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Abstract
We prove a new functional equation for the generalized Motzkin numbers modulo
a prime: MZ’_bg_n = (b2 — 4a?)"z "M (mod p). We also give a formula for

the density of 0 in the sequence of generalized Motzkin numbers modulo a prime,
p, in terms of the first p generalized central trinomial coefficients T%* mod p (with
n < p). We apply our method to various other sequences to obtain similar formulas.
These formulas provide easy-to-compute tight lower bounds for the density of 0 in
our sequences modulo primes. They also reveal an unexpected connection between
the Riordan numbers and the number of directed animals of size n. Along the way,
we provide a general characterization of the n such that p | M®®, which generalizes
previous results of Deutsch and Sagan.

1. Introduction

The Motzkin numbers (A001006 of [7]), M, count the number of lattice paths from
the origin to (n, 0), which do not go below the z-axis, with steps UP = (1,1), LEVEL
= (1,0), and DOWN = (1,—1). See [3] for many other combinatorial settings in
which the Motzkin numbers arise. Some work has been done to characterize M,
and similar sequences modulo various prime powers. For example, Deutsch and
Sagan [2] characterized M,, mod 3. They also described all n such that M, = 0
(mod p) for p =2,4,5.

In Section 2, we prove the following new functional equation for Motzkin numbers
modulo a prime (Theorem 2):

My 51 =(-3)" "“M;  (mod p).

This is accomplished by proving a similar functional equation for the central trino-
mial coefficients, which additionally functions as a central tool in Section 3.
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The central trinomial coefficients (A002426 of [7]), T},, count the number of lattice
paths from the origin to (n,0) using the same steps (UP, LEVEL, and DOWN) as
Motzkin paths, but where there is no restriction that the paths not go below the
x-axis (these are sometimes called grand Motzkin paths).

In Section 3, Theorem 3 answers the question, “What is the density of the (gen-
eralized) Motzkin numbers that are divisible by a prime p?” This is accomplished
by reducing the study of the (generalized) Motzkin numbers modulo p to the study
of the lesser-known (generalized) central trinomial coefficients modulo p, which have
a simpler characterization provided by Proposition 4. This reduction allows us to
provide a general characterization (in Corollary 3) of n such that M,, =0 (mod p)
in terms of the first p central trinomial coefficients. Theorem 3 follows from this
characterization and tells us that

{n<p—2|M,=0 (modp)}
p
+2\{m<p—1\T =Tp-1Tn+1  (mod p)}|
(rp—D+1)
+2\{m<p—1\TmE m+1 (mod p)}|
(p—1Dpp+1)

Dy =

is the density of the Motzkin numbers divisible by p. This value, Dy, can be
efficiently computed by checking fewer than 3p simple congruences.

For readers familiar with the Rowland-Zeilberger automaton [9], the intuition
that the Motzkin numbers modulo p should be studied via the central trinomial
coefficients comes from the observation that a random walk on the finite state
machine for the Motzkin numbers quickly lands within, and never leaves, a subgraph
corresponding to the finite state machine for the central trinomial coefficients, which
have a simple algebraic description given by Proposition 4. The formal instantiation
of this intuition, by rewriting M,, mod p using combinations of central trinomial
coefficients, is provided in Propositions 1 and 5. This approach of studying M,, mod
p via the central trinomial coefficients has previously been used by the author in [5]
to show that M,, mod p is uniformly recurrent if and only if p t T,, for all n < p.

In the final subsection of this paper, we demonstrate the general applicability of
our approach by applying it to a few other sequences from the Online Encyclopedia
of Integer Sequences [7]. This analysis yields a new result (Corollary 5): for every
prime, p, the density of 0 in the Riordan numbers (A005043 of [7]) modulo p is
equal to the density of 0 in the sequence A005773 of [7] modulo p.

The author would like to thank his advisor, Professor Michael Larsen, for his
support and for suggesting this problem, which began the author’s path in this re-
search direction. The author would also like to thank the referee for their invaluable
comments on this paper.
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1.1. Notation and Conventions

The generalized Motzkin numbers, M®°, count the same lattice paths as the usual
Motzkin numbers but where there are a distinct colors for UP and DOWN steps
and b distinct colors for LEVEL steps, and two paths are equal only if they have
the same steps and colors at each step. All of the results for the Motzkin numbers
in this paper are proved in the generality of the generalized Motzkin numbers.

As with the generalized Motzkin numbers, the generalized central trinomial co-
efficients, T%" have a colors associated with UP and DOWN steps and b colors
associated with LEVEL steps. The central trinomial coefficients are so named be-
cause

T3 =ct [(az™ + b+ az)"],
where ct extracts the “constant term” of a Laurent polynomial. Under this paradigm,
we note that
MY =ct [(az™' +b+az)" - (1 —2?)]
because the paths to (n,0) that do cross the x-axis can be bijected with arbitrary
paths to (n,2).

Throughout this paper, the superscripts @ and b are omitted from M2® and
T%® when a = b = 1 (i.e., M, = M} and T,, = T}'). If Q(z) is a Laurent
polynomial, then ct [Q(z)] denotes the constant term of Q(x) (i.e., the coefficient of
1Y), and deg Q(x) denotes the absolute value of the largest exponent of z (positive
or negative) appearing in Q(z) with non-zero coefficient. If ¥ is a set, ¥* denotes
the set of words (i.e., strings) of any length whose characters are from ¥ (including
the empty word). If n is a non-negative integer, and p is a prime, then let (n), € Fy
be the word whose characters are the digits of n in base p. That is, if we let (n),[]
denote the ith digit in the base-p expansion of n so that n = Ziezm(n)p[i]pi, then
(n)p = ((n)p [length(n,) —1]) - -+ ((n),[1])((n),[0]). Note that when working with
strings, exponents denote repetition. For example, (p—1)* € [} denotes a run of k
characters that are all the character (p — 1). Also note that every statement made
in this paper about (n), should also hold for 0%(n), for every k.

In this paper, we prove results dealing with the density of certain values within
sequences:

Definition 1. The asymptotic density, or just density, of a subset, S C N is

. Sn{neN|n< N}
lim .
N—o0 N

When it exists, this is equal to

. SN{neN|n<p"}
lim ~ ,
N—o0 P

which is the form we primarily use. Lastly, if p is a prime, we say that the density
of a value x € F,, in a sequence a,, over IF,, is the usual density of {n € N | a,, = z}.
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2. Symmetry

In this section, we provide an elementary proof of a congruence result relating T}, b
and T;Lbl—k7 which was first proven by Noe [6] using Legendre polynomials. This
symmetry is useful in proving the primary results of this paper in the next section.
We also derive the new corresponding result for M * and M;’fbgfk.

We follow the philosophy that the modulo p study of the generalized Motzkin
numbers, M?, is reducible to the study of their corresponding generalized central
trinomial coefficients, T%*, which are well-structured and determined by their first
p elements (see Proposition 4). Thus, we begin by stating an explicit rule for this
reduction, which is itself a specific instance of a family of such rules for reducing to
the study of T2* for any sequence of the form ct [(ax_l +b+ ax)”Q], where @ is
some Laurent polynomial in z (see Section 4 of [5] for a discussion of this family of
equations).

Proposition 1. For all a,b € Z andn € N,
202 MY = (4a® — 0*)T" + T30 — T,

and in particular,
2Mn = 3Tn + 2Tn+1 - Tn+2.

Proof. Let P = ax~! 4+ b+ ax so that 7% = ct [P"]. Define

Ay =ctz-P"|=ct[z7" - P"] and
B, :=ct [x2 . P"] =ct [x_Q . P"] .

This allows us to write M = ct [(1 — 2?) - P"| = T4 — B,,.

From Tﬁfl =ct [(az™! +b+azx)" ] =ct [(az™! + b+ az) (az™' + b+ ax)"]
we can conclude that Tﬁfl = 2aA, +bT" so that 2aA,, = Tﬁ_’fl —bTb. Similarly,
from A,41 = aT;f’b + bA,, + aB,, we find that

oy = 2aA, 11 + 0T,
= 2a(aT®" 4+ bA,, + aB,) + b(2aA,, + bT2?)
= (b + 2a*)T2" + 2b(2aA,,) + 2a*B,
= (b® + 2a°)T" + 2b(T5, — bTe?) + 20°B,
and thus 2a2B,, = T0, — 26T, + (b — 2a%) T2,
In conclusion, 2a2 M3 = 2a2T%" —2a%B,, = (4a® —b*)T* + 2bTﬁf1 — Tng. O

Next, we give a mostly combinatorial proof of a general two-term recurrence for
the sequences 7", which is analogous to the well-known two-term recurrence for

n

the Motzkin numbers (see Corollary 1).
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Proposition 2. For all a,b,n € Z withn > 2,

nT® = b(2n — )T, — (b* — 4a®)(n — 1)T™"

n—2

and in particular,
nT, = (2n—1)Th—1 + (3n — 3)Th—o.

Proof. Recall that M®® counts the number of lattice paths from (0,0) to (n,0)
using a distinct UP and DOWN steps, (1,1) and (1, —1), respectively, and b distinct
LEVEL steps, (1,0), which do not go below the x-axis. Additionally, 7%* simply
counts the number of such paths without the x-axis restriction, and A,, = ct [z - P"]
(as in Proposition 1) does the same but counting paths to (n,1).

Let 7, count the number of paths from the origin to (n,1) such that the only
intersection with the x-axis is the starting point. Then ~,, = aMfLL’_b1 since adding
an UP step to the beginning of a path (there are a ways to do this) counted by
the Mg_bl gives a unique path counted by ~,. Furthermore, ny, = A,, since there
are nvy, paths from the origin to (n,1) that never return to the x-axis and which
have a special vertex labeled. This labeled vertex partitions the path into a front
and a back (consisting of UP, DOWN, and LEVEL steps) P = F'B. Now the path
@ = BF is an arbitrary path to (n,1), counted by A,, whose rightmost-lowest
point is the labeled vertex (making the process reversible, and hence a bijection).
Putting these together, we get A, = nvy, = aanfl.

We now combine the fact that T%° = 2aA,,_1 + st;bl (as discussed in the proof
of Proposition 1), the equation A,_1 = a(n — 1)Mgf2, and Proposition 1 to get

T = 2aA, -1 +bT20
= (n = 1)(20° M%) + 0T,
= (n—1) (40> = B)T3L, + T4, — Tt + 0T,

= —(n — )T + (2bn — 2b + )T™", — (B> — 4a®)(n — 1)T™"

n—2’
from which we can conclude nT%" = b(2n — 1)T™", — (b2 — 4a?)(n — 1)T%,. O

In fact, the already-known analogous recurrence for the generalized Motzkin
numbers can be derived directly from the previous two results by a tedious algebraic
manipulation. An independent proof is also given by Woan in [10].

Corollary 1. For all a,b,n € Z with n > 2,

(n+ 2)ME® = b(2n + DML, — (8 — 4a®)(n — 1M

n—2°
and in particular,

(n+2)M, =2n+1)M,_1 + (3n — 3) M, _2.
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O
As it turns out, Proposition 2 is sufficient to prove our symmetry directly! See
equation 14 of [6] for an alternative proof using Legendre polynomials.

Theorem 1. For alla,beZ,p > 2, and 0 < k < %,

T;;blfk = (b - 4a2)%_kT£’b (mod p),

and in particular,
— el g
Tpflfk = (—3) 2 Ty (mod p).

Proof. We use induction on the values k& < ”2;1. For k = p—;l, we have that

a,b _mqab __ 32 2\0rna,b
Tp—l—”gl —Tp;1 = (b —4a ) Tpgl'

For k = 2, we wish to show that T4 = (1% — 4a®)THY, (mod p), which follows
2

from Proposition 2 since

1
9-17eb = P lpeb
= 2 2
-1
= bpTy, — (b° — 4a?) (p2 )TZ’b3
2

Now let 0 < k < £ 53. Then using Proposition 2 and induction we have that
(p—1- k)T;;blik is equal to
b2(p— 1= k) = DI, = (B —da®)(p — 2= K)T;5
= —b(2k + 3)T5"_p + (B — 4a®) (2 + k)T,
= —b(2k + 3)(b? — 4a%)"T FTEL + (24 k)(b° — 4a®) T RTE

k+2
(b* — 40%) "7 7 ((k + 20T, - b(2k + 3)TEY )

= (b — 4a?)" Tk (b(2k +3)TY — (b — 4a2)(k + DTE — b(2k + 3)T,?’+b1>
(—k — 1)(b® — 4a2) "= ~FT0?

(p—1—Fk)(b* - 4a2)pTﬂ_kT;:’b (mod p).

O

In the case that p { b — 4a?, we have that b> — 4a? is invertible so that we can
also conclude that T2" = (b2 — 4a2)k_p%lT;;b1_k (mod p). Of course, in the case
that p | b* — 4a?, we instead conclude that T,?’b =0 (mod p) for all 25+ < k < p.

Before moving on, we quickly mention an easy and useful Corollary of Theorem

1. In [6], this is a corollary of Theorem 8.8.
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Corollary 2. For all a,b € Z, and all primes, p, such that p{b* — 4a?,

p—1 p—1

(T“’b )_1 =T (mod p).

2
Equivalently, (T;ﬂ) =1 (mod p).

Proof. By Theorem 1, T;f;bl = (b2 —4a%)"T (mod p) so that, assuming p { b2 — a2,
we have (T )2 is congruent to 1 modulo p by Fermat’s little theorem. O

Remark 1. Theorem 1 seems to help explain the observed density of the sequence
of primes that do not divide any central trinomial coefficient (A113305 of OEIS [7]).
For primes less than 10° the density of these primes is near 0.6075. As a corollary
of Proposition 4 of the next section, p is in this sequence if and only if it does not
divide any of the first p central trinomial coefficients. But the author was originally
surprised by how high this density seems to be, since if we pretend that on average
T, (with n < p) has a % chance of being congruent to 0 modulo p, then we expect

p
the density to be lim,_e (1 - %) — ¢! ~ 0.3679. But in view of Theorem 1,

we now know that p does not divide any central trinomial coefficient if and only

if it does not divide the first in of them! Now if we make the same assumption
ptl
we instead get the density estimate lim,_, oo (1 — %) P e x 0.6065, which is

much closer to the experimental value.

The analogous result to Theorem 1 for the generalized Motzkin numbers can
be proven directly from their two-term recurrence in a very similar fashion to the
proof of Theorem 1. However, we instead provide a proof using Proposition 1 and
Theorem 1.

Theorem 2. For alla,be Z,p >3, and 0 < k < %;

M;’—b:s—k = (b* - 402)%4%]\/[;?’17 (mod p),

and in particular,

M3 = (=3)"T "My (mod p).

Proof. By Proposition 1, 2a2MZ’7b37k is equal to

a,b a,b a,b
(40® = V)T, + 2070, —To

= —(b° — 4a®) T RTEY, £ 26(0? — 4a%) T TETEY, — (b7 — 4a®) T AT

p=3 __ a, a, a,
= (8 = 40%) "7 (Tl + 2T + (40 = 0T

= (1® — 4a®)"7 F(2a> M) (mod p).
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This gives us the theorem when «a is not a multiple of p, and otherwise

Mpp® = ct [(a2™! + b+ az)"(1 - a*)] = ct [p"(1 - 2*)] =b"  (mod p)

in which case (b2 — 4a2)"z kMM = pp—8-2kpk — pp—3—k = M;’_bg_k (mod p), as

desired. 0

As an additional application of Theorem 1 we prove the following conjecture
(Batalov 2022) from the OEIS page for the Motzkin numbers (A001006 of [7]),
which can also be inferred from Tables 4 and 5 of [1]: If p is a prime of the form
6m + 1, then M,,_» is divisible by p. In fact, we can prove a stronger result:

Proposition 3. A prime p divides My,_o if and only if p=1 (mod 3).

Proof. For p = 2, we know that 21 My and 2 # 1 (mod 3), so assume p > 2. Note
that T, =1 (mod p) (see Proposition 4). We prove the proposition by reducing to
central trinomial coefficients:

OM,_y = 3Ty_s +2T,_1 — T,
=3(-3)" +2(-3)"7 —1
= —(=3)"7 +2(-3)"7 —1

p—

=(-3)"= —1 (mod p)

and therefore, by quadratic reciprocity, p | M,_s if and only if (—3)}72;1 =1 (mod p)
if and only if p =1 (mod 3). O

3. Density

In this section, we answer the question: “What is the density of the Motzkin num-
bers that are divisible by p?” In Subsection 3.1, we do the same for some additional
sequences. In all cases, answering this question is accomplished by further elab-
orating the consequences of Proposition 1 (or analogous results) and Theorem 1
alongside the following simple description of 7.%* mod p.

Proposition 4. For every prime p and n € N, if a, = ct[P"] where P is a
Laurent polynomial with deg P = 1, then a, = [[a),;; (mod p). In particular,
Tt = HT&;’pm (mod p).

Proof. We induct on the number of digits in (n),. Certainly if n = (n),[0] < p,
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then a, = a(y), o). Otherwise, if n = gp + (n),[0], then

an = ct [P(a) w01

= ot [P(xP)QP(x)WP[OI] (P(z)? = P(z") (mod p))
= ct [P(zP)9] ct [P(J:)(")P[O]} ((n)p[0] < p so there is no cancellation)
= ct [P()7] ct [ P(x) 1Y) (ct [P(a*)"] = ct [P(2)"])
= Qql(n),[0]

= H a(ny,li) (mod p) (by induction).

O

Note that this proposition shows that the sequence 7%* mod p can be described
by its first p terms, making Theorem 1 more important than it may initially seem.
Proposition 4 is Corollary 3.1 of [4], where these congruences are referred to as
Lucas congruences.

Given the base-p digit-multiplicative nature of 7%, every combination of offsets
Ts_’fi can be understood by “factoring out” common digits between the (n + 1), for
various ¢. For example, if (n), = gng and ng # p — 1, then

OTy! 4 BTl = aTgTal + BT Tl = Tod (T + BT ) (mod p).

A version of this idea, sufficient for our purposes, is encapsulated in the following
formalism where we bound the maximum distance between indices by p. This
bound ensures that the following only has two summands. This is sufficient for our
purposes since the maximum distance in index, h, in the expansion of M, in terms
of T,, from Proposition 1 is 2.

Lemma 1. If a, = ct[P"], where deg P =1, b, = Z?:o QiQnti, P> h,
Cpno = min(h,p—n—1), and (n), = gm(p—1)kng with q € Fy,m,ng € Fp, m # p—1
and k > 0, then

Chryg h
_ k
bn = agq | ama, 4 g Qilng+i + CGm1 g Qi (p—ng) (mod p).
=0 i=p—ng

In particular, if ng < p — h, or equivalently, h < p — ng, then

=0

h
_ k _
b, = aq (amap_l g aia7lo+i> = Gn-ngbp, (mod p).
P
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Proof. If ng +i < p—1, then (n + i), = gm(p — 1)*(ng + 1), while if ng +i > p,
then (ng +14), = q(m + 1)0%(ng + i — p). Thus, noting that ag = 1,

h
bn - ZaianJri
:Z (07 n+1+ Z O Q44

1=0 i=p—no

Q

Q
IS

h

i (Agamal_ an, 1) + Z @i (AgQm+1Ang+i-p)

1=p—nyg

n

s
I
o

Crg h
k
amap,lg Qg 4i + Qg1 E Qilngti—p (mod p)

=0 i1=p—no

I
IS
<

O

We now apply this lemma’s factorization to 2a2M2® via Proposition 1. Addi-
tionally, we make use of Theorem 1 multiple times to produce a more elegant final
form. Note that the third case in the formula for 2a?M&® below (where ng = p—1)
is more elegant after our application of Theorem 1 because we intend to set M3°
congruent to 0 in what follows.

Proposition 5. For all n € N, if p 1 b> — 4a? and if we let { = p — 2 —m, then
modulo p > 2, 2a>M&° is congruent to

2020 MG (n)p = qno,no <p—2
g (st (W) = gm(p — *(p ~ 2)
(b2 —4a?) 1= T (BT — (T3 )FHTE ) (), = amip — D (p = 1),

In particular, when a = b =1, we get that, modulo p,

21;,1]\14”0 (n)p = qnomo <p-—2
2Mn = Tq (TTlijl - Tm+1) (n)p ( - 1) ( 2)
(=3)" 5 Ty (To = T Toga)  (n)y = qm( —F(p—1).

Proof. Since 2a? M2 = (4a% — b*)T b + 20T +1 - Tn+2 by Proposition 1, Lemma
1 tells us that if (n), = gqno with ng < p — 2, then 2a?M2* = T;b (2a2MﬁOb)
(mod p).
The lemma also tells us that if (n), = gm(p — 1)*(p — 2), then modulo p,
2a2Ma b — Ta b (Ta b(T

m p—1

)E (402 = )Ty + AT + Tl (T3 )
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In this case we can use Theorem 1 (and T2 = b) to see that T;’_bl = (b — 4a2)"z
(mod p) and T b= (b —4a?) T 1T = (B2 — )_1T;’_b1b (mod p) (noting that
p1b?—4a?), thus (4a® —I)Q)T;_b2 —|—2bT1’f_b1 = ngfl (mod p). This yields our desired
form,

20°M 0 = Tt (BT (T30) ! = T, ) (mod p).

Lastly, the lemma (alongside Theorem 1) tells us that if (n), = gm(p—1)*(p—1),
then 2a2M2® is congruent to

T”@“@%ﬁ« — V)T + T, (2" — 1))

m \"p
= T (— (62 = 4a®) TG (T3 )4 + 0Tt )
ET;J)( — 4a?)HI I T (TR p(b? — da?)m T T, m)

= (b — 4a?)mH1- *Tab(bT“b—T;jl(Tp 1)’9“) (mod p).

O

We now set both sides of the above equality congruent to 0 so that computing the
density of Motzkin numbers divisible by p becomes a simple matter of bookkeeping.
Note that in order to obtain a nice form below, we apply Corollary 2 to move T;;bl
to the right-hand side of all equivalences.

Corollary 3. Ifptb?> —4a%, {=p—2—m, p>2, and if T>* # 0 (mod p) for all
natural numbers n < p, then modulo p,

Mgéb =0 (n)p = gno,no <p —2
M®* =0 if and only if  TE" = (Tt (n), = qm(p — 1)*(p - 2)

oIt = (T3 ; )k“Tfﬁ’l (n)p = gm(p — 1)*(p - 1),

where 0 < m < p — 1 implies that 0 < ¢ < p— 1. In particular, when a = b =1,
then modulo p,

M,, =0 (n)p = qno,no <p—2
M, =0 if and only if { T, = T,fjlleH (n)p = qm(p — 1)*(p — 2)
T, = T;fllTeH (n)p =qgm(p—1)k@p-1).

O

Corollary 3 generalizes existing results about the divisibility of the Motzkin num-

bers modulo small primes. For example, p = 5 has treatments in [2] (Theorem 5.4)

and [8] (Theorem 3) that we can procedurally extract from Corollary 3 by writing

down the first 3 Motzkin numbers (1,1,2) and the first 5 central trinomial coeffi-

cients (1,1,3,7,19 = 1,1,3,2,4 (mod 5)) and checking finitely many congruences
to find all forms of (n), for which M,, =0 (mod p).
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Note that we require 7¢® # 0 (mod p) for every n < p since this implies the
same statement holds for all n by Proposition 4. Thus, we do not need to consider
when T;vb = 0 (mod p) in setting the right-hand side of Proposition 5 congruent
to 0. If T%* = 0 (mod p) for some n (below p), then Proposition 6 of [5] tells us
that 0 has density 1 in M2 (i.e., the set of indices {i € N | M™" =0 (mod p)} has
density one). Hence, including this assumption does not hinder us in our goal.

We now perform the bookkeeping of computing the density of 0. We begin by
stating a result in the generality of Lemma 1 so as to encapsulate the ideas of this
method independently of the particulars discovered in Proposition 5 by application
of Theorem 1.

Lemma 2. Let a,, = ct [P"], where P is symmetric, deg P =1, b, = Z?:o QiOntis
Cp =min(h,p—n—1),p>h, and I ={p—h,p—h+1,...,p—1} x{0,1,...,p—2}.
If a, = 0 (mod p) for some natural number n (n may be taken less than p), then
the asymptotic density of 0 in b, mod p is 1, and otherwise it is equal to

Ho<n<p—h|b,=0 (modp)}

p
C, _ h
. ‘{(n,m) €T |amYy ;o 0ilnti = —mi1 Zi:CnJrl Qi (p—pn) (mod p)}‘
(r—Dp+1)
c, _
H(n,m) €llanm Zi:o QiGp4i = —Ap—1Am+41 Z?:Cn_l,_l Qi Qi (p—n) (mod P)H
+ .

(p—1)p(p+1)

Proof. The case in which there exists n such that a, = 0 (mod p) is treated in
Proposition 6 of [5].

By Lemma 1, b, = 0 (mod p) if and only if either ny < p — h and b,, = 0
(mod p) or ng > p — h and ama];71 Zgg Qilpgti = —Qmi1 Z?:pfn() Qi (p—ny)
(mod p). Note that, by its definition, a,, is a generalized central trinomial coefficient
sequence so that by Corollary 2, we have that %2)71 = 1 (mod p). Thus, a’;71 is
congruent to a,—; or 1 modulo p depending on the parity of k. In the set of strings,
(n), = gm(p — 1)*ng, over F,, the distribution on k is geometric (with success
probability of a trial being %) so that it is even ﬁ of the time and odd ﬁ of the
time.

Putting this all together, each element of the set {0 <n <p—h|b, =0 (mod p)}
contributes % to the density of 0 in b,, mod p since % of the strings over [F), end with
such n. Likewise each element of the set

C’VL h
{p —h<n<p0<m<p-1|an Zaianﬂ- = —Qmy1 Z aiai—(p—n)}
i=0 i=Cp+1

(with congruences modulo p) corresponds to k being even and thus contributes
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.

_ 1 . .
1 p"ﬁ = =TT © the density of 0, while

=

Chr h
{p —h<n<p0<m<p—1|am Y Qilngi = —ap 10mi1 Y aiai(pn)}
1=0 1=Cp+1

—~

with congruences modulo p) corresponds to k being odd and thus contributes
- to the density. O

1 1
p—1 p+1 = (p—1)p(p+1)

=

We now apply Lemma 2 to the generalized Motzkin numbers using the equations
from Corollary 3 in place of those from Lemma 1. Furthermore, reasoning about
the densities in 7%® mod p further yields a description of the density of all other
values in M%® mod p in terms of the density of 0, Dy.

Theorem 3. If T%" =0 (mod p) for some natural number n < p, then the asymp-
totic density of 0 in M3® is 1. Otherwise, for all p > 2, it is equal to

{n<p—2|M3*=0 (modp)}|

Do =
p
2 Hm <p—1|bT%b = Tg’_bngl’_?_l (mod p)}‘
_l’_
(p=D+1)
2 Hm <p-—1]bT%b = Tﬁl’il (mod p)}’
+

(p—1)p(p+1)

Furthermore, if {T,‘L"b | n e IFp} generates ¥ as a multiplicative group, then the

asymptotic density of any fived k > 0 in M®® mod p is 1p__D1°

Proof. The value of Dy is given by combining Lemma 2 with Corollaries 2 and 3 (we
may assume p { b? — 4a?, as otherwise T;;bl =0 (mod p)). Note that the factors of
2 come from the fact that n takes two values when p—2 < n < p (namely p — 2 and
p — 1) and Corollary 3 shows that in both cases we count the same set of elements.

To prove the last claim, we model T (as a function from N to FY) by a di-
rected multigraph whose states are the elements of )\, and whose p outgoing tran-
sitions are labeled by k € F,, where a transition from ¢ labeled k goes to state
j=i- Tlf’b mod p. By Proposition 4, we can read the value of T off of this graph
by starting at the state 1 and following the transitions corresponding to the digits,
(n)p. The state we end at is the value of T2 mod p. As it happens, each state also
has exactly p incoming transitions, since the number of transitions from i to j is
equal to the number of transitions from 1 to i~!j. Thus, counting the number of
these transitions from all i (to a fixed j) is equal to counting all transitions leaving 1,
of which there are p. The assumption that {T%* | n € F),} generates F) as a multi-
plicative group is equivalent to the statement that this directed graph is connected.
Treating this graph as a Markov process (where every transition has probability
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1) our assumption implies that the process is irreducible. Each state having a
self-loop (labeled by 0) makes the process aperiodic and irreducible so that every
state converges over time to the stable state. All in-degrees and out-degrees of our

graph being p implies that the stable state is the uniform state (ﬁ e ﬁ)

This implies that the density of each element of F in the sequence T, a:b g p%l.
Finally, from Proposition 5 we can then see that each value of F, must have

equal density in M%® mod p (because of the factor of Tqa’b in each case). O

There is also an alternative direct argument for the final statement of Theorem
3 that does not appeal to Proposition 5. We only sketch the argument here to
avoid introducing unnecessary background. The argument goes that with density
1, a random walk on the Rowland-Zeilberger automaton (see [9]) of M%® mod p
reaches either the 0 state or else the subgraph corresponding to 7%* mod p (which
is exactly the graph described two paragraphs ago) and then cannot escape in either
case. In fact, one interpretation of this paper is as describing what proportion of
random walks on this automaton that reach the 0 state. For example, under this
interpretation, the first summand in Dy above corresponds to the probability that
walks go to the 0 state on their very first step.

Conjecture 1. For all a,b € Z, if p does not divide any member of the set
Sp = {T2"|neF,}, then S, generates F) as a multiplicative group. Equiv-
alently, {Tg’b modp|n € N} = F). Consequently, all values of F,’ appear in
(T%* mod p)pen and (M3 mod p),en, and furthermore these values appear with
equal density.

In order to complete the full picture, note that when p = 2, we get that

ifb=0 (mod 2)
ifa=0andb=1 (mod 2)
ifa=landb=1 (mod 2)

Dy =

Wi O =

When b = Tla’b = 0 (mod 2), this is because the argument that Dy = 1 when
p | T@" for some n (including n = 1) does not require p > 2. Otherwise, when
a=0 (mod 2) we have M5* mod 2 = ct [1"(1 — x?)] =1 for all n, and when a = 1
(mod 2) we have M%® mod 2 = M,, and it is not hard to manually derive that the
density of 0 in M,, mod 2 is § (for example, treat Figure 1 of [8] as a Markov process
and compute the probability of ending at each sink).

Finally, when a = b = 1 above, we get a simple formula for the density of Motzkin
numbers divisible by p. Furthermore, applying Theorem 1 to this simple formula

yields the lower bound of Dy > which has appeared in the conclusion of [1].

2
p(p—1)’

Corollary 4. The asymptotic density of 0 in M, mod p is 1 if p | T,, for some



INTEGERS: 26 (2026) 15

n < p, and otherwise, for p > 2, it is

H{n<p—-2|M,=0 (modp)}|
a p
n 2{m <p—1]Ty =T, 1Tny1  (mod p)}|
r-DP+1)
N 2m<p—1|Tpn =Tm+1 (modp)}|.
(p—Dp(p+1)
Additionally, if Congjecture 1 is true for a = b = 1, then all other elements of I,

have density 11)—_1)10. Lastly, Dy > ﬁ is a lower bound.

Proof. Since we know that Ty = 77 = 1, that Ty = 3, that

Dy

—1 -1
Tp3=(-3)7 hy=—(-3)"T 1= -T, 5 (modp),

and that T),_; = (—3)”2;1 = +1 (mod p), we are guaranteed that each of the second
and third sets in Dy above are non-empty (since Tp = 77 and T,_3 = (—1)T,_2
(mod p)) giving us a lower bound of

2-1 2-1 2

I ey Ty R

3.1. Application to Other Sequences

To further demonstrate the fruitfulness of this approach, we quickly derive analogous
results for a few additional sequences.

Proposition 6. Let s, = ct [(x’l +14 x)"x} , which is the sequence A005717 of

[7]. Then the asymptotic density of 0 in s, mod p is 1 if p | T,, for some n < p and

otherwise, for p > 2, it is

_ {m <p—1|Tn =TpaTmp}l +p{m <p—1[Tm = Tinp1}|
(p—1D(p+1)

(with congruences modulo p). Additionally, Dy > p%l s a lower bound.

Dy

Proof. First note that 2s,, = T;,41 — T,,. Consequently, Lemma 2 tells us that

_H{0<n<p-1|s,=0 (modp)}|
B p
N Ho<m<p—1|Ty =Tp-1Tm+1 (mod p)}|
(p—Dp+1)
{0<m<p—1|T» =Tnt1 (mod p)}
(p—Dplp+1)

Dy

)



INTEGERS: 26 (2026) 16

and so our formula for Dy follows from the observation that s, = 0 (mod p) if and

only if T,, = T,,+1 (mod p). Lastly, the lower bound follows from the fact that
p—1

To=Ty =1, that T,_1 = (—3)"2 = =1 (mod p), and that, also by Theorem 1,

T, 5=(-3)"7 2.3=—(=3)" '=-T, 5, (modp).

14p-1 _ 1
Therefore, DO 2 W{M = E O

Because Dy = ﬁ for p = 5,11, 13 and others, this bound is tight. We turn now
to the Riordan numbers, R, = ct [(#7' + 1+ 2)"(1 — z)], which is the sequence
A005043 of [7].

Proposition 7. The asymptotic density of 0 in R, mod p is 1 if p | T), for some
n < p and otherwise, for p > 2, it is

_ Hm<p—1|30n =Tp-1Tms1t +p{m <p—1|3T, = Tt}
(p—1p+1)

(with congruences modulo p). Additionally, Dy > p%l s a lower bound.

Dy

Proof. First note that R,, = —T,,4+1 + 3T,. Consequently, Lemma 2 tells us that

{0<n<p-1|R,=0 (modp)}
- p
i H0<m <p—1|3Tn =T)-1Timt1  (mod p)}|
(p=D+1)
H0<m<p—1]|3T, =Tmnt1 (modp)}
(p—Dplp+1)
and so our formula for Dy follows from the observation that R, = 0 (mod p) if and

only if 37,, = T,,+1 (mod p). Lastly, the lower bound follows from the fact that
3T} = T5 =1 and that, by Theorem 1,

Dy

)

p—1 p—1_
~Tp1=—(-3)"7 -Ty=3(-3)"= '=3T, 5 (mod p).

1+p-1 —
Therefore, DO 2 ngp-ﬁ—l) = Iﬁ ]

Because Dy = 15 for p = 5,11, 23,31 and others, this bound is tight. We get
the same result for A005773 of [7], which is no coincidence.

Proposition 8. Let s, = ct [(xil +1+2)"(1+ x)] , which is the sequence A005773

of [7]. Then the asymptotic density of 0 in s, mod p is 1 if p | T,, for somen < p

and otherwise, for p > 2, it is

_Hm<p—11Tn=-"T 1T} +p{m <p—1|Tn =T}
(p—1D(p+1)

(with congruences modulo p). Additionally, Dy > p%l s a lower bound.

Dy
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Proof. First note that 2s,, = T;,41 + T},. Consequently, Lemma 2 tells us that
{0<n<p—1]s,=0 (modp)}

Dy =
p
+‘{0§m<p_1‘T =—Tp1Tmt1 (modp)}|
r-1+1)
{0<m<p—1[Tyn=-Ty41 (modp)}|

)

(p—1Dplp+1)

and so our formula for Dy follows from the observation that s, =0 (mod p) if and
only if T, = =T, 41 (mod p). Lastly, the lower bound follows from the fact that
To =T =1 and that, by Theorem 1,

Ty 5=(=3)"7 2.3=—(=3)"> '=—-T, 5, (modp).

I4pl 1
Therefore, Do > W](me =1 O

Because Dy = p%l for p = 5,11,23,31 and others, this bound is tight. In fact,
these formulas show an unexpected connection between these last two sequences.

Corollary 5. Let s, =ct [(z7' 4+ 1+ 2)"(1 + )], which is A005773 of [7], and let
R, =ct [(1:71 +14+2)"(1 - x)], which is A005043 of [7]. Then for every prime,
p, the densities of 0 in the sequences (s, mod p)nen and (R, mod p),en are equal.

Proof. This result follows from Propositions 7 and 8 for these densities along with
a simple application of Theorem 1: Since
—1

3T, = 3(=3)" T Ty_y_p = —(=3)" "2 T,_,_,. (mod p)

and Ty,11 = (—3)m+1’p7_1Tp,2,m (mod p), we have that 37, = T,,+1 (mod p) if
and only if —=T,_1_,, = Tp—2—y, (mod p). Therefore,

{m <p—1[3Tn =Tny1 (modp)}[=[{m <p—1[Tn=-Tny1 (modp)}
because these sets biject via m — p — 2 — m. Likewise, Theorem 1 tells us that
3Ty = —(=3)" T T, 4y = —Ty 1 (=3)""' T, 1 (mod p)
and that
p—1

p—1
Tp1Tmi1 = (=3) 7 (=3)"" "7 Tpgm = (=3)"'T, 2 (mod p),

50 3Ty, = Tp—1Tm41 (mod p) if and only if =T, 1Tp—1-m = Tp—2—m (mod p).
Therefore,

Hm<p—1|3T, =Tp- 1Tt} ={m<p—1|Tpn =—Tp-1Tm+1}

(with congruences modulo p) because these sets biject via m — p —2 —m. O
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