

GENERALIZED FRUIT DIOPHANTINE EQUATION OVER NUMBER FIELDS

Satyabrat Sahoo

Yau Mathematical Sciences Center (YMSC), Tsinghua University, Beijing, China
sahos@mail.tsinghua.edu.cn

Shanta Laishram

Stat-Math Unit, Indian Statistical Institute Delhi, New Delhi, India
shanta@isid.ac.in

Received: 2/25/25, Revised: 9/12/25, Accepted: 1/5/26, Published: 1/19/26

Abstract

Let K be a number field and \mathcal{O}_K be the ring of integers of K . In this article, we study the solutions of the generalized fruit Diophantine equation $ax^d - y^2 - z^2 + xyz - c = 0$ over K , where $d \geq 3$ is an integer and $a, c \in \mathcal{O}_K \setminus \{0\}$. Subsequently, we provide explicit values of square-free integers t such that the equation $ax^d - y^2 - z^2 + xyz - c = 0$ has no solution $(x_0, y_0, z_0) \in \mathcal{O}_{\mathbb{Q}(\sqrt{t})}^3$ with $2|x_0$, and demonstrate that the set of all such square-free integers t with $t \geq 2$ has density exactly $\frac{1}{6}$. As an application, we construct infinitely many elliptic curves E defined over number fields K having no integral point $(x_0, y_0) \in \mathcal{O}_K^2$ with $2|x_0$.

1. Introduction

Diophantine equations are among the most active and fascinating areas in number theory. In [18], Wiles proved the famous Fermat's Last Theorem using modularity and established that the Diophantine equation $x^n + y^n = z^n$ has no non-zero integer solutions for integers $n \geq 3$. Subsequently, significant progress has been achieved in the examination of the generalized Fermat equation $Ax^p + By^q = Cz^r$ over number fields (see [1], [2], [3], [4], [5], [6], [11], [13], [14] for more details).

In [8], Luca and Togb   first studied the integer solutions of the Diophantine equation $x^3 + by + 1 - xyz = 0$ with a fixed integer b . Later in [16], Togb   studied the integer solutions of the Diophantine equation $x^3 + by + 4 - xyz = 0$. In [9], Majumdar and Sury proved that the Diophantine equation $x^3 - y^2 - z^2 + xyz - 5 = 0$ has no integer solutions and named this equation the *fruit Diophantine equation*. As an application, in [9] Majumdar and Sury constructed infinitely many elliptic

curves with no integral points. In [17], Vaishya and Sharma extended the work of [9] to the Diophantine equation $ax^3 - y^2 - z^2 + xyz - b = 0$ for integers a, b with $a \equiv 1 \pmod{12}$ and $b = 8a - 3$, and constructed infinitely many elliptic curves with torsion-free Mordell–Weil group over \mathbb{Q} . In [12], Prakash and Chakraborty generalized the work of [17] to the generalized fruit Diophantine equation $ax^d - y^2 - z^2 + xyz - b = 0$ for integers a, b with $a \equiv 1 \pmod{12}$ and $b = 2^d a - 3$, where d is an odd integer divisible by 3, and constructed infinitely many hyperelliptic curves with torsion-free Mordell–Weil group over \mathbb{Q} .

In this article, we study the solutions of the generalized fruit Diophantine equation $ax^d - y^2 - z^2 + xyz - c = 0$ over number fields K , where $d \geq 3$ is an integer and $a, c \in \mathcal{O}_K \setminus \{0\}$.

In Theorem 1, we show that for any $a, b \in \mathcal{O}_K \setminus \{0\}$ and $c = 2^d b - 3^r$ with integers $r \geq 2$ and $d \geq 3$ odd, the generalized fruit Diophantine equation $ax^d - y^2 - z^2 + xyz - c = 0$ has no solution $(x_0, y_0, z_0) \in \mathcal{O}_K^3$ with $2|x_0$. As an application of this result, for almost all algebraic integers $\alpha \in \mathcal{O}_K$, we construct elliptic curves E_α defined over K such that E_α has no integral point $(x_0, y_0) \in \mathcal{O}_K^2$ with $2|x_0$ (see Theorem 4). This generalizes the work of [17] where they constructed elliptic curves E_m defined over \mathbb{Q} for integers m such that E_m has no point $(x_0, y_0) \in \mathbb{Z}^2$.

In Corollary 1, we provide explicit values of square-free integers t such that the hypothesis of Theorem 1 holds over $K = \mathbb{Q}(\sqrt{t})$. Finally, in Theorem 2, we show that the set of square-free integers $t \geq 2$ such that the hypothesis of Theorem 1 holds over $K = \mathbb{Q}(\sqrt{t})$ has density exactly $\frac{1}{6}$.

The structure of this article is as follows. In Section 2, we state the main results of the article, namely, Theorems 1 and 2. In Section 3, we prove Theorems 1 and 2. In Section 4, we state and prove Theorem 4.

2. Main Results for the Generalized Fruit Diophantine Equation over K

Throughout this article, K denotes a number field and \mathcal{O}_K denotes the ring of integers of K . Let P_K denote the set of all prime ideals of \mathcal{O}_K . In this section, we study the solutions of the generalized fruit Diophantine equation, namely

$$ax^d - y^2 - z^2 + xyz - c = 0 \tag{1}$$

over K , where $d \geq 3$ is an integer and $a, c \in \mathcal{O}_K \setminus \{0\}$. Let $T_K := \{\mathfrak{P} \in P_K : \mathbf{e}(\mathfrak{P}|2) = 1 = \mathbf{f}(\mathfrak{P}|2)\}$, where $\mathbf{e}(\mathfrak{P}|2)$ and $\mathbf{f}(\mathfrak{P}|2)$ denote the ramification index and the inertia degree of the prime \mathfrak{P} lying above 2, respectively.

2.1. Main Results

Theorem 1. *Let K be a number field with $T_K \neq \emptyset$. Let $a, b \in \mathcal{O}_K \setminus \{0\}$ and $c = 2^d b - 3^r$ with integers $r \geq 2$ and $d \geq 3$ odd. Then the Diophantine equation*

$ax^d - y^2 - z^2 + xyz - c = 0$ has no solution $(x_0, y_0, z_0) \in \mathcal{O}_K^3$ with $2|x_0$.

Remark 1. Note that, if 2 splits completely in the field K , then $T_K \neq \emptyset$. Hence, the conclusion of Theorem 1 holds over all the number fields K in which 2 splits completely.

The following corollary gives explicit values of square-free integers d such that the hypothesis of Theorem 1 holds over the quadratic field $K = \mathbb{Q}(\sqrt{d})$.

Corollary 1. *Let t be a square-free integer and let $K = \mathbb{Q}(\sqrt{t})$. Then the hypothesis of Theorem 1 holds over K if and only if $t \equiv 1 \pmod{8}$.*

Proof. Note that, 2 splits completely in $K = \mathbb{Q}(\sqrt{t})$ if and only if $t \equiv 1 \pmod{8}$ (see [10, Theorem 25]). By the definition of T_K , we conclude that 2 splits completely in $K = \mathbb{Q}(\sqrt{t})$ if and only if $T_K \neq \emptyset$. Hence, the proof of the corollary follows from Theorem 1 and Remark 1. \square

Next, we will calculate the density of the set of all square-free integers $t \geq 2$ such that the hypothesis of Theorem 1 holds over $K = \mathbb{Q}(\sqrt{t})$. Let

$$\mathbb{N}^{\text{sf}} := \{t \in \mathbb{Z}_{\geq 2} : t \text{ is a square-free integer}\}.$$

We shall now define the relative density of any subset $S \subseteq \mathbb{N}^{\text{sf}}$.

Definition 1. For any subset $S \subseteq \mathbb{N}^{\text{sf}}$, the *relative density* of S is defined by

$$\delta_{\text{rel}}(S) := \lim_{X \rightarrow \infty} \frac{\#\{d \in S : d \leq X\}}{\#\{d \in \mathbb{N}^{\text{sf}} : d \leq X\}},$$

if the above limit exists.

The following theorem computes the density of the set of all square-free integers $t \geq 2$ such that the hypothesis of Theorem 1 holds over $K = \mathbb{Q}(\sqrt{t})$.

Theorem 2. *Let $U := \{t \in \mathbb{N}^{\text{sf}} : t \equiv 1 \pmod{8}\}$. Then $\delta_{\text{rel}}(U) = \frac{1}{6}$. In particular, if $t \in U$, then the hypothesis of Theorem 1 holds over $K = \mathbb{Q}(\sqrt{t})$.*

Combining Corollary 1 and Theorem 2, we conclude that the set of square-free integers $t \geq 2$ such that the hypothesis of Theorem 1 holds over $K = \mathbb{Q}(\sqrt{t})$ has density exactly $\frac{1}{6}$.

3. Proofs of Theorem 1 and Theorem 2

3.1. Proof of Theorem 1

To prove this theorem, we need the following lemma. Recall that P_K is the set of all prime ideals of \mathcal{O}_K and $T_K = \{\mathfrak{P} \in P_K : \mathbf{e}(\mathfrak{P}|2) = 1 = \mathbf{f}(\mathfrak{P}|2)\}$.

Lemma 1. *Let K be a number field. For any prime ideal $\mathfrak{P} \in T_K$, we have $\mathcal{O}_K/\mathfrak{P}^n \simeq \mathbb{Z}/2^n\mathbb{Z}$ for all integers $n \geq 1$.*

Proof. Let $\mathfrak{P} \in T_K$. By the definition of T_K , we have $\mathbf{e}(\mathfrak{P}|2) = 1 = \mathbf{f}(\mathfrak{P}|2)$. Since $\mathbf{f}(\mathfrak{P}|2) = 1$, we have $\mathcal{O}_K/\mathfrak{P} \simeq \mathbb{Z}/2\mathbb{Z}$. Since $\mathcal{O}_K/\mathfrak{P} \simeq \mathfrak{P}^r/\mathfrak{P}^{r+1}$ for all $r \geq 1$, it follows that $|\mathcal{O}_K/\mathfrak{P}| = 2 = |\mathfrak{P}^r/\mathfrak{P}^{r+1}|$ for all $r \geq 1$, and hence $|\mathcal{O}_K/\mathfrak{P}^n| = 2^n$. Since $\mathbf{e}(\mathfrak{P}|2) = 1$, we get $v_{\mathfrak{P}}(2^{n-1}) = n-1$ and therefore $2^{n-1} \notin \mathfrak{P}^n$. Hence, 2^{n-1} is a non-zero element of the quotient ring $\mathcal{O}_K/\mathfrak{P}^n$. Since any ring of order 2^n in which $2^{n-1} \neq 0$ is isomorphic to $\mathbb{Z}/2^n\mathbb{Z}$, we conclude that $\mathcal{O}_K/\mathfrak{P}^n \simeq \mathbb{Z}/2^n\mathbb{Z}$. \square

Proof of Theorem 1. We will prove this theorem by contradiction. Suppose $(\alpha, \beta, \gamma) \in \mathcal{O}_K^3$ is a solution of Equation (1) with $2|\alpha$. Then $\alpha = 2\alpha_1$, for some $\alpha_1 \in \mathcal{O}_K$. So, we have $a(2\alpha_1)^d - \beta^2 - \gamma^2 + 2\alpha_1\beta\gamma - c = 0$, which reduces to the following equation:

$$\beta^2 - 2\alpha_1\beta\gamma + \gamma^2 = a(2\alpha_1)^d - c.$$

This gives $(\beta - \alpha_1\gamma)^2 - (\alpha_1^2 - 1)\gamma^2 = 2^d\alpha_1^d a - c$. Take $Y = \beta - \alpha_1\gamma$ and $Z = \gamma$. Then $Y, Z \in \mathcal{O}_K$, and we have

$$Y^2 - (\alpha_1^2 - 1)Z^2 = 2^d\alpha_1^d a - c. \quad (2)$$

By assumption $T_K \neq \emptyset$ and choose $\mathfrak{P} \in T_K$. By Lemma 1, we have $\mathcal{O}_K/\mathfrak{P} \simeq \mathbb{Z}/2\mathbb{Z}$ and $\mathcal{O}_K/\mathfrak{P}^2 \simeq \mathbb{Z}/4\mathbb{Z}$. We now consider two cases.

Case 1: $\mathfrak{P}|\alpha_1$. This gives $\alpha_1 \equiv 0 \pmod{\mathfrak{P}}$, and hence $\alpha_1^2 \equiv 0 \pmod{\mathfrak{P}^2}$. Since $c = 2^d b - 3^r$ with $d \geq 2$ is an integer, Equation (2) reduces to the following equation:

$$Y^2 + Z^2 \equiv 3^r \pmod{\mathfrak{P}^2}. \quad (3)$$

Since $\mathcal{O}_K/\mathfrak{P} \simeq \mathbb{Z}/2\mathbb{Z}$ and $Y \in \mathcal{O}_K$, we have either $Y \equiv 0 \pmod{\mathfrak{P}}$ or $Y \equiv 1 \pmod{\mathfrak{P}}$. Similarly for Z , we have either $Z \equiv 0 \pmod{\mathfrak{P}}$ or $Z \equiv 1 \pmod{\mathfrak{P}}$. If $Y \equiv 0 \pmod{\mathfrak{P}}$, then $Y^2 \equiv 0 \pmod{\mathfrak{P}^2}$. If $Y \equiv 1 \pmod{\mathfrak{P}}$, then $(Y-1)^2 \equiv 0 \pmod{\mathfrak{P}^2}$. Since $\mathcal{O}_K/\mathfrak{P}^2 \simeq \mathbb{Z}/4\mathbb{Z}$, we get $Y \equiv 1$ or $3 \pmod{\mathfrak{P}^2}$. So $(Y-1)^2 \equiv Y^2 - 1 \pmod{\mathfrak{P}^2}$. Since $(Y-1)^2 \equiv 0 \pmod{\mathfrak{P}^2}$, we get $Y^2 \equiv 1 \pmod{\mathfrak{P}^2}$. In both cases, we have either $Y^2 \equiv 0 \pmod{\mathfrak{P}^2}$ or $Y^2 \equiv 1 \pmod{\mathfrak{P}^2}$. Similarly, we have either $Z^2 \equiv 0 \pmod{\mathfrak{P}^2}$ or $Z^2 \equiv 1 \pmod{\mathfrak{P}^2}$.

Hence, $Y^2 + Z^2 \equiv 0$ or 1 or $2 \pmod{\mathfrak{P}^2}$. Since r is odd and $\mathcal{O}_K/\mathfrak{P}^2 \simeq \mathbb{Z}/4\mathbb{Z}$, we have $3^r \equiv 3 \pmod{\mathfrak{P}^2}$. By Equation (3), we get $Y^2 + Z^2 \equiv 3 \pmod{\mathfrak{P}^2}$, which is not possible.

Case 2: $\mathfrak{P} \nmid \alpha_1$. Since $\mathcal{O}_K/\mathfrak{P} \simeq \mathbb{Z}/2\mathbb{Z}$, we have $\alpha_1 \equiv 1 \pmod{\mathfrak{P}}$. Using the same argument as in the previous case, we get $\alpha_1^2 \equiv 1 \pmod{\mathfrak{P}^2}$. Since $c = 2^d b - 3^r$ and $d \geq 2$ is an integer, Equation (2) reduces to the following equation:

$$Y^2 \equiv 3^r \pmod{\mathfrak{P}^2}. \quad (4)$$

Since r is odd and $\mathcal{O}_K/\mathfrak{P}^2 \simeq \mathbb{Z}/4\mathbb{Z}$, we get $3^r \equiv 3 \pmod{\mathfrak{P}^2}$, and hence $Y^2 \equiv 3 \pmod{\mathfrak{P}^2}$. This is not possible since $Y^2 \equiv 0$ or $1 \pmod{\mathfrak{P}^2}$. This completes the proof of the theorem. \square

3.2. Proof of Theorem 2

Recall that $\mathbb{N}^{\text{sf}} = \{t \in \mathbb{Z}_{\geq 2} : t \text{ is a square-free integer}\}$. Before proving this theorem, we first recall the absolute density of any subset $S \subseteq \mathbb{N}$ (see [2, Section 7]).

Definition 2. For any subset $S \subseteq \mathbb{N}$ and a positive real number X , let $S(X) := \{d \in S : d \leq X\}$. Then the *absolute density* of S is defined by

$$\delta_{\text{abs}}(S) := \lim_{X \rightarrow \infty} \frac{\#S(X)}{X},$$

if the above limit exists.

The following theorem is useful in the proof of Theorem 2 (see [2, Theorem 10]).

Theorem 3 ([2]). *For $r \in \mathbb{Z}$ and $N \in \mathbb{N}$, let $\mathbb{N}_{r,N}^{\text{sf}} := \{t \in \mathbb{N}^{\text{sf}} : t \equiv r \pmod{N}\}$. If $s := \gcd(r, N)$ is square-free, then $\#\mathbb{N}_{r,N}^{\text{sf}}(X) \sim \frac{\varphi(N)}{s\varphi(\frac{N}{s})N \prod_{q|N} (1 - \frac{1}{q^2})} \times \frac{6}{\pi^2} X$, where φ denotes Euler's totient function and q varies over all the rational primes dividing N .*

We are now ready to prove Theorem 2.

Proof of Theorem 2. Since $\mathbb{N}^{\text{sf}} = \mathbb{N}_{0,1}^{\text{sf}}$, by Theorem 3, we have $\#\mathbb{N}^{\text{sf}}(X) \sim \frac{6}{\pi^2} X$. By Definition 2, we have $\delta_{\text{abs}}(\mathbb{N}^{\text{sf}}) = \frac{6}{\pi^2}$ (see [7, page 635] for more details). Using Definitions 1 and 2, we conclude that for any subset $S \subseteq \mathbb{N}^{\text{sf}}$, the absolute density $\delta_{\text{abs}}(S)$ exists if and only if the relative density $\delta_{\text{rel}}(S)$ exists. In particular, we have

$$\delta_{\text{abs}}(S) = \delta_{\text{abs}}(\mathbb{N}^{\text{sf}}) \times \delta_{\text{rel}}(S) = \frac{6}{\pi^2} \delta_{\text{rel}}(S). \quad (5)$$

By Theorem 3, we have $\#\mathbb{N}_{1,8}^{\text{sf}}(X) \sim \frac{1}{\pi^2} X$. Using Definition 2, we get $\delta_{\text{abs}}(\mathbb{N}_{1,8}^{\text{sf}}) = \frac{1}{\pi^2}$. Finally, by Equation (5), we have $\delta_{\text{rel}}(\mathbb{N}_{1,8}^{\text{sf}}) = \frac{\pi^2}{6} \times \frac{1}{\pi^2} = \frac{1}{6}$. This completes the proof of the theorem. \square

4. Applications

In this section, we will give several applications of the first main result of this article, i.e., Theorem 1. For the first application, we construct infinitely many elliptic curves E defined over K such that E has no integral point $(x_0, y_0) \in \mathcal{O}_K^2$ with $2|x_0$.

Theorem 4. *Let K be a number field with $T_K \neq \emptyset$ and let $\alpha \in \mathcal{O}_K$ be an element not satisfying the polynomial $x^8 + 5x^6 - 432x^4 - 4320x^2 - 10800$. Let E_α/K be the elliptic curve defined over K given by the Weierstrass equation*

$$E_\alpha : y^2 - \alpha xy = x^3 - (\alpha^2 + 5). \quad (6)$$

Then E_α/K has no integral point $(x_0, y_0) \in \mathcal{O}_K^2$ with $2|x_0$.

Proof. Since the discriminant Δ_{E_α} of E_α is $\alpha^8 + 5\alpha^6 - 432\alpha^4 - 4320\alpha^2 - 10800$ and α is not a root of the polynomial $x^8 + 5x^6 - 432x^4 - 4320x^2 - 10800$, we get $\Delta_{E_\alpha} \neq 0$. Hence, E_α is an elliptic curve defined over K . Now, we will prove this theorem by contradiction.

Suppose E_α/K has an integral point $(x_1, y_1) \in \mathcal{O}_K^2$ with $2|x_1$. This gives

$$y_1^2 - \alpha x_1 y_1 = x_1^3 - (\alpha^2 + 5).$$

Hence, $x_1^3 - y_1^2 - \alpha^2 + \alpha x_1 y_1 - 5 = 0$. Therefore, $(x_1, y_1, \alpha) \in \mathcal{O}_K^3$ is an integral solution of Equation (1) with $a = b = 1$, $r = 1$ and $d = 3$. This contradicts Theorem 1 since $2|x_1$ and $T_K \neq \emptyset$. Hence, the proof of the theorem follows. \square

Remark 2. Since the polynomial $x^8 + 5x^6 - 432x^4 - 4320x^2 - 10800$ has at most 8 solutions in K , the construction of elliptic curves E_α in Equation (6) holds for almost all $\alpha \in \mathcal{O}_K$. Note that in [17], Vaishya and Sharma constructed elliptic curves E_m/\mathbb{Q} for integers m such that E_m has no point $(x_0, y_0) \in \mathbb{Z}^2$, while in Theorem 4 we construct elliptic curves E_α for almost all $\alpha \in \mathcal{O}_K$ such that E_α/K has no integral point $(x_0, y_0) \in \mathcal{O}_K^2$ with $2|x_0$.

To give the next application of Theorem 1, we first recall the following result (see [15, Chapter VIII, Theorem 7.1(a)]).

Theorem 5 ([15]). *Let K be a number field and let E/K be an elliptic curve given by the Weierstrass equation*

$$E : y^2 + a_1 xy + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6,$$

where $a_i \in \mathcal{O}_K$ for all i . If $P = (x, y) \in E(K)$ is a torsion point of order $m \geq 2$ which is not a prime power, then $x, y \in \mathcal{O}_K$.

As a combination of Theorems 4 and 5, we construct infinitely many elliptic curves E defined over K having no torsion point $P \in E(K)$ of order $m \geq 2$ which is not a prime power.

Corollary 2. *Let α, E_α be as in Theorem 4. Then for each α , the elliptic curve E_α has no non-trivial torsion point $P = (x_0, y_0) \in E_\alpha(K)$ which is not a prime power order such that $2|x_0$ and $x_0 \in \mathcal{O}_K$.*

We now recall the Nagell–Lutz theorem (see [15, Chapter VIII, Corollary 7.2(a)]).

Theorem 6 ([15]). *Let E/\mathbb{Q} be an elliptic curve defined over \mathbb{Q} given by the Weierstrass equation*

$$E : y^2 = x^3 + Ax + B,$$

where $A, B \in \mathbb{Z}$. If $P = (x, y) \in E(\mathbb{Q})$ is a torsion point of order $m \geq 2$, then $x, y \in \mathbb{Z}$.

As a combination of Theorems 4 and 6, we construct infinitely many elliptic curves E defined over \mathbb{Q} having no torsion point $P \in E(\mathbb{Q})$ of order $m \geq 2$.

Corollary 3. *Let $K = \mathbb{Q}$ and let α , E_α be as in Theorem 4. Then for each α , the elliptic curve E_α has no non-trivial torsion point $P = (x_0, y_0) \in E_\alpha(\mathbb{Q})$ with $2|\text{Num}(x_0)$, where $\text{Num}(x_0)$ denotes the numerator of the fraction x_0 in lowest form.*

Acknowledgements. The authors express their sincere gratitude to Professor Kalyan Chakraborty for engaging in discussions regarding the article [12] during his visit to the Indian Institute of Technology Hyderabad in September 2023. The authors also extend their sincere gratitude to Professor Cornelius Greither for his insightful mathematical comments towards the improvement of this article. The authors thank Dr. Om Prakash for answering our questions through various emails. The authors are grateful to the editor and the anonymous referee for carefully reading the article and for their insightful suggestions and comments, which have greatly improved the manuscript. The second named author was supported by ANRF CRG Project CRG/2023/005564 while working on this project.

References

- [1] H. Deconinck, On the generalized Fermat equation over totally real fields, *Acta Arith.* **173**(3) (2016), 225–237.
- [2] N. Freitas and S. Siksek, The asymptotic Fermat’s last theorem for five-sixths of real quadratic fields, *Compos. Math.* **151**(8) (2015), 1395–1415.
- [3] E. Işık, Y. Kara and E. Ozman, On ternary Diophantine equations of signature $(p, p, 2)$ over number fields, *Turkish J. Math.* **44**(4) (2020), 1197–1211.
- [4] S. Jha and S. Sahoo, Asymptotic Fermat equation of signature (r, r, p) over totally real fields, *Ramanujan J.* **68**(1) (2025), Paper No. 30, 24 pp.
- [5] N. Kumar and S. Sahoo, On the solutions of $x^p + y^p = 2^r z^p$, $x^p + y^p = z^2$ over totally real fields, *Acta Arith.* **212**(1) (2024), 31–47.
- [6] N. Kumar and S. Sahoo, On the solutions of $x^2 = By^p + Cz^p$ and $2x^2 = By^p + Cz^p$ over totally real fields, *Ramanujan J.* **65**(1) (2024), 27–43.

- [7] E. Landau, *Handbuch der Lehre von der Verteilung der Primzahlen II*, B.G. Teubner, Leipzig, 1909.
- [8] F. Luca and A. Togb  , On the positive integral solutions of the Diophantine equation $x^3 + by + 1 - xyz = 0$, *Bull. Malays. Math. Sci. Soc. (2)* **31**(2) (2008), 129–134.
- [9] D. Majumdar and B. Sury, 107.15 Fruit diophantine equation, *Math. Gaz.* **107**(569) (2023), 302–306.
- [10] D. A. Marcus, *Number fields*, Springer, Cham, 2018.
- [11] D. Mocanu, Asymptotic Fermat for signatures (r, r, p) using the modular approach, *Res. Number Theory* **9**(4) (2023), Paper No. 71, 17 pp.
- [12] O. Prakash and K. Chakraborty, Generalized fruit diophantine equation and hyperelliptic curves, *Monatsh. Math.* **203**(3) (2024), 667–676.
- [13] S. Sahoo, On the solutions of the generalized Fermat equation over totally real number fields, preprint, [arXiv:2404.09171](https://arxiv.org/abs/2404.09171).
- [14] S. Sahoo and N. Kumar, Asymptotic solutions of the generalized Fermat-type equation of signature $(p, p, 3)$ over totally real number fields, *J. Number Theory* **274** (2025), 56–71.
- [15] J. H. Silverman, *The arithmetic of elliptic curves*, Springer, Dordrecht, 1986.
- [16] A. Togb  , On the positive solutions of the Diophantine equation $x^3 + by + 4 - xyz = 0$. *Afr. Diaspora J. Math. (N.S.)* **8**(1) (2009), 81–89.
- [17] L. Vaishya and R. Sharma, A class of fruit Diophantine equations, *Monatsh. Math.* **199**(4) (2022), 899–907.
- [18] A. Wiles, Modular elliptic curves and Fermat's last theorem, *Ann. of Math. (2)* **141**(3) (1995), 443–551.