
#A22 INTEGERS 26 (2026)

DENSITY AND SYMMETRY IN THE GENERALIZED MOTZKIN
NUMBERS MODULO p

Nadav Kohen
Department of Mathematics, Indiana University, Bloomington, Indiana

nkohen@iu.edu

Received: 2/10/25, Revised: 3/14/25, Accepted: 12/27/25, Published: 1/19/26

Abstract

We prove a new functional equation for the generalized Motzkin numbers modulo

a prime: Ma,b
p−3−n ≡ (b2 − 4a2)

p−3
2 −nMa,b

n (mod p). We also give a formula for
the density of 0 in the sequence of generalized Motzkin numbers modulo a prime,
p, in terms of the first p generalized central trinomial coefficients T a,b

n mod p (with
n < p). We apply our method to various other sequences to obtain similar formulas.
These formulas provide easy-to-compute tight lower bounds for the density of 0 in
our sequences modulo primes. They also reveal an unexpected connection between
the Riordan numbers and the number of directed animals of size n. Along the way,
we provide a general characterization of the n such that p | Ma,b

n , which generalizes
previous results of Deutsch and Sagan.

1. Introduction

The Motzkin numbers (A001006 of [7]), Mn, count the number of lattice paths from

the origin to (n, 0), which do not go below the x-axis, with steps UP = (1, 1), LEVEL

= (1, 0), and DOWN = (1,−1). See [3] for many other combinatorial settings in

which the Motzkin numbers arise. Some work has been done to characterize Mn

and similar sequences modulo various prime powers. For example, Deutsch and

Sagan [2] characterized Mn mod 3. They also described all n such that Mn ≡ 0

(mod p) for p = 2, 4, 5.

In Section 2, we prove the following new functional equation for Motzkin numbers

modulo a prime (Theorem 2):

Mp−3−k ≡ (−3)
p−3
2 −kMk (mod p).

This is accomplished by proving a similar functional equation for the central trino-

mial coefficients, which additionally functions as a central tool in Section 3.
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The central trinomial coefficients (A002426 of [7]), Tn, count the number of lattice

paths from the origin to (n, 0) using the same steps (UP, LEVEL, and DOWN) as

Motzkin paths, but where there is no restriction that the paths not go below the

x-axis (these are sometimes called grand Motzkin paths).

In Section 3, Theorem 3 answers the question, “What is the density of the (gen-

eralized) Motzkin numbers that are divisible by a prime p?” This is accomplished

by reducing the study of the (generalized) Motzkin numbers modulo p to the study

of the lesser-known (generalized) central trinomial coefficients modulo p, which have

a simpler characterization provided by Proposition 4. This reduction allows us to

provide a general characterization (in Corollary 3) of n such that Mn ≡ 0 (mod p)

in terms of the first p central trinomial coefficients. Theorem 3 follows from this

characterization and tells us that

D0 =
|{n < p− 2 | Mn ≡ 0 (mod p)}|

p

+
2 |{m < p− 1 | Tm ≡ Tp−1Tm+1 (mod p)}|

(p− 1)(p+ 1)

+
2 |{m < p− 1 | Tm ≡ Tm+1 (mod p)}|

(p− 1)p(p+ 1)

is the density of the Motzkin numbers divisible by p. This value, D0, can be

efficiently computed by checking fewer than 3p simple congruences.

For readers familiar with the Rowland-Zeilberger automaton [9], the intuition

that the Motzkin numbers modulo p should be studied via the central trinomial

coefficients comes from the observation that a random walk on the finite state

machine for the Motzkin numbers quickly lands within, and never leaves, a subgraph

corresponding to the finite state machine for the central trinomial coefficients, which

have a simple algebraic description given by Proposition 4. The formal instantiation

of this intuition, by rewriting Mn mod p using combinations of central trinomial

coefficients, is provided in Propositions 1 and 5. This approach of studying Mn mod

p via the central trinomial coefficients has previously been used by the author in [5]

to show that Mn mod p is uniformly recurrent if and only if p ∤ Tn for all n < p.

In the final subsection of this paper, we demonstrate the general applicability of

our approach by applying it to a few other sequences from the Online Encyclopedia

of Integer Sequences [7]. This analysis yields a new result (Corollary 5): for every

prime, p, the density of 0 in the Riordan numbers (A005043 of [7]) modulo p is

equal to the density of 0 in the sequence A005773 of [7] modulo p.

The author would like to thank his advisor, Professor Michael Larsen, for his

support and for suggesting this problem, which began the author’s path in this re-

search direction. The author would also like to thank the referee for their invaluable

comments on this paper.
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1.1. Notation and Conventions

The generalized Motzkin numbers, Ma,b
n , count the same lattice paths as the usual

Motzkin numbers but where there are a distinct colors for UP and DOWN steps

and b distinct colors for LEVEL steps, and two paths are equal only if they have

the same steps and colors at each step. All of the results for the Motzkin numbers

in this paper are proved in the generality of the generalized Motzkin numbers.

As with the generalized Motzkin numbers, the generalized central trinomial co-

efficients, T a,b
n , have a colors associated with UP and DOWN steps and b colors

associated with LEVEL steps. The central trinomial coefficients are so named be-

cause

T a,b
n = ct

[
(ax−1 + b+ ax)n

]
,

where ct extracts the “constant term” of a Laurent polynomial. Under this paradigm,

we note that

Ma,b
n = ct

[
(ax−1 + b+ ax)n · (1− x2)

]
because the paths to (n, 0) that do cross the x-axis can be bijected with arbitrary

paths to (n, 2).

Throughout this paper, the superscripts a and b are omitted from Ma,b
n and

T a,b
n when a = b = 1 (i.e., Mn = M1,1

n and Tn = T 1,1
n ). If Q(x) is a Laurent

polynomial, then ct [Q(x)] denotes the constant term of Q(x) (i.e., the coefficient of

x0), and degQ(x) denotes the absolute value of the largest exponent of x (positive

or negative) appearing in Q(x) with non-zero coefficient. If Σ is a set, Σ∗ denotes

the set of words (i.e., strings) of any length whose characters are from Σ (including

the empty word). If n is a non-negative integer, and p is a prime, then let (n)p ∈ F∗
p

be the word whose characters are the digits of n in base p. That is, if we let (n)p[i]

denote the ith digit in the base-p expansion of n so that n =
∑

i∈Z≥0
(n)p[i]p

i, then

(n)p = ((n)p [length(np)− 1]) · · · ((n)p[1])((n)p[0]). Note that when working with

strings, exponents denote repetition. For example, (p− 1)k ∈ F∗
p denotes a run of k

characters that are all the character (p− 1). Also note that every statement made

in this paper about (n)p should also hold for 0k(n)p for every k.

In this paper, we prove results dealing with the density of certain values within

sequences:

Definition 1. The asymptotic density, or just density, of a subset, S ⊆ N, is

lim
N→∞

S ∩ {n ∈ N | n < N}
N

.

When it exists, this is equal to

lim
N→∞

S ∩ {n ∈ N | n < pN}
pN

,

which is the form we primarily use. Lastly, if p is a prime, we say that the density

of a value x ∈ Fp in a sequence an over Fp is the usual density of {n ∈ N | an = x}.
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2. Symmetry

In this section, we provide an elementary proof of a congruence result relating T a,b
k

and T a,b
p−1−k, which was first proven by Noe [6] using Legendre polynomials. This

symmetry is useful in proving the primary results of this paper in the next section.

We also derive the new corresponding result for Ma,b
k and Ma,b

p−3−k.

We follow the philosophy that the modulo p study of the generalized Motzkin

numbers, Ma,b
n , is reducible to the study of their corresponding generalized central

trinomial coefficients, T a,b
n , which are well-structured and determined by their first

p elements (see Proposition 4). Thus, we begin by stating an explicit rule for this

reduction, which is itself a specific instance of a family of such rules for reducing to

the study of T a,b
n for any sequence of the form ct

[
(ax−1 + b+ ax)nQ

]
, where Q is

some Laurent polynomial in x (see Section 4 of [5] for a discussion of this family of

equations).

Proposition 1. For all a, b ∈ Z and n ∈ N,

2a2Ma,b
n = (4a2 − b2)T a,b

n + 2bT a,b
n+1 − T a,b

n+2,

and in particular,

2Mn = 3Tn + 2Tn+1 − Tn+2.

Proof. Let P = ax−1 + b+ ax so that T a,b
n = ct [Pn]. Define

An := ct [x · Pn] = ct
[
x−1 · Pn

]
and

Bn := ct
[
x2 · Pn

]
= ct

[
x−2 · Pn

]
.

This allows us to write Ma,b
n = ct

[
(1− x2) · Pn

]
= T a,b

n −Bn.

From T a,b
n+1 = ct

[
(ax−1 + b+ ax)n+1

]
= ct

[
(ax−1 + b+ ax) · (ax−1 + b+ ax)n

]
we can conclude that T a,b

n+1 = 2aAn+ bT a,b
n so that 2aAn = T a,b

n+1− bT a,b
n . Similarly,

from An+1 = aT a,b
n + bAn + aBn, we find that

T a,b
n+2 = 2aAn+1 + bT a,b

n+1

= 2a(aT a,b
n + bAn + aBn) + b(2aAn + bT a,b

n )

= (b2 + 2a2)T a,b
n + 2b(2aAn) + 2a2Bn

= (b2 + 2a2)T a,b
n + 2b(T a,b

n+1 − bT a,b
n ) + 2a2Bn

and thus 2a2Bn = T a,b
n+2 − 2bT a,b

n+1 + (b2 − 2a2)T a,b
n .

In conclusion, 2a2Ma,b
n = 2a2T a,b

n −2a2Bn = (4a2−b2)T a,b
n +2bT a,b

n+1−T a,b
n+2.

Next, we give a mostly combinatorial proof of a general two-term recurrence for

the sequences T a,b
n , which is analogous to the well-known two-term recurrence for

the Motzkin numbers (see Corollary 1).
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Proposition 2. For all a, b, n ∈ Z with n ≥ 2,

nT a,b
n = b(2n− 1)T a,b

n−1 − (b2 − 4a2)(n− 1)T a,b
n−2,

and in particular,

nTn = (2n− 1)Tn−1 + (3n− 3)Tn−2.

Proof. Recall that Ma,b
n counts the number of lattice paths from (0, 0) to (n, 0)

using a distinct UP and DOWN steps, (1, 1) and (1,−1), respectively, and b distinct

LEVEL steps, (1, 0), which do not go below the x-axis. Additionally, T a,b
n simply

counts the number of such paths without the x-axis restriction, and An = ct [x · Pn]

(as in Proposition 1) does the same but counting paths to (n, 1).

Let γn count the number of paths from the origin to (n, 1) such that the only

intersection with the x-axis is the starting point. Then γn = aMa,b
n−1 since adding

an UP step to the beginning of a path (there are a ways to do this) counted by

the Ma,b
n−1 gives a unique path counted by γn. Furthermore, nγn = An since there

are nγn paths from the origin to (n, 1) that never return to the x-axis and which

have a special vertex labeled. This labeled vertex partitions the path into a front

and a back (consisting of UP, DOWN, and LEVEL steps) P = FB. Now the path

Q = BF is an arbitrary path to (n, 1), counted by An, whose rightmost-lowest

point is the labeled vertex (making the process reversible, and hence a bijection).

Putting these together, we get An = nγn = anMa,b
n−1.

We now combine the fact that T a,b
n = 2aAn−1 + bT a,b

n−1 (as discussed in the proof

of Proposition 1), the equation An−1 = a(n− 1)Ma,b
n−2, and Proposition 1 to get

T a,b
n = 2aAn−1 + bT a,b

n−1

= (n− 1)(2a2Ma,b
n−2) + bT a,b

n−1

= (n− 1)
(
(4a2 − b2)T a,b

n−2 + 2bT a,b
n−1 − T a,b

n

)
+ bT a,b

n−1

= −(n− 1)T a,b
n + (2bn− 2b+ b)T a,b

n−1 − (b2 − 4a2)(n− 1)T a,b
n−2,

from which we can conclude nT a,b
n = b(2n− 1)T a,b

n−1 − (b2 − 4a2)(n− 1)T a,b
n−2.

In fact, the already-known analogous recurrence for the generalized Motzkin

numbers can be derived directly from the previous two results by a tedious algebraic

manipulation. An independent proof is also given by Woan in [10].

Corollary 1. For all a, b, n ∈ Z with n ≥ 2,

(n+ 2)Ma,b
n = b(2n+ 1)Ma,b

n−1 − (b2 − 4a2)(n− 1)Ma,b
n−2,

and in particular,

(n+ 2)Mn = (2n+ 1)Mn−1 + (3n− 3)Mn−2.
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As it turns out, Proposition 2 is sufficient to prove our symmetry directly! See

equation 14 of [6] for an alternative proof using Legendre polynomials.

Theorem 1. For all a, b ∈ Z, p > 2, and 0 ≤ k ≤ p−1
2 ,

T a,b
p−1−k ≡ (b2 − 4a2)

p−1
2 −kT a,b

k (mod p),

and in particular,

Tp−1−k ≡ (−3)
p−1
2 −kTk (mod p).

Proof. We use induction on the values k ≤ p−1
2 . For k = p−1

2 , we have that

T a,b

p−1− p−1
2

= T a,b
p−1
2

= (b2 − 4a2)0T a,b
p−1
2

.

For k = p−3
2 , we wish to show that T a,b

p+1
2

≡ (b2 − 4a2)T a,b
p−3
2

(mod p), which follows

from Proposition 2 since

2−1T a,b
p+1
2

≡ p+ 1

2
T a,b

p+1
2

= bpT a,b
p−1
2

− (b2 − 4a2)

(
p− 1

2

)
T a,b

p−3
2

≡ 2−1(b2 − 4a2)T a,b
p−3
2

(mod p).

Now let 0 ≤ k < p−3
2 . Then using Proposition 2 and induction we have that

(p− 1− k)T a,b
p−1−k is equal to

b(2(p− 1− k)− 1)T a,b
p−2−k − (b2 − 4a2)(p− 2− k)T a,b

p−3−k

≡ −b(2k + 3)T a,b
p−2−k + (b2 − 4a2)(2 + k)T a,b

p−3−k

≡ −b(2k + 3)(b2 − 4a2)
p−3
2 −kT a,b

k+1 + (2 + k)(b2 − 4a2)
p−3
2 −kT a,b

k+2

= (b2 − 4a2)
p−3
2 −k

(
(k + 2)T a,b

k+2 − b(2k + 3)T a,b
k+1

)
= (b2 − 4a2)

p−3
2 −k

(
b(2k + 3)T a,b

k+1 − (b2 − 4a2)(k + 1)T a,b
k − b(2k + 3)T a,b

k+1

)
= (−k − 1)(b2 − 4a2)

p−1
2 −kT a,b

k

≡ (p− 1− k)(b2 − 4a2)
p−1
2 −kT a,b

k (mod p).

In the case that p ∤ b2 − 4a2, we have that b2 − 4a2 is invertible so that we can

also conclude that T a,b
k ≡ (b2 − 4a2)k−

p−1
2 T a,b

p−1−k (mod p). Of course, in the case

that p | b2 − 4a2, we instead conclude that T a,b
k ≡ 0 (mod p) for all p−1

2 < k < p.

Before moving on, we quickly mention an easy and useful Corollary of Theorem

1. In [6], this is a corollary of Theorem 8.8.
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Corollary 2. For all a, b ∈ Z, and all primes, p, such that p ∤ b2 − 4a2,(
T a,b
p−1

)−1

≡ T a,b
p−1 (mod p).

Equivalently,
(
T a,b
p−1

)2
≡ 1 (mod p).

Proof. By Theorem 1, T a,b
p−1 ≡ (b2−4a2)

p−1
2 (mod p) so that, assuming p ∤ b2−4a2,

we have (T a,b
p−1)

2 is congruent to 1 modulo p by Fermat’s little theorem.

Remark 1. Theorem 1 seems to help explain the observed density of the sequence

of primes that do not divide any central trinomial coefficient (A113305 of OEIS [7]).

For primes less than 106 the density of these primes is near 0.6075. As a corollary

of Proposition 4 of the next section, p is in this sequence if and only if it does not

divide any of the first p central trinomial coefficients. But the author was originally

surprised by how high this density seems to be, since if we pretend that on average

Tn (with n < p) has a 1
p chance of being congruent to 0 modulo p, then we expect

the density to be limp→∞

(
1− 1

p

)p
= e−1 ≈ 0.3679. But in view of Theorem 1,

we now know that p does not divide any central trinomial coefficient if and only

if it does not divide the first p+1
2 of them! Now if we make the same assumption

we instead get the density estimate limp→∞

(
1− 1

p

) p+1
2

= e−
1
2 ≈ 0.6065, which is

much closer to the experimental value.

The analogous result to Theorem 1 for the generalized Motzkin numbers can

be proven directly from their two-term recurrence in a very similar fashion to the

proof of Theorem 1. However, we instead provide a proof using Proposition 1 and

Theorem 1.

Theorem 2. For all a, b ∈ Z, p > 3, and 0 ≤ k ≤ p−3
2 ,

Ma,b
p−3−k ≡ (b2 − 4a2)

p−3
2 −kMa,b

k (mod p),

and in particular,

Mp−3−k ≡ (−3)
p−3
2 −kMk (mod p).

Proof. By Proposition 1, 2a2Ma,b
p−3−k is equal to

(4a2 − b2)T a,b
p−3−k + 2bT a,b

p−2−k − T a,b
p−1−k

≡ −(b2 − 4a2)
p−3
2 −kT a,b

k+2 + 2b(b2 − 4a2)
p−3
2 −kT a,b

k+1 − (b2 − 4a2)
p−1
2 −kT a,b

k

= (b2 − 4a2)
p−3
2 −k

(
−T a,b

k+2 + 2bT a,b
k+1 + (4a2 − b2)T a,b

k

)
= (b2 − 4a2)

p−3
2 −k(2a2Ma,b

k ) (mod p).
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This gives us the theorem when a is not a multiple of p, and otherwise

Ma,b
n = ct

[
(ax−1 + b+ ax)n(1− x2)

]
≡ ct

[
bn(1− x2)

]
= bn (mod p)

in which case (b2 − 4a2)
p−3
2 −kMa,b

k ≡ bp−3−2kbk = bp−3−k ≡ Ma,b
p−3−k (mod p), as

desired.

As an additional application of Theorem 1 we prove the following conjecture

(Batalov 2022) from the OEIS page for the Motzkin numbers (A001006 of [7]),

which can also be inferred from Tables 4 and 5 of [1]: If p is a prime of the form

6m+ 1, then Mp−2 is divisible by p. In fact, we can prove a stronger result:

Proposition 3. A prime p divides Mp−2 if and only if p ≡ 1 (mod 3).

Proof. For p = 2, we know that 2 ∤ M0 and 2 ̸≡ 1 (mod 3), so assume p > 2. Note

that Tp ≡ 1 (mod p) (see Proposition 4). We prove the proposition by reducing to

central trinomial coefficients:

2Mp−2 = 3Tp−2 + 2Tp−1 − Tp

≡ 3(−3)
p−3
2 + 2(−3)

p−1
2 − 1

= −(−3)
p−1
2 + 2(−3)

p−1
2 − 1

= (−3)
p−1
2 − 1 (mod p)

and therefore, by quadratic reciprocity, p | Mp−2 if and only if (−3)
p−1
2 ≡ 1 (mod p)

if and only if p ≡ 1 (mod 3).

3. Density

In this section, we answer the question: “What is the density of the Motzkin num-

bers that are divisible by p?” In Subsection 3.1, we do the same for some additional

sequences. In all cases, answering this question is accomplished by further elab-

orating the consequences of Proposition 1 (or analogous results) and Theorem 1

alongside the following simple description of T a,b
n mod p.

Proposition 4. For every prime p and n ∈ N, if an = ct [Pn] where P is a

Laurent polynomial with degP = 1, then an ≡
∏

a(n)p[i] (mod p). In particular,

T a,b
n ≡

∏
T a,b
(n)p[i]

(mod p).

Proof. We induct on the number of digits in (n)p. Certainly if n = (n)p[0] < p,
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then an = a(n)p[0]. Otherwise, if n = qp+ (n)p[0], then

an = ct
[
P (x)qp+(n)p[0]

]
≡ ct

[
P (xp)qP (x)(n)p[0]

]
(P (x)p ≡ P (xp) (mod p))

= ct [P (xp)q] ct
[
P (x)(n)p[0]

]
((n)p[0] < p so there is no cancellation)

= ct [P (x)q] ct
[
P (x)(n)p[0]

] (
ct
[
P (xk)n

]
= ct [P (x)n]

)
= aqa(n)p[0]

=
∏

a(n)p[i] (mod p) (by induction).

Note that this proposition shows that the sequence T a,b
n mod p can be described

by its first p terms, making Theorem 1 more important than it may initially seem.

Proposition 4 is Corollary 3.1 of [4], where these congruences are referred to as

Lucas congruences.

Given the base-p digit-multiplicative nature of T a,b
n , every combination of offsets

T a,b
n+i can be understood by “factoring out” common digits between the (n+ i)p for

various i. For example, if (n)p = qn0 and n0 ̸= p− 1, then

αT a,b
n + βT a,b

n+1 ≡ αT a,b
q T a,b

n0
+ βT a,b

q T a,b
n0+1 = T a,b

q

(
αT a,b

n0
+ βT a,b

n0+1

)
(mod p).

A version of this idea, sufficient for our purposes, is encapsulated in the following

formalism where we bound the maximum distance between indices by p. This

bound ensures that the following only has two summands. This is sufficient for our

purposes since the maximum distance in index, h, in the expansion of Mn in terms

of Tn from Proposition 1 is 2.

Lemma 1. If an = ct [Pn], where degP = 1, bn =
∑h

i=0 αian+i, p > h,

Cn0
= min(h, p−n−1), and (n)p = qm(p−1)kn0 with q ∈ F∗

p,m, n0 ∈ Fp, m ̸= p−1

and k ≥ 0, then

bn ≡ aq

amakp−1

Cn0∑
i=0

αian0+i + am+1

h∑
i=p−n0

αiai−(p−n0)

 (mod p).

In particular, if n0 < p− h, or equivalently, h < p− n0, then

bn ≡ aq

(
amakp−1

h∑
i=0

αian0+i

)
≡ an−n0

p
bn0

(mod p).
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Proof. If n0 + i ≤ p − 1, then (n + i)p = qm(p − 1)k(n0 + i), while if n0 + i ≥ p,

then (n0 + i)p = q(m+ 1)0k(n0 + i− p). Thus, noting that a0 = 1,

bn =

h∑
i=0

αian+i

=

Cn0∑
i=0

αian+i +

h∑
i=p−n0

αian+i

≡
Cn0∑
i=0

αi(aqamakp−1an0+i) +

h∑
i=p−n0

αi(aqam+1an0+i−p)

= aq

amakp−1

Cn0∑
i=0

αian0+i + am+1

h∑
i=p−n0

αian0+i−p

 (mod p)

We now apply this lemma’s factorization to 2a2Ma,b
n via Proposition 1. Addi-

tionally, we make use of Theorem 1 multiple times to produce a more elegant final

form. Note that the third case in the formula for 2a2Ma,b
n below (where n0 = p−1)

is more elegant after our application of Theorem 1 because we intend to set Ma,b
n

congruent to 0 in what follows.

Proposition 5. For all n ∈ N, if p ∤ b2 − 4a2 and if we let ℓ = p − 2 − m, then

modulo p > 2, 2a2Ma,b
n is congruent to
2a2T a,b

q Ma,b
n0

(n)p = qn0, n0 < p− 2

T a,b
q

(
bT a,b

m (T a,b
p−1)

k+1 − T a,b
m+1

)
(n)p = qm(p− 1)k(p− 2)

(b2 − 4a2)m+1− p−1
2 T a,b

q

(
bT a,b

ℓ − (T a,b
p−1)

k+1T a,b
ℓ+1

)
(n)p = qm(p− 1)k(p− 1).

In particular, when a = b = 1, we get that, modulo p,

2Mn ≡


2TqMn0

(n)p = qn0, n0 < p− 2

Tq

(
TmT k+1

p−1 − Tm+1

)
(n)p = qm(p− 1)k(p− 2)

(−3)m+1− p−1
2 Tq

(
Tℓ − T k+1

p−1 Tℓ+1

)
(n)p = qm(p− 1)k(p− 1).

Proof. Since 2a2Ma,b
n = (4a2 − b2)T a,b

n + 2bT a,b
n+1 − T a,b

n+2 by Proposition 1, Lemma

1 tells us that if (n)p = qn0 with n0 < p − 2, then 2a2Ma,b
n ≡ T a,b

q

(
2a2Ma,b

n0

)
(mod p).

The lemma also tells us that if (n)p = qm(p− 1)k(p− 2), then modulo p,

2a2Ma,b
n ≡ T a,b

q

(
T a,b
m (T a,b

p−1)
k((4a2 − b2)T a,b

p−2 + 2bT a,b
p−1) + T a,b

m+1(−T a,b
0 )

)
.
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In this case we can use Theorem 1 (and T a,b
1 = b) to see that T a,b

p−1 ≡ (b2 − 4a2)
p−1
2

(mod p) and T a,b
p−2 ≡ (b2−4a2)

p−1
2 −1T a,b

1 = (b2−4a2)−1T a,b
p−1b (mod p) (noting that

p ∤ b2−4a2), thus (4a2−b2)T a,b
p−2+2bT a,b

p−1 ≡ bT a,b
p−1 (mod p). This yields our desired

form,

2a2Ma,b
n ≡ T a,b

q

(
bT a,b

m (T a,b
p−1)

k+1 − T a,b
m+1

)
(mod p).

Lastly, the lemma (alongside Theorem 1) tells us that if (n)p = qm(p−1)k(p−1),

then 2a2Ma,b
n is congruent to

T a,b
q

(
T a,b
m (T a,b

p−1)
k((4a2 − b2)T a,b

p−1) + T a,b
m+1(2bT

a,b
0 − T a,b

1 )
)

= T a,b
q

(
−(b2 − 4a2)T a,b

m (T a,b
p−1)

k+1 + bT a,b
m+1

)
≡ T a,b

q

(
−(b2 − 4a2)m+1− p−1

2 T a,b
p−1−m(T a,b

p−1)
k+1 + b(b2 − 4a2)m+1− p−1

2 T a,b
p−2−m

)
= (b2 − 4a2)m+1− p−1

2 T a,b
q

(
bT a,b

ℓ − T a,b
ℓ+1(T

a,b
p−1)

k+1
)

(mod p).

We now set both sides of the above equality congruent to 0 so that computing the

density of Motzkin numbers divisible by p becomes a simple matter of bookkeeping.

Note that in order to obtain a nice form below, we apply Corollary 2 to move T a,b
p−1

to the right-hand side of all equivalences.

Corollary 3. If p ∤ b2 − 4a2, ℓ = p− 2−m, p > 2, and if T a,b
n ̸≡ 0 (mod p) for all

natural numbers n < p, then modulo p,

Ma,b
n ≡ 0 if and only if


Ma,b

n0
≡ 0 (n)p = qn0, n0 < p− 2

bT a,b
m ≡ (T a,b

p−1)
k+1T a,b

m+1 (n)p = qm(p− 1)k(p− 2)

bT a,b
ℓ ≡ (T a,b

p−1)
k+1T a,b

ℓ+1 (n)p = qm(p− 1)k(p− 1),

where 0 ≤ m < p − 1 implies that 0 ≤ ℓ < p − 1. In particular, when a = b = 1,

then modulo p,

Mn ≡ 0 if and only if


Mn0

≡ 0 (n)p = qn0, n0 < p− 2

Tm ≡ T k+1
p−1 Tm+1 (n)p = qm(p− 1)k(p− 2)

Tℓ ≡ T k+1
p−1 Tℓ+1 (n)p = qm(p− 1)k(p− 1).

Corollary 3 generalizes existing results about the divisibility of the Motzkin num-

bers modulo small primes. For example, p = 5 has treatments in [2] (Theorem 5.4)

and [8] (Theorem 3) that we can procedurally extract from Corollary 3 by writing

down the first 3 Motzkin numbers (1, 1, 2) and the first 5 central trinomial coeffi-

cients (1, 1, 3, 7, 19 ≡ 1, 1, 3, 2, 4 (mod 5)) and checking finitely many congruences

to find all forms of (n)p for which Mn ≡ 0 (mod p).
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Note that we require T a,b
n ̸≡ 0 (mod p) for every n < p since this implies the

same statement holds for all n by Proposition 4. Thus, we do not need to consider

when T a,b
q ≡ 0 (mod p) in setting the right-hand side of Proposition 5 congruent

to 0. If T a,b
n ≡ 0 (mod p) for some n (below p), then Proposition 6 of [5] tells us

that 0 has density 1 in Ma,b
n (i.e., the set of indices {i ∈ N | Ma,b

i ≡ 0 (mod p)} has

density one). Hence, including this assumption does not hinder us in our goal.

We now perform the bookkeeping of computing the density of 0. We begin by

stating a result in the generality of Lemma 1 so as to encapsulate the ideas of this

method independently of the particulars discovered in Proposition 5 by application

of Theorem 1.

Lemma 2. Let an = ct [Pn], where P is symmetric, degP = 1, bn =
∑h

i=0 αian+i,

Cn = min(h, p−n−1), p > h, and I = {p−h, p−h+1, . . . , p−1}×{0, 1, . . . , p−2}.
If an ≡ 0 (mod p) for some natural number n (n may be taken less than p), then

the asymptotic density of 0 in bn mod p is 1, and otherwise it is equal to

|{0 ≤ n < p− h | bn ≡ 0 (mod p)}|
p

+

∣∣∣{(n,m) ∈ I | am
∑Cn

i=0 αian+i ≡ −am+1

∑h
i=Cn+1 αiai−(p−n) (mod p)

}∣∣∣
(p− 1)(p+ 1)

+

∣∣∣{(n,m) ∈ I | am
∑Cn

i=0 αian+i ≡ −ap−1am+1

∑h
i=Cn+1 αiai−(p−n) (mod p)

}∣∣∣
(p− 1)p(p+ 1)

.

Proof. The case in which there exists n such that an ≡ 0 (mod p) is treated in

Proposition 6 of [5].

By Lemma 1, bn ≡ 0 (mod p) if and only if either n0 < p − h and bn0 ≡ 0

(mod p) or n0 ≥ p − h and amakp−1

∑Cn0
i=0 αian0+i ≡ −am+1

∑h
i=p−n0

αiai−(p−n0)

(mod p). Note that, by its definition, an is a generalized central trinomial coefficient

sequence so that by Corollary 2, we have that a2p−1 ≡ 1 (mod p). Thus, akp−1 is

congruent to ap−1 or 1 modulo p depending on the parity of k. In the set of strings,

(n)p = qm(p − 1)kn0, over Fp, the distribution on k is geometric (with success

probability of a trial being 1
p ) so that it is even p

p+1 of the time and odd 1
p+1 of the

time.

Putting this all together, each element of the set {0 ≤ n < p− h | bn ≡ 0 (mod p)}
contributes 1

p to the density of 0 in bn mod p since 1
p of the strings over Fp end with

such n. Likewise each element of the set{
p− h ≤ n < p, 0 ≤ m < p− 1 | am

Cn∑
i=0

αian+i ≡ −am+1

h∑
i=Cn+1

αiai−(p−n)

}

(with congruences modulo p) corresponds to k being even and thus contributes
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1
p · 1

p−1 · p
p+1 = 1

(p−1)(p+1) to the density of 0, while{
p− h ≤ n < p, 0 ≤ m < p− 1 | am

Cn∑
i=0

αian+i ≡ −ap−1am+1

h∑
i=Cn+1

αiai−(p−n)

}

(with congruences modulo p) corresponds to k being odd and thus contributes
1
p · 1

p−1 · 1
p+1 = 1

(p−1)p(p+1) to the density.

We now apply Lemma 2 to the generalized Motzkin numbers using the equations

from Corollary 3 in place of those from Lemma 1. Furthermore, reasoning about

the densities in T a,b
n mod p further yields a description of the density of all other

values in Ma,b
n mod p in terms of the density of 0, D0.

Theorem 3. If T a,b
n ≡ 0 (mod p) for some natural number n < p, then the asymp-

totic density of 0 in Ma,b
n is 1. Otherwise, for all p > 2, it is equal to

D0 =

∣∣{n < p− 2 | Ma,b
n ≡ 0 (mod p)

}∣∣
p

+
2
∣∣∣{m < p− 1 | bT a,b

m ≡ T a,b
p−1T

a,b
m+1 (mod p)

}∣∣∣
(p− 1)(p+ 1)

+
2
∣∣∣{m < p− 1 | bT a,b

m ≡ T a,b
m+1 (mod p)

}∣∣∣
(p− 1)p(p+ 1)

.

Furthermore, if
{
T a,b
n | n ∈ Fp

}
generates F×

p as a multiplicative group, then the

asymptotic density of any fixed k > 0 in Ma,b
n mod p is 1−D0

p−1 .

Proof. The value of D0 is given by combining Lemma 2 with Corollaries 2 and 3 (we

may assume p ∤ b2 − 4a2, as otherwise T a,b
p−1 ≡ 0 (mod p)). Note that the factors of

2 come from the fact that n takes two values when p−2 ≤ n < p (namely p−2 and

p− 1) and Corollary 3 shows that in both cases we count the same set of elements.

To prove the last claim, we model T a,b
n (as a function from N to F×

p ) by a di-

rected multigraph whose states are the elements of F×
p , and whose p outgoing tran-

sitions are labeled by k ∈ Fp, where a transition from i labeled k goes to state

j = i ·T a,b
k mod p. By Proposition 4, we can read the value of T a,b

n off of this graph

by starting at the state 1 and following the transitions corresponding to the digits,

(n)p. The state we end at is the value of T a,b
n mod p. As it happens, each state also

has exactly p incoming transitions, since the number of transitions from i to j is

equal to the number of transitions from 1 to i−1j. Thus, counting the number of

these transitions from all i (to a fixed j) is equal to counting all transitions leaving 1,

of which there are p. The assumption that
{
T a,b
n | n ∈ Fp

}
generates F×

p as a multi-

plicative group is equivalent to the statement that this directed graph is connected.

Treating this graph as a Markov process (where every transition has probability
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1
p ), our assumption implies that the process is irreducible. Each state having a

self-loop (labeled by 0) makes the process aperiodic and irreducible so that every

state converges over time to the stable state. All in-degrees and out-degrees of our

graph being p implies that the stable state is the uniform state
( 1
p−1 · · · 1

p−1

)
.

This implies that the density of each element of F×
p in the sequence T a,b

n is 1
p−1 .

Finally, from Proposition 5 we can then see that each value of F×
p must have

equal density in Ma,b
n mod p (because of the factor of T a,b

q in each case).

There is also an alternative direct argument for the final statement of Theorem

3 that does not appeal to Proposition 5. We only sketch the argument here to

avoid introducing unnecessary background. The argument goes that with density

1, a random walk on the Rowland-Zeilberger automaton (see [9]) of Ma,b
n mod p

reaches either the 0 state or else the subgraph corresponding to T a,b
n mod p (which

is exactly the graph described two paragraphs ago) and then cannot escape in either

case. In fact, one interpretation of this paper is as describing what proportion of

random walks on this automaton that reach the 0 state. For example, under this

interpretation, the first summand in D0 above corresponds to the probability that

walks go to the 0 state on their very first step.

Conjecture 1. For all a, b ∈ Z, if p does not divide any member of the set

Sp =
{
T a,b
n | n ∈ Fp

}
, then Sp generates F×

p as a multiplicative group. Equiv-

alently,
{
T a,b
n mod p | n ∈ N

}
= F×

p . Consequently, all values of F×
p appear in

(T a,b
n mod p)n∈N and (Ma,b

n mod p)n∈N, and furthermore these values appear with

equal density.

In order to complete the full picture, note that when p = 2, we get that

D0 =

 1 if b ≡ 0 (mod 2)
0 if a ≡ 0 and b ≡ 1 (mod 2)
1
3 if a ≡ 1 and b ≡ 1 (mod 2)

.

When b = T a,b
1 ≡ 0 (mod 2), this is because the argument that D0 = 1 when

p | T a,b
n for some n (including n = 1) does not require p > 2. Otherwise, when

a ≡ 0 (mod 2) we have Ma,b
n mod 2 = ct

[
1n(1− x2)

]
= 1 for all n, and when a ≡ 1

(mod 2) we have Ma,b
n mod 2 ≡ Mn and it is not hard to manually derive that the

density of 0 in Mn mod 2 is 1
3 (for example, treat Figure 1 of [8] as a Markov process

and compute the probability of ending at each sink).

Finally, when a = b = 1 above, we get a simple formula for the density of Motzkin

numbers divisible by p. Furthermore, applying Theorem 1 to this simple formula

yields the lower bound of D0 ≥ 2
p(p−1) , which has appeared in the conclusion of [1].

Corollary 4. The asymptotic density of 0 in Mn mod p is 1 if p | Tn for some
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n < p, and otherwise, for p > 2, it is

D0 =
|{n < p− 2 | Mn ≡ 0 (mod p)}|

p

+
2 |{m < p− 1 | Tm ≡ Tp−1Tm+1 (mod p)}|

(p− 1)(p+ 1)

+
2 |{m < p− 1 | Tm ≡ Tm+1 (mod p)}|

(p− 1)p(p+ 1)
.

Additionally, if Conjecture 1 is true for a = b = 1, then all other elements of Fp

have density 1−D0

p−1 . Lastly, D0 ≥ 2
p(p−1) is a lower bound.

Proof. Since we know that T0 = T1 = 1, that T2 = 3, that

Tp−3 ≡ (−3)
p−1
2 −2T2 = −(−3)

p−1
2 −1 ≡ −Tp−2 (mod p),

and that Tp−1 ≡ (−3)
p−1
2 ≡ ±1 (mod p), we are guaranteed that each of the second

and third sets in D0 above are non-empty (since T0 ≡ T1 and Tp−3 ≡ (−1)Tp−2

(mod p)) giving us a lower bound of

D0 ≥ 2 · 1
(p− 1)(p+ 1)

+
2 · 1

(p− 1)p(p+ 1)
=

2

p(p− 1)
.

3.1. Application to Other Sequences

To further demonstrate the fruitfulness of this approach, we quickly derive analogous

results for a few additional sequences.

Proposition 6. Let sn = ct
[
(x−1 + 1 + x)nx

]
, which is the sequence A005717 of

[7]. Then the asymptotic density of 0 in sn mod p is 1 if p | Tn for some n < p and

otherwise, for p > 2, it is

D0 =
|{m < p− 1 | Tm ≡ Tp−1Tm+1}|+ p |{m < p− 1 | Tm ≡ Tm+1}|

(p− 1)(p+ 1)

(with congruences modulo p). Additionally, D0 ≥ 1
p−1 is a lower bound.

Proof. First note that 2sn = Tn+1 − Tn. Consequently, Lemma 2 tells us that

D0 =
|{0 ≤ n < p− 1 | sn ≡ 0 (mod p)}|

p

+
|{0 ≤ m < p− 1 | Tm ≡ Tp−1Tm+1 (mod p)}|

(p− 1)(p+ 1)

+
|{0 ≤ m < p− 1 | Tm ≡ Tm+1 (mod p)}|

(p− 1)p(p+ 1)
,
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and so our formula for D0 follows from the observation that sn ≡ 0 (mod p) if and

only if Tn ≡ Tn+1 (mod p). Lastly, the lower bound follows from the fact that

T0 = T1 = 1, that Tp−1 ≡ (−3)
p−1
2 ≡ ±1 (mod p), and that, also by Theorem 1,

Tp−3 ≡ (−3)
p−1
2 −2 · 3 = −(−3)

p−1
2 −1 ≡ −Tp−2 (mod p).

Therefore, D0 ≥ 1+p·1
(p−1)(p+1) =

1
p−1 .

Because D0 = 1
p−1 for p = 5, 11, 13 and others, this bound is tight. We turn now

to the Riordan numbers, Rn = ct
[
(x−1 + 1 + x)n(1− x)

]
, which is the sequence

A005043 of [7].

Proposition 7. The asymptotic density of 0 in Rn mod p is 1 if p | Tn for some

n < p and otherwise, for p > 2, it is

D0 =
|{m < p− 1 | 3Tm ≡ Tp−1Tm+1}|+ p |{m < p− 1 | 3Tm ≡ Tm+1}|

(p− 1)(p+ 1)

(with congruences modulo p). Additionally, D0 ≥ 1
p−1 is a lower bound.

Proof. First note that Rn = −Tn+1 + 3Tn. Consequently, Lemma 2 tells us that

D0 =
|{0 ≤ n < p− 1 | Rn ≡ 0 (mod p)}|

p

+
|{0 ≤ m < p− 1 | 3Tm ≡ Tp−1Tm+1 (mod p)}|

(p− 1)(p+ 1)

+
|{0 ≤ m < p− 1 | 3Tm ≡ Tm+1 (mod p)}|

(p− 1)p(p+ 1)
,

and so our formula for D0 follows from the observation that Rn ≡ 0 (mod p) if and

only if 3Tn ≡ Tn+1 (mod p). Lastly, the lower bound follows from the fact that

3T1 = T2 = 1 and that, by Theorem 1,

−Tp−1 ≡ −(−3)
p−1
2 · T0 = 3(−3)

p−1
2 −1 ≡ 3Tp−2 (mod p).

Therefore, D0 ≥ 1+p·1
(p−1)(p+1) =

1
p−1 .

Because D0 = 1
p−1 for p = 5, 11, 23, 31 and others, this bound is tight. We get

the same result for A005773 of [7], which is no coincidence.

Proposition 8. Let sn = ct
[
(x−1 + 1 + x)n(1 + x)

]
, which is the sequence A005773

of [7]. Then the asymptotic density of 0 in sn mod p is 1 if p | Tn for some n < p

and otherwise, for p > 2, it is

D0 =
|{m < p− 1 | Tm ≡ −Tp−1Tm+1}|+ p |{m < p− 1 | Tm ≡ −Tm+1}|

(p− 1)(p+ 1)

(with congruences modulo p). Additionally, D0 ≥ 1
p−1 is a lower bound.
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Proof. First note that 2sn = Tn+1 + Tn. Consequently, Lemma 2 tells us that

D0 =
|{0 ≤ n < p− 1 | sn ≡ 0 (mod p)}|

p

+
|{0 ≤ m < p− 1 | Tm ≡ −Tp−1Tm+1 (mod p)}|

(p− 1)(p+ 1)

+
|{0 ≤ m < p− 1 | Tm ≡ −Tm+1 (mod p)}|

(p− 1)p(p+ 1)
,

and so our formula for D0 follows from the observation that sn ≡ 0 (mod p) if and

only if Tn ≡ −Tn+1 (mod p). Lastly, the lower bound follows from the fact that

T0 = T1 = 1 and that, by Theorem 1,

Tp−3 ≡ (−3)
p−1
2 −2 · 3 = −(−3)

p−1
2 −1 ≡ −Tp−2 (mod p).

Therefore, D0 ≥ 1+p·1
(p−1)(p+1) =

1
p−1 .

Because D0 = 1
p−1 for p = 5, 11, 23, 31 and others, this bound is tight. In fact,

these formulas show an unexpected connection between these last two sequences.

Corollary 5. Let sn = ct
[
(x−1 + 1 + x)n(1 + x)

]
, which is A005773 of [7], and let

Rn = ct
[
(x−1 + 1 + x)n(1− x)

]
, which is A005043 of [7]. Then for every prime,

p, the densities of 0 in the sequences (sn mod p)n∈N and (Rn mod p)n∈N are equal.

Proof. This result follows from Propositions 7 and 8 for these densities along with

a simple application of Theorem 1: Since

3Tm ≡ 3(−3)m− p−1
2 Tp−1−m = −(−3)m+1− p−1

2 Tp−1−m (mod p)

and Tm+1 ≡ (−3)m+1− p−1
2 Tp−2−m (mod p), we have that 3Tm ≡ Tm+1 (mod p) if

and only if −Tp−1−m ≡ Tp−2−m (mod p). Therefore,

|{m < p− 1 | 3Tm ≡ Tm+1 (mod p)}| = |{m < p− 1 | Tm ≡ −Tm+1 (mod p)}|

because these sets biject via m 7→ p− 2−m. Likewise, Theorem 1 tells us that

3Tm ≡ −(−3)m+1− p−1
2 Tp−1−m ≡ −Tp−1(−3)m+1Tp−1−m (mod p)

and that

Tp−1Tm+1 ≡ (−3)
p−1
2 (−3)m+1− p−1

2 Tp−2−m = (−3)m+1Tp−2−m (mod p),

so 3Tm ≡ Tp−1Tm+1 (mod p) if and only if −Tp−1Tp−1−m ≡ Tp−2−m (mod p).

Therefore,

|{m < p− 1 | 3Tm ≡ Tp−1Tm+1}| = |{m < p− 1 | Tm ≡ −Tp−1Tm+1}|

(with congruences modulo p) because these sets biject via m 7→ p− 2−m.
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