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Abstract

LetK be a number field andOK be the ring of integers ofK. In this article, we study
the solutions of the generalized fruit Diophantine equation axd−y2−z2+xyz−c = 0
over K, where d ≥ 3 is an integer and a, c ∈ OK \ {0}. Subsequently, we provide
explicit values of square-free integers t such that the equation axd−y2−z2+xyz−c =
0 has no solution (x0, y0, z0) ∈ O3

Q(
√
t)

with 2|x0, and demonstrate that the set of

all such square-free integers t with t ≥ 2 has density exactly 1
6 . As an application,

we construct infinitely many elliptic curves E defined over number fields K having
no integral point (x0, y0) ∈ O2

K with 2|x0.

1. Introduction

Diophantine equations are among the most active and fascinating areas in number

theory. In [18], Wiles proved the famous Fermat’s Last Theorem using modularity

and established that the Diophantine equation xn+yn = zn has no non-zero integer

solutions for integers n ≥ 3. Subsequently, significant progress has been achieved in

the examination of the generalized Fermat equation Axp+Byq = Czr over number

fields (see [1], [2], [3], [4], [5], [6], [11], [13], [14] for more details).

In [8], Luca and Togbé first studied the integer solutions of the Diophantine

equation x3 + by + 1− xyz = 0 with a fixed integer b. Later in [16], Togbé studied

the integer solutions of the Diophantine equation x3 + by + 4 − xyz = 0. In [9],

Majumdar and Sury proved that the Diophantine equation x3−y2−z2+xyz−5 = 0

has no integer solutions and named this equation the fruit Diophantine equation.

As an application, in [9] Majumdar and Sury constructed infinitely many elliptic

DOI: 10.5281/zenodo.18305078



INTEGERS: 26 (2026) 2

curves with no integral points. In [17], Vaishya and Sharma extended the work of [9]

to the Diophantine equation ax3− y2− z2+xyz− b = 0 for integers a, b with a ≡ 1

(mod 12) and b = 8a−3, and constructed infinitely many elliptic curves with torsion-

free Mordell–Weil group over Q. In [12], Prakash and Chakraborty generalized the

work of [17] to the generalized fruit Diophantine equation axd−y2−z2+xyz−b = 0

for integers a, b with a ≡ 1 (mod 12) and b = 2da − 3, where d is an odd integer

divisible by 3, and constructed infinitely many hyperelliptic curves with torsion-free

Mordell–Weil group over Q.

In this article, we study the solutions of the generalized fruit Diophantine equa-

tion axd − y2 − z2 + xyz − c = 0 over number fields K, where d ≥ 3 is an integer

and a, c ∈ OK \ {0}.
In Theorem 1, we show that for any a, b ∈ OK \ {0} and c = 2db − 3r with

integers r ≥ 2 and d ≥ 3 odd, the generalized fruit Diophantine equation axd−y2−
z2 + xyz − c = 0 has no solution (x0, y0, z0) ∈ O3

K with 2|x0. As an application

of this result, for almost all algebraic integers α ∈ OK , we construct elliptic curves

Eα defined over K such that Eα has no integral point (x0, y0) ∈ O2
K with 2|x0 (see

Theorem 4). This generalizes the work of [17] where they constructed elliptic curves

Em defined over Q for integers m such that Em has no point (x0, y0) ∈ Z2.

In Corollary 1, we provide explicit values of square-free integers t such that the

hypothesis of Theorem 1 holds over K = Q(
√
t). Finally, in Theorem 2, we show

that the set of square-free integers t ≥ 2 such that the hypothesis of Theorem 1

holds over K = Q(
√
t) has density exactly 1

6 .

The structure of this article is as follows. In Section 2, we state the main results

of the article, namely, Theorems 1 and 2. In Section 3, we prove Theorems 1 and 2.

In Section 4, we state and prove Theorem 4.

2. Main Results for the Generalized Fruit Diophantine Equation over K

Throughout this article, K denotes a number field and OK denotes the ring of

integers of K. Let PK denote the set of all prime ideals of OK . In this section, we

study the solutions of the generalized fruit Diophantine equation, namely

axd − y2 − z2 + xyz − c = 0 (1)

over K, where d ≥ 3 is an integer and a, c ∈ OK \ {0}. Let TK := {P ∈ PK :

e(P|2) = 1 = f(P|2)}, where e(P|2) and f(P|2) denote the ramification index and

the inertia degree of the prime P lying above 2, respectively.

2.1. Main Results

Theorem 1. Let K be a number field with TK ̸= ∅. Let a, b ∈ OK \ {0} and

c = 2db − 3r with integers r ≥ 2 and d ≥ 3 odd. Then the Diophantine equation
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axd − y2 − z2 + xyz − c = 0 has no solution (x0, y0, z0) ∈ O3
K with 2|x0.

Remark 1. Note that, if 2 splits completely in the field K, then TK ̸= ∅. Hence,

the conclusion of Theorem 1 holds over all the number fields K in which 2 splits

completely.

The following corollary gives explicit values of square-free integers d such that

the hypothesis of Theorem 1 holds over the quadratic field K = Q(
√
d).

Corollary 1. Let t be a square-free integer and let K = Q(
√
t). Then the hypothesis

of Theorem 1 holds over K if and only if t ≡ 1 (mod 8).

Proof. Note that, 2 splits completely inK = Q(
√
t) if and only if t ≡ 1 (mod 8) (see

[10, Theorem 25]). By the definition of TK , we conclude that 2 splits completely in

K = Q(
√
t) if and only if TK ̸= ∅. Hence, the proof of the corollary follows from

Theorem 1 and Remark 1.

Next, we will calculate the density of the set of all square-free integers t ≥ 2 such

that the hypothesis of Theorem 1 holds over K = Q(
√
t). Let

Nsf := {t ∈ Z≥2 : t is a square-free integer}.

We shall now define the relative density of any subset S ⊆ Nsf.

Definition 1. For any subset S ⊆ Nsf, the relative density of S is defined by

δrel(S) := lim
X→∞

#{d ∈ S : d ≤ X}
#{d ∈ Nsf : d ≤ X}

,

if the above limit exists.

The following theorem computes the density of the set of all square-free integers

t ≥ 2 such that the hypothesis of Theorem 1 holds over K = Q(
√
t).

Theorem 2. Let U := {t ∈ Nsf : t ≡ 1 (mod 8)}. Then δrel(U) = 1
6 . In particular,

if t ∈ U , then the hypothesis of Theorem 1 holds over K = Q(
√
t).

Combining Corollary 1 and Theorem 2, we conclude that the set of square-free

integers t ≥ 2 such that the hypothesis of Theorem 1 holds over K = Q(
√
t) has

density exactly 1
6 .

3. Proofs of Theorem 1 and Theorem 2

3.1. Proof of Theorem 1

To prove this theorem, we need the following lemma. Recall that PK is the set of

all prime ideals of OK and TK = {P ∈ PK : e(P|2) = 1 = f(P|2)}.
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Lemma 1. Let K be a number field. For any prime ideal P ∈ TK , we have

OK/Pn ≃ Z/2nZ for all integers n ≥ 1.

Proof. Let P ∈ TK . By the definition of TK , we have e(P|2) = 1 = f(P|2). Since

f(P|2) = 1, we have OK/P ≃ Z/2Z. Since OK/P ≃ Pr/Pr+1 for all r ≥ 1, it

follows that |OK/P| = 2 = |Pr/Pr+1| for all r ≥ 1, and hence |OK/Pn| = 2n.

Since e(P|2) = 1, we get vP(2n−1) = n− 1 and therefore 2n−1 /∈ Pn. Hence, 2n−1

is a non-zero element of the quotient ring OK/Pn. Since any ring of order 2n in

which 2n−1 ̸= 0 is isomorphic to Z/2nZ, we conclude that OK/Pn ≃ Z/2nZ.

Proof of Theorem 1. We will prove this theorem by contradiction. Suppose (α, β, γ) ∈
O3

K is a solution of Equation (1) with 2|α. Then α = 2α1, for some α1 ∈ OK . So,

we have a(2α1)
d−β2−γ2+2α1βγ−c = 0, which reduces to the following equation:

β2 − 2α1βγ + γ2 = a(2α1)
d − c.

This gives (β − α1γ)
2 − (α1

2 − 1)γ2 = 2dα1
da− c. Take Y = β − α1γ and Z = γ.

Then Y,Z ∈ OK , and we have

Y 2 − (α1
2 − 1)Z2 = 2dα1

da− c. (2)

By assumption TK ̸= ∅ and choose P ∈ TK . By Lemma 1, we have OK/P ≃ Z/2Z
and OK/P2 ≃ Z/4Z. We now consider two cases.

Case 1: P|α1. This gives α1 ≡ 0 (mod P), and hence α2
1 ≡ 0 (mod P2). Since

c = 2db−3r with d ≥ 2 is an integer, Equation (2) reduces to the following equation:

Y 2 + Z2 ≡ 3r (mod P2). (3)

Since OK/P ≃ Z/2Z and Y ∈ OK , we have either Y ≡ 0 (mod P) or Y ≡ 1

(mod P). Similarly for Z, we have either Z ≡ 0 (mod P) or Z ≡ 1 (mod P). If

Y ≡ 0 (mod P), then Y 2 ≡ 0 (mod P2). If Y ≡ 1 (mod P), then (Y − 1)2 ≡ 0

(mod P2). Since OK/P2 ≃ Z/4Z, we get Y ≡ 1 or 3 (mod P2). So (Y − 1)2 ≡
Y 2 − 1 (mod P2). Since (Y − 1)2 ≡ 0 (mod P2), we get Y 2 ≡ 1 (mod P2). In

both cases, we have either Y 2 ≡ 0 (mod P2) or Y 2 ≡ 1 (mod P2). Similarly, we

have either Z2 ≡ 0 (mod P2) or Z2 ≡ 1 (mod P2).

Hence, Y 2 + Z2 ≡ 0 or 1 or 2 (mod P2). Since r is odd and OK/P2 ≃ Z/4Z,
we have 3r ≡ 3 (mod P2). By Equation (3), we get Y 2 +Z2 ≡ 3 (mod P2), which

is not possible.

Case 2: P ∤ α1. Since OK/P ≃ Z/2Z, we have α1 ≡ 1 (mod P). Using the same

argument as in the previous case, we get α2
1 ≡ 1 (mod P2). Since c = 2db− 3r and

d ≥ 2 is an integer, Equation (2) reduces to the following equation:

Y 2 ≡ 3r (mod P2). (4)
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Since r is odd and OK/P2 ≃ Z/4Z, we get 3r ≡ 3 (mod P2), and hence Y 2 ≡ 3

(mod P2). This is not possible since Y 2 ≡ 0 or 1 (mod P2). This completes the

proof of the theorem.

3.2. Proof of Theorem 2

Recall that Nsf = {t ∈ Z≥2 : t is a square-free integer}. Before proving this theorem,

we first recall the absolute density of any subset S ⊆ N (see [2, Section 7]).

Definition 2. For any subset S ⊆ N and a positive real number X, let S(X) :=

{d ∈ S : d ≤ X}. Then the absolute density of S is defined by

δabs(S) := lim
X→∞

#S(X)

X
,

if the above limit exists.

The following theorem is useful in the proof of Theorem 2 (see [2, Theorem 10]).

Theorem 3 ([2]). For r ∈ Z and N ∈ N, let Nsf
r,N := {t ∈ Nsf : t ≡ r (mod N)}. If

s := gcd(r,N) is square-free, then #Nsf
r,N (X) ∼ φ(N)

sφ(N
s )N

∏
q|N (1− 1

q2
)
× 6

π2X, where φ

denotes Euler’s totient function and q varies over all the rational primes dividing N .

We are now ready to prove Theorem 2.

Proof of Theorem 2. Since Nsf = Nsf
0,1, by Theorem 3, we have #Nsf(X) ∼ 6

π2X.

By Definition 2, we have δabs(Nsf) = 6
π2 (see [7, page 635] for more details). Using

Definitions 1 and 2, we conclude that for any subset S ⊆ Nsf, the absolute density

δabs(S) exists if and only if the relative density δrel(S) exists. In particular, we have

δabs(S) = δabs(Nsf)× δrel(S) =
6

π2
δrel(S). (5)

By Theorem 3, we have #Nsf
1,8(X) ∼ 1

π2X. Using Definition 2, we get δabs(Nsf
1,8) =

1
π2 . Finally, by Equation (5), we have δrel(Nsf

1,8) =
π2

6 × 1
π2 = 1

6 . This completes the

proof of the theorem.

4. Applications

In this section, we will give several applications of the first main result of this article,

i.e., Theorem 1. For the first application, we construct infinitely many elliptic curves

E defined over K such that E has no integral point (x0, y0) ∈ O2
K with 2|x0.
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Theorem 4. Let K be a number field with TK ̸= ∅ and let α ∈ OK be an element

not satisfying the polynomial x8 + 5x6 − 432x4 − 4320x2 − 10800. Let Eα/K be the

elliptic curve defined over K given by the Weierstrass equation

Eα : y2 − αxy = x3 − (α2 + 5). (6)

Then Eα/K has no integral point (x0, y0) ∈ O2
K with 2|x0.

Proof. Since the discriminant ∆Eα
of Eα is α8 + 5α6 − 432α4 − 4320α2 − 10800

and α is not a root of the polynomial x8 + 5x6 − 432x4 − 4320x2 − 10800, we get

∆Eα
̸= 0. Hence, Eα is an elliptic curve defined over K. Now, we will prove this

theorem by contradiction.

Suppose Eα/K has an integral point (x1, y1) ∈ O2
K with 2|x1. This gives

y21 − αx1y1 = x3
1 − (α2 + 5).

Hence, x3
1 − y21 − α2 + αx1y1 − 5 = 0. Therefore, (x1, y1, α) ∈ O3

K is an integral

solution of Equation (1) with a = b = 1, r = 1 and d = 3. This contradicts

Theorem 1 since 2|x1 and TK ̸= ∅. Hence, the proof of the theorem follows.

Remark 2. Since the polynomial x8 + 5x6 − 432x4 − 4320x2 − 10800 has at most

8 solutions in K, the construction of elliptic curves Eα in Equation (6) holds for

almost all α ∈ OK . Note that in [17], Vaishya and Sharma constructed elliptic

curves Em/Q for integers m such that Em has no point (x0, y0) ∈ Z2, while in

Theorem 4 we construct elliptic curves Eα for almost all α ∈ OK such that Eα/K

has no integral point (x0, y0) ∈ O2
K with 2|x0.

To give the next application of Theorem 1, we first recall the following result (see

[15, Chapter VIII, Theorem 7.1(a)]).

Theorem 5 ([15]). Let K be a number field and let E/K be an elliptic curve given

by the Weierstrass equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

where ai ∈ OK for all i. If P = (x, y) ∈ E(K) is a torsion point of order m ≥ 2

which is not a prime power, then x, y ∈ OK .

As a combination of Theorems 4 and 5, we construct infinitely many elliptic

curves E defined over K having no torsion point P ∈ E(K) of order m ≥ 2 which

is not a prime power.

Corollary 2. Let α,Eα be as in Theorem 4. Then for each α, the elliptic curve Eα

has no non-trivial torsion point P = (x0, y0) ∈ Eα(K) which is not a prime power

order such that 2|x0 and x0 ∈ OK .
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We now recall the Nagell–Lutz theorem (see [15, Chapter VIII, Corollary 7.2(a)])).

Theorem 6 ([15]). Let E/Q be an elliptic curve defined over Q given by the Weier-

strass equation

E : y2 = x3 +Ax+B,

where A,B ∈ Z. If P = (x, y) ∈ E(Q) is a torsion point of order m ≥ 2, then

x, y ∈ Z.

As a combination of Theorems 4 and 6, we construct infinitely many elliptic

curves E defined over Q having no torsion point P ∈ E(Q) of order m ≥ 2.

Corollary 3. Let K = Q and let α, Eα be as in Theorem 4. Then for each α,

the elliptic curve Eα has no non-trivial torsion point P = (x0, y0) ∈ Eα(Q) with

2|Num(x0), where Num(x0) denotes the numerator of the fraction x0 in lowest form.
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