (22), (31), (32), (33), (22,11), (32,11), (33,11),(22,21),
(31,22), (32,21), (33,21), (33,22), (32,31), (33,31), (33,32),(33,22,11),
(33,32, 11), (33,22,21), (33,31,22), (33,32,21), (33,32,31)}.

Theorem 1. The number of colored partitions with parts of size at most n and
different colors is (n+ 1)! — 1.

Proof. We construct a bijection between the set P<,, and the set of all permutations
of [n+ 1] ={1,2,...,n+ 1}, excluding the identity.

Given a colored partition in P<,, first order the parts so that the sequence
of colors is strictly increasing, and then add 1 to each part size. This yields a


http://oeis.org/A126348

INTEGERS: 26 (2026) 4

sequence of the form (p(1).,,0(2)pus,---,pP(k)u,), where 2 < p(i) < n+ 1 and
1 < pg < -+ < pg. Starting from the identity permutation 12---(n 4 1), we
perform a sequence of transpositions: at each step, we swap the entries in positions
p(t) and p;. Since p(i) > u;, each swap moves a larger index to an earlier position,
eventually transforming the identity into a nontrivial permutation. For example,
the colored partition (44, 32,11) becomes (21,42, 54) after increasing the part sizes.
Applying transpositions to the identity permutation 12345:

e Swap positions 2 and 1: 21345,
e Swap positions 4 and 2: 24315,
e Swap positions 5 and 4: 24351.

The resulting permutation is 24351.

Conversely, given any permutation 7 = w(1)7(2) ---w(n + 1) of [n + 1], define ¢
by 0=1(i) = m(i). Let j; < j» < --- < ji be the positions at which o differs from
the identity. Starting from 12---(n + 1), we recover the partition by reversing the
transpositions: each pair (j;,071(j;)) corresponds to the colored part (o= (j;)—1);,,
provided that o=1(j;) > j;. In our example, with 7 = 24351, we find o = 51324.
The non-fixed positions are j; = 1, jo = 2, j3 = 4, and j4 = 5. We recover:

e (2—1); =14, giving 21345,
o (4— 1)y =3, giving 24315,
o (5—1)4 =44, giving 24351,

which corresponds to the colored partition (44, 32,17). O

Example 1. For n = 2, we consider permutations of the set [3] = {1, 2, 3}, exclud-
ing the identity. There are 3! — 1 = 5 such permutations: 213, 132, 231, 312, 321.
Each corresponds uniquely to a colored partition in P<s:

Permutation Colored partition

213 11)
132 (21)
231 (22)
312 (22, 1y)
321 (22, 21)

Each part has size at most 2, and all colors are distinct. The bijection follows the
transposition rule described in the proof.
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A colored partition has fully different parts if no two parts share the same size
or the same color. For example, 35 and 2; are fully different. Let pf.(n) denote
the number of colored partitions of n with fully different parts. For instance, when
n =5, we have pf.(5) = 12, with the following partitions:

(51)7 (52)7 (53), (54)7 (55)7 (42711)7 (43711)7
(44,11), (31,22), (32,21)7 (33,21), (33,22).

Theorem 2. For alln > 1,

plem) =" > prpeo1— 1) (p1 — (k= 1)).
pit:-+pE=n
p1>->pk
Proof. Let (p1,...,px) be a partition of n into k distinct parts with p; > -+ > py.
To form a colored partition with fully different parts, we assign to each p; a color
not used for any smaller part. The smallest part p, has p, available colors. The
next part py_1 must avoid the color used by pg, so it has py_; — 1 choices. More
generally, p; has p; — (k — i) available colors. The total number of colorings is
therefore py(pr—1 — 1)+ (p1 — (k — 1)). Summing over all partitions of n into k
distinct parts yields the result. O

The following table shows the values of pf.(n) for 1 < n < 10:

n |1 2 3 4 5 6 7 8 9 10
pfe(n) [1 2 4 6 12 17 31 43 77 105 °

This sequence does not appear to be listed in the OEIS.
Let ()<, be the set of colored partitions with fully different parts and parts of
size at most n. For example,

Q§3 :{(11)7 (21)7 (22)7 (31)7 (32)7 (33)7 (22711), (32311)3 (33311)7
(31,22), (32,21), (33,21), (33,22), (33,22,11)}.

The next result gives a relation between the cardinality of J<,, and the Bell num-
bers. Let B,, denote the nth Bell number (sequence A000110 in the OEIS), which
counts the number of set partitions of [n]; see [12] for background. The first few
values are

1

1, 2, 5, 15, 52, 203, 877, 4140, ...

)

Theorem 3. The number of colored partitions into fully different parts with parts
of size at most n is equal to By41 — 1.

Proof. We construct a bijection between the set ()<,, of colored partitions with fully
different parts (of size at most n) and the set of set partitions of [n + 1], excluding
the singleton partition {[n + 1]}.
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Let A = (p(1)pys .-, p(M)p,,) € Q<n, where the sizes satisfy p(1) < --- < p(m)
and the colors puq, ..., ty, are all distinct. Process the parts from left to right. Start
by forming the first block By = {p(1), u1}. For each subsequent part p(i),,:

o If u; already appears in a block, add p(i) to that block.
o Otherwise, create a new block with p(7) and p;.

After all parts have been processed, insert the elements of [n + 1] not yet included
(in particular, n 4+ 1) into a final block. This yields a partition of [n 4 1] into at
least two blocks.

Conversely, given a set partition of [n + 1] with at least two blocks, remove the
block containing n + 1. For each remaining block:

e If the block is a singleton {p}, include the part p,,.

e If the block has more than one element, list its elements in increasing order
p1 < p2 < --- < pi and include the parts (pr)p._1» (Pk=1)px_ss ---» (P2)p1-

The result is a colored partition in Q<,. This process defines a bijection, completing
the proof. O

Example 2. The case n = 3 illustrates the bijection between colored partitions in
Q<3 and set partitions of [4] = {1,2, 3,4} with at least two blocks. The correspon-
dences are shown below:

(1) < {{1},{2,3,4}}
(21) & {{1,2},{3,4}}
(22) & {{2},{1,3,4}}
(
(
(

) 32, 11) & {{1},{2,3},{4}}
)
)
31) & {{1,3},{2,4}}
)
)
)

)
33, 11) < {{1},{3},{2,4}}
32,21) < {{1,2,3}, {4}}
33,21) < {{1,2}, {3}, {4}}
35) & {{2,3},{1,4}} 33,22) <> {{2},{3},{1,4}}
33) < {{3},{1,2,4}} 31,22) < {{1,3}, {2}, {4}}
(22,11) < {{1},{2},{3,4}} (35,22, 11) < {{1}, {2}, {3}, {4}}

(
(
(
(
(
(

2.2. Double Compositions

In 1979, Kaneiwa [9] introduced the concept of double partitions, where each part
m is assigned a partition of m as its color. Inspired by this idea, we define double
compositions as compositions in which each summand m is assigned a partition of
m. That is, each part carries a partition-valued color. For example, the double
compositions of 3 are

(11, 11, 1), (2141, 11), (22, 1), (11, 2141),
(11, 22), (314141), (32+41), (33)-
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Let d.(n) denote the number of double compositions of n. By conditioning on the
size and color of the first part, one can derive the recurrence:

n

de(n) = de(n—k)p(k), withd.(0) =1,
k=1

where p(k) is the number of integer partitions of k. The corresponding generating

o ~1
ch(n)q" = (2— H 1—1q"> .

n>0 n=1

function is

The following table shows the values of d.(n), the number of double compositions
of n:

n |1 2 3 4 5 6 7 8 9 10
de(n) [T 1 3 8 22 59 160 431 1164 3140

This sequence corresponds to A055887 in the OEIS [13]. This sequence also counts
the number of ways to partition a multiset of length n whose elements form an
initial interval of positive integers, and in which each block consists of repeated
copies of a single element (that is, a constant multiset). For example, when n = 3,
there are four such multisets {1,1,1}, {1,1,2}, {1,2,2}, {1,2,3}. Among these,
there are exactly 8 partitions into constant multisets:

{1 {1, {428 42,23 {1425, {3}),
{uLnayy s {28, {2428 ({1 {13)

Theorem 4. The number of partitions of a multiset of length n, whose elements
form an initial interval of positive integers and whose blocks are constant multisets,
is equal to d.(n).

Proof. We construct a bijection between these multiset partitions and double com-
positions of n.

Given a double composition (p(1)y,,...,p(m)s,,), where each \; is a partition
of p(i), we proceed as follows: for each i, create a block containing p(i) copies of
the integer ¢. Then subdivide this block according to A\; = A\; 1 + -+ -+ A; ;,, placing
each sub-block of size \; s into the partition as a constant multiset.

Conversely, given a multiset of length n with the stated properties, sort its blocks
by the integer they contain (and secondarily by block size, if necessary). Let p(4)
be the total number of times the integer i appears in the multiset. If there are
Ji constant blocks consisting of copies of ¢ with respective sizes A;1,...,A; j,, then
Ai = X1+ -+ A j, is a partition of p(), and the corresponding term in the double
composition is p()x,. This establishes a bijection between the two structures. [
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Example 3. The following correspondence illustrates the bijection described in the
proof above:

(32+1’ 21+ia 33, 11, 21+1) AR {{171}7 {1}a {2}7 {2}’ {3a373}7 {4}7 {5}7 {5}}'

Each part of the double composition becomes a group of identical elements, and its
coloring determines how those elements are split into constant multisets.

If we restrict our attention to colored compositions in which each partition used
as a color consists of distinct parts, we obtain the following corollary.

Corollary 1. The number of partitions of a multiset of length n, whose elements
form an initial interval of positive integers and whose blocks are distinct constant
multisets, is equal to the number of colored compositions of n with partitions into
distinct parts.

Example 4. For n = 3, there are exactly five such multiset partitions and corre-
sponding double compositions:

{{1,1,1}} & (33),
{1141, 1}} & B211),
{113, {2}} & (22, 1),
{{1},{2,2}} & (11, 22),
{1342} 8} < (11, 1y, 1),
In each case, the blocks of the multiset partition are distinct constant multisets,

and each summand in the colored composition is assigned a partition into distinct
parts.

2.3. Colored Partitions with Compositions

A partition colored with compositions is a partition in which each part of size m is
assigned a composition of m as its color. For example, the following are partitions
of 4 colored with compositions:

(11,10, 11), (2141, 10), (22,10),  (33), (314141), (3241),  (B1y2)-

Let p..(n) denote the number of such coloured partitions of n. This sequence
satisfies the following properties, which are list in A034691 in the OEIS [13] and
can be proved by classical methods. The generating function is given by

1
> pec(n)g™ = HW=1+q+3q2+7q3+18q4+42q5+---.
n>0 n>1


http://oeis.org/A034691
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Moreover, p..(n) satisfies the recurrence

1 n
Pec(n) = ” Z d-2d-1 “Pec(n —m) |, with p..(0) = 1.
d|m

m=1

An explicit formula for p..(n) is given by

= I (),

s1+2so+--+ns,=ni=1 v

where s1, So, ... s, are nonnegative integers.

3. Variations of Euler’s Partition Theorem for Admissible Compositions

In 2019, Goyal [7] proposed a generalization of Euler’s partition theorem involving
colored partitions in which the available colors for each part are compositions with
at most two summands and total size at most n. In this section, we show how such
generalizations fit into a broader unified framework.

We begin by introducing a structural condition on sets of compositions that
guarantees the existence of Euler-type identities. A subset S of the set of all com-
positions is said to be even-admissible if, for every composition ¢; + -+ + ¢ in S,
the composition 2¢; + - - - + 2¢; is also in S. Furthermore, if all ¢; are even, then the
composition ¢; /24 - -+ ¢x /2 must also lie in S. Likewise, S is called odd-admissible
if, for every composition ¢, +- - -+¢ in S, the composition (2¢; —1)+- - -+ (2¢,—1) is
in S. Additionally, if all ¢; are odd, then the composition (¢; +1)/2+- -+ (c+1)/2
must also belong to S. We say that S is admissible if it is both even-admissible and
odd-admissible.

Our goal is to show that Euler-type results hold whenever parts in a partition are
colored using compositions drawn from an even-admissible or odd-admissible set S.
In particular, Goyal’s original construction corresponds to a specific admissible set,
and thus becomes a special case of our more general theory.

Given such a set S and a nonnegative integer n, we define:

Sp={0 €S :|o] =n}, S<pn={0c€S:|o] <n}.

In this notation,

S={]J % = S<n-

n>0 n>0

Theorem 5 (Generalized Euler’s Partition Theorem). Let S be an even-admissible
set of compositions, and let ps(n) denote the number of partitions of n in which
each part of size k is colored by an element of Sy, (resp. S<i). Then the number of
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such partitions into distinct parts equals the number of such partitions in which no
even part is assigned a color corresponding to a composition consisting entirely of
even integers.

Proof. We define a bijection between the set of partitions of n into distinct parts
(colored using S) and the set of partitions of n in which even parts are not assigned
colors that are fully even.

Starting with a colored partition into distinct parts, we scan the parts from left
to right. Whenever we encounter an even part p with a color of the form pg, +...1¢,,
where all ¢; are even, we replace it with two identical parts:

%) (5)
p +(£ :
2/ 0 /24 A /2 \2) 01 )24l /2

This operation preserves the total sum and creates a valid colored partition of n
in which that particular even part no longer carries an all-even composition. We
repeat this operation recursively until no even part in the partition is colored with
an all-even composition.

Conversely, given a colored partition of n in which no even part has an all-even
color, we again scan from left to right. Whenever we find two identical parts of
the form pg, ...+, + Po,+--+e,,, We merge them into a single part (2p)ae, +...42¢,, -
Since S is even-admissible, the resulting color remains in S. Repeating this process
in reverse constructs a colored partition into distinct parts. Thus, the two sets of
partitions are in bijection. O

Observe that the structure of this bijection closely mirrors the classical proof of
Euler’s partition theorem, where parts are doubled or halved depending on their
parity.

Corollary 2. Let S be an odd-admissible set of compositions. Then the number of
partitions of n into distinct parts, where each part of size k is colored by elements
of Sk (resp. S<i), is equal to the number of such partitions in which no even part
is colored by a composition consisting entirely of odd summands.

Note that if S is taken to be the set of integer partitions, then S is admissible.
Thus, both the theorem and the corollary apply when parts are colored by partitions
instead of compositions. Similarly, if S is empty, we recover the FEuler’s partition
theorem.

3.1. Some Applications

A colored partition with restricted £-compositions of n is a colored partition of n in
which each part m is assigned a composition of m with at most £ summands. The
compositions with at most ¢ summands are called ¢-restricted compositions. Let
c<¢(n) denote the number of ¢-restricted compositions of n.
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Remark 1. The sequence c<;(n) can be obtained by summing over the possible
number of summands in traditional compositions. Therefore,

‘
n—1
) =3 (17 )):
7j=1
Moreover, the number of compositions of integers up to n and at most ¢ summands

zn:ze:(y—l)

k=1j=1

is

Although this expression is straightforward to derive, we seek a simplified form in
certain cases. Let us first consider a concrete example. The number of compositions
of integers less than or equal to n, each having at most two parts, is

2eaw=33(7) - (17)

k=1 k=1j=1

Indeed, consider placing two dividers (marks) among the n+1 gaps between the 1’s
in the string 1™. For example, when n = 4, there are n + 1 = 5 positions in which
to place two dividers (including positions at the ends). Each placement determines
a composition of k£ < n into at most two parts. For instance, placing dividers as
follows:

X1O01X 1010

corresponds to the composition (2), while
O1X101KXK 10

corresponds to the composition (1,2). The number of ways to place two dividers in
n + 1 positions is (";‘1)
We can generalize the previous argument and obtain the following identities:

1. If £ is even, say £ = 2m with m > 1, then
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For the family of colored partitions with restricted ¢-compositions, Euler’s par-
tition theorem remains valid. In fact, all of these results are special cases of Theo-
rem 5. Moreover, the approach based on restricted ¢-compositions provides a more
general framework than the one introduced by Goyal [7], which originally inspired
the formulation of this result.

Corollary 3. The number of partitions with distinct parts, in which each part
of size k is colored by a restricted £-composition of k, equals the number of such
partitions in which no even part is colored by a restricted {-composition consisting
entirely of even summands.

Proof. This result follows from the fact that the family of restricted ¢-compositions
is admissible. O

A colored partition has different sizes if no two parts share the same size. Let
pdn.(n) denote the number of colored partitions of n with different sizes. For
example, pdn.(5) = 15, and the corresponding partitions are:

(51)7 (52)5 (53)7 (54)7 (55)’ (41711>7 (42’11)7 (43711)7 (44711)7
(31,21),  (31,22), (32,21), (32,22), (33,21), (33,22)

This sequence appears as A022629 in the OEIS [13]. Since each part of size n may
be colored in n distinct ways, the generating function is given by

Zpdnc(n) q" = H (1+nq").
n=0 n=1

A colored partition has different parts if any two parts differ either in size or in
color. For instance, 2, and 25 are considered different parts. Let pd.(n) denote the
number of colored partitions of n with different parts. For example, pd.(5) = 16,
with the following partitions:

(51)7 (52)’ (53)7 (54)7 (55)’ (41711)7 (42’11)’ (43711)7 (44711)7
(31,21), (31,22), (32,21), (32,22), (33,21), (33,22), (22,21,14).

Corollary 4. The number of colored partitions of n with different parts is equal to
the number of colored partitions of n in which even parts are not colored with even
(resp. odd) colors.

Proof. This result follows from the fact that the set of positive integers is an ad-
missible set, and in this case the colors in a colored partition are identified with the
positive integers themselves. O

Remark 2. It remains an open question whether one can obtain proofs of Theo-
rems 1 and 3 by means of generating functions.
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