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Abstract

Let K be a number field and O be the ring of integers of K. In this article, we study
the solutions of the generalized fruit Diophantine equation az® —y?—22+xyz—c = 0
over K, where d > 3 is an integer and a,c € Ok \ {0}. Subsequently, we provide
explicit values of square-free integers t such that the equation az®—y?—224+zyz—c =
0 has no solution (zg, Yo, 20) € O%(\/z) with 2|xg, and demonstrate that the set of
all such square-free integers ¢ with ¢t > 2 has density exactly %. As an application,
we construct infinitely many elliptic curves E defined over number fields K having
no integral point (zg,yo) € O% with 2|zg.

1. Introduction

Diophantine equations are among the most active and fascinating areas in number
theory. In [18], Wiles proved the famous Fermat’s Last Theorem using modularity
and established that the Diophantine equation " +4™ = 2™ has no non-zero integer
solutions for integers n > 3. Subsequently, significant progress has been achieved in
the examination of the generalized Fermat equation Az? + By? = Cz" over number
fields (see [1], [2], [3], [4], [5], [6], [11], [13], [14] for more details).

In [8], Luca and Togbhé first studied the integer solutions of the Diophantine
equation 2% + by + 1 — xyz = 0 with a fixed integer b. Later in [16], Togbé studied
the integer solutions of the Diophantine equation 23 + by + 4 — xyz = 0. In [9],
Majumdar and Sury proved that the Diophantine equation z® —y? — 22 4+2yz—5 = 0
has no integer solutions and named this equation the fruit Diophantine equation.
As an application, in [9] Majumdar and Sury constructed infinitely many elliptic
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curves with no integral points. In [17], Vaishya and Sharma extended the work of [9]
to the Diophantine equation az® — y? — 2% + zyz — b = 0 for integers a,b with a = 1
(mod 12) and b = 8a—3, and constructed infinitely many elliptic curves with torsion-
free Mordell-Weil group over Q. In [12], Prakash and Chakraborty generalized the
work of [17] to the generalized fruit Diophantine equation az? —y?— 22 +xyz—b =0
for integers a,b with @ = 1 (mod 12) and b = 2%a — 3, where d is an odd integer
divisible by 3, and constructed infinitely many hyperelliptic curves with torsion-free
Mordell-Weil group over Q.

In this article, we study the solutions of the generalized fruit Diophantine equa-
tion ax® — y? — 22 + xyz — ¢ = 0 over number fields K, where d > 3 is an integer
and a,c € Ok \ {0}.

In Theorem 1, we show that for any a,b € O \ {0} and ¢ = 29 — 3" with
integers r > 2 and d > 3 odd, the generalized fruit Diophantine equation az? —y? —
2% + zyz — ¢ = 0 has no solution (xg, o, 20) € O% with 2|zg. As an application
of this result, for almost all algebraic integers a € O, we construct elliptic curves
E, defined over K such that F, has no integral point (zg,yo) € O% with 2|zq (see
Theorem 4). This generalizes the work of [17] where they constructed elliptic curves
E,, defined over Q for integers m such that E,, has no point (zo,yq) € Z2.

In Corollary 1, we provide explicit values of square-free integers ¢ such that the
hypothesis of Theorem 1 holds over K = Q(+/t). Finally, in Theorem 2, we show
that the set of square-free integers ¢ > 2 such that the hypothesis of Theorem 1
holds over K = Q(v/t) has density exactly .

The structure of this article is as follows. In Section 2, we state the main results
of the article, namely, Theorems 1 and 2. In Section 3, we prove Theorems 1 and 2.
In Section 4, we state and prove Theorem 4.

2. Main Results for the Generalized Fruit Diophantine Equation over K

Throughout this article, K denotes a number field and Ok denotes the ring of
integers of K. Let Pk denote the set of all prime ideals of Ok . In this section, we
study the solutions of the generalized fruit Diophantine equation, namely

ar —y* =22 tayz—c=0 (1)

over K, where d > 3 is an integer and a,c € Ok \ {0}. Let Tk = {P € Px :
e(P|2) = 1 = £(P|2)}, where e(P|2) and £(P|2) denote the ramification index and
the inertia degree of the prime 8 lying above 2, respectively.

2.1. Main Results

Theorem 1. Let K be a number field with T # 0. Let a,b € Ok \ {0} and
c = 29p — 3" with integers r > 2 and d > 3 odd. Then the Diophantine equation
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az? —y? — 22 + xyz — ¢ = 0 has no solution (zo, Yo, 20) € O3 with 2|z.

Remark 1. Note that, if 2 splits completely in the field K, then Tk # 0. Hence,
the conclusion of Theorem 1 holds over all the number fields K in which 2 splits
completely.

The following corollary gives explicit values of square-free integers d such that
the hypothesis of Theorem 1 holds over the quadratic field K = (@(\/&)

Corollary 1. Lett be a square-free integer and let K = Q(\/t). Then the hypothesis
of Theorem 1 holds over K if and only if t =1 (mod 8).

Proof. Note that, 2 splits completely in K = Q(+/%) if and only if t = 1 (mod 8) (see
[10, Theorem 25]). By the definition of Tk, we conclude that 2 splits completely in
K = Q(V/1) if and only if Tk # (). Hence, the proof of the corollary follows from
Theorem 1 and Remark 1. O

Next, we will calculate the density of the set of all square-free integers t > 2 such
that the hypothesis of Theorem 1 holds over K = Q(v/t). Let

NS .= {t € Z>y : t is a square-free integer}.
We shall now define the relative density of any subset S C Nsf,
Definition 1. For any subset S C N5, the relative density of S is defined by

. #{deS:d< X}
5rel(S) = Xlgnoc #{dENSf:dSX}v

if the above limit exists.

The following theorem computes the density of the set of all square-free integers
t > 2 such that the hypothesis of Theorem 1 holds over K = Q(v/%).

Theorem 2. Let U :={t € N¥:¢t =1 (mod 8)}. Then 6,(U) = 5. In particular,
if t € U, then the hypothesis of Theorem 1 holds over K = Q(v/1).

Combining Corollary 1 and Theorem 2, we conclude that the set of square-free
integers ¢ > 2 such that the hypothesis of Theorem 1 holds over K = Q(+/t) has
density exactly %.

3. Proofs of Theorem 1 and Theorem 2

3.1. Proof of Theorem 1

To prove this theorem, we need the following lemma. Recall that Pg is the set of
all prime ideals of Og and Tx = {f € Pk : e(PB|2) =1 = £(P|2)}.
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Lemma 1. Let K be a number field. For any prime ideal ¥ € Tk, we have
Ok /P ~7Z/2"Z for all integers n > 1.

Proof. Let B € Tx. By the definition of Tk, we have e(P|2) = 1 = £(P|2). Since
f(PB[2) = 1, we have O /B ~ Z/27Z. Since Ok /B ~ P /P ! for all r > 1, it
follows that |Ox /B = 2 = [P /B 1| for all » > 1, and hence |Ox /B"| = 2".
Since e(P[2) = 1, we get vy(2""') = n — 1 and therefore 2"~! ¢ P". Hence, 27!
is a non-zero element of the quotient ring Ok /PB™. Since any ring of order 2" in
which 2771 #£ 0 is isomorphic to Z/2"Z, we conclude that O /B" ~ Z/2"Z. O

Proof of Theorem 1. We will prove this theorem by contradiction. Suppose («a, 3,7) €
O3 is a solution of Equation (1) with 2|a. Then o = 2ay, for some a3 € Ok. So,
we have a(2a;)? — 2 —~% +2a; 7 — ¢ = 0, which reduces to the following equation:

B2 — 2018y + 72 = a(2a1)d —c.

This gives (8 — a17)? — (2 — 1)7% = 2%a1% —c. Take Y = B — ayy and Z = .
Then Y, Z € Ok, and we have

Y2 - (a2 -1)2% = 2% % —c. (2)

By assumption Tk # () and choose B € Tx. By Lemma 1, we have O /B ~ Z/27Z
and O /"B? ~ Z/47. We now consider two cases.

Case 1: PBlaj. This gives oy = 0 (mod ), and hence of = 0 (mod P?). Since
c = 2% —3" with d > 2 is an integer, Equation (2) reduces to the following equation:

Y24+ 22=3" (mod P?). (3)

Since Ok /B ~ Z/2Z and Y € Ok, we have either Y = 0 (mod PB) or ¥ =1
(mod ). Similarly for Z, we have either Z = 0 (mod B) or Z =1 (mod P). If
Y =0 (mod B), then Y2 = 0 (mod P?). If Y =1 (mod P), then (Y — 1)? =
(mod PB?). Since Ok /PB? ~ Z/AZ, we get Y = 1 or 3 (mod PB?). So (Y — 1) =
Y? — 1 (mod ?). Since (Y —1)2 = 0 (mod PB?), we get Y2 = 1 (mod B?). In
both cases, we have either Y2 = 0 (mod ?) or Y2 = 1 (mod B?). Similarly, we
have either Z2 =0 (mod $?) or Z? =1 (mod P?).

Hence, Y2+ Z2 = 0 or 1 or 2 (mod *B?). Since r is odd and O /P? ~ Z/4Z,
we have 3" = 3 (mod P?). By Equation (3), we get Y2 + Z% = 3 (mod B?), which
is not possible.

Case 2: P 1 ;. Since Ok /P ~ Z/27Z, we have a; =1 (mod ). Using the same
argument as in the previous case, we get a2 =1 (mod 2). Since ¢ = 29b — 3" and
d > 2 is an integer, Equation (2) reduces to the following equation:

Y2=3" (mod P?). (4)
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Since 7 is odd and O /PB? ~ Z/4Z, we get 3" = 3 (mod PB?), and hence Y? = 3
(mod B?). This is not possible since Y2 = 0 or 1 (mod B?). This completes the
proof of the theorem. O

3.2. Proof of Theorem 2

Recall that N*f = {¢ € Z>o : t is a square-free integer}. Before proving this theorem,
we first recall the absolute density of any subset S C N (see [2, Section 7]).

Definition 2. For any subset S C N and a positive real number X, let S(X) :=
{d € S:d < X}. Then the absolute density of S is defined by
X
5abs(S) = lim #‘Sj}g )7

X —o0

if the above limit exists.
The following theorem is useful in the proof of Theorem 2 (see [2, Theorem 10]).

Theorem 3 ([2]). Forr € Z and N € N, let Ni{N ={teN“:t=r (mod N)}. If
— : ~ sf ~ P(N) 6

s:=ged(r, N) is square-free, then #NT.W(X) AN Ty (-5 x —z X, where ¢

denotes Fuler’s totient function and q varies over all the rational primes dividing N .

We are now ready to prove Theorem 2.

Proof of Theorem 2. Since N*¥ = N§f, | by Theorem 3, we have #N(X) ~ 5X.
By Definition 2, we have Guns(N*) = & (see [7, page 635] for more details). Using
Definitions 1 and 2, we conclude that for any subset S C N*f, the absolute density
0abs(9) exists if and only if the relative density d,¢1(5) exists. In particular, we have

, 6
5abs(S) = 5abs(N§f) X 5rel(S) = ﬁérel(s) (5)
By Theorem 3, we have #Nj'g(X) ~ 2 X. Using Definition 2, we get dps(Ni'g) =
<. Finally, by Equation (5), we have d.¢1(Nj'g) = %2 x J3 = ¢. This completes the
proof of the theorem. O

4. Applications

In this section, we will give several applications of the first main result of this article,
i.e., Theorem 1. For the first application, we construct infinitely many elliptic curves
E defined over K such that E has no integral point (xg,y0) € O% with 2|z.
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Theorem 4. Let K be a number field with Ty # () and let o € Ok be an element
not satisfying the polynomial x® 4+ 526 — 432x* — 432022 — 10800. Let E,/K be the
elliptic curve defined over K given by the Weierstrass equation

Eo:y? —avy = 2% — (o® 4+ 5). (6)
Then E,/K has no integral point (zo,yo) € O% with 2|zo.

Proof. Since the discriminant Ag, of E, is o® + 5a8 — 432a* — 432002 — 10800
and « is not a root of the polynomial 28 4+ 525 — 4322* — 432022 — 10800, we get
Ap, # 0. Hence, E, is an elliptic curve defined over K. Now, we will prove this
theorem by contradiction.

Suppose E, /K has an integral point (z1,y;) € O% with 2|z;. This gives

Y — axyr = 2} — (a® +5).

Hence, 23 — y# — a® + ax1y; — 5 = 0. Therefore, (x1,y1,a) € O3 is an integral
solution of Equation (1) with @ = b = 1, r = 1 and d = 3. This contradicts
Theorem 1 since 2|z and Tk # 0. Hence, the proof of the theorem follows. O

Remark 2. Since the polynomial 2% + 52° — 4322% — 432022 — 10800 has at most
8 solutions in K, the construction of elliptic curves E, in Equation (6) holds for
almost all & € Og. Note that in [17], Vaishya and Sharma constructed elliptic
curves E,,/Q for integers m such that E,, has no point (x¢,yo) € Z2, while in
Theorem 4 we construct elliptic curves E,, for almost all & € Ok such that E,/K
has no integral point (zg,y0) € O% with 2|x.

To give the next application of Theorem 1, we first recall the following result (see
[15, Chapter VIII, Theorem 7.1(a)]).

Theorem 5 ([15]). Let K be a number field and let E/K be an elliptic curve given
by the Weierstrass equation

E:y® 4+ a1zy + asy = 2% + axz® + asx + ag,

where a; € Ok for alli. If P = (z,y) € E(K) is a torsion point of order m > 2
which is not a prime power, then x,y € Ok.

As a combination of Theorems 4 and 5, we construct infinitely many elliptic
curves F defined over K having no torsion point P € E(K) of order m > 2 which
is not a prime power.

Corollary 2. Let o, E, be as in Theorem 4. Then for each «, the elliptic curve E,
has no non-trivial torsion point P = (xg,y0) € E4(K) which is not a prime power
order such that 2|xg and zg € O.
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We now recall the Nagell-Lutz theorem (see [15, Chapter VIII, Corollary 7.2(a)])).

Theorem 6 ([15]). Let E/Q be an elliptic curve defined over Q given by the Weier-
strass equation
E:y? =123+ Az + B,

where A, B € Z. If P = (z,y) € E(Q) is a torsion point of order m > 2, then
x,y € Z.

As a combination of Theorems 4 and 6, we construct infinitely many elliptic
curves E defined over Q having no torsion point P € F(Q) of order m > 2.

Corollary 3. Let K = Q and let o, E, be as in Theorem 4. Then for each «,
the elliptic curve E,, has no non-trivial torsion point P = (xo,y0) € E4(Q) with
2|Num(zg), where Num(xg) denotes the numerator of the fraction xq in lowest form.
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