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Abstract
We prove that the sequence (Ng )y, where each Ny, is defined as the smallest positive
integer n for which the nth term gy, of the k-G&bel sequence is not an integer, is
unbounded.

1. Introduction

For k > 2, the k-Gdbel sequence (gi.n)n is defined by the initial value g1 = 2 and
the recursion ngg, = (0 — 1)gk.n-1 +g’,§7n_1. Let Ny :=inf{n > 1| grn € Z}. The
2-Gobel sequence with Ny = 43, which is Gobel’s original sequence [7, A003504],
has attracted interest as an example of the strong law of small numbers ([2]). (The
growth of g, is very fast. In fact, the value g 43 ~ 5.4 x 10178485291567 g yery
large.)

The behavior of the sequence (Ny)r ([7, A108394]) is not yet understood well
and remains mysterious. In [6], Matsuhira, Matsusaka, and Tsuchida proved that
ming>9 N = 19. As mentioned in [6, Section 3] and [4, Episode 3], the following
three questions are fundamental problems about the sequence (Nj)g:

1. Why is Nj a prime number for most values of k7 Or rather, in what cases
does Nj become a composite number?

2. Does Nj always take a finite value for any k > 27

3. Is the sequence (Nj); unbounded?
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For Problems (1) and (2), only numerical data has been obtained. In [5], it is
shown that N}, is prime for 86.5% of values up to k < 107, and that Ny, is finite for
k<10,

In this short note, however, we report that Problem (3) can be solved in a very
elementary way within the framework of [6]. Let m# denote the primorial of m or,
in other words, the radical of m!.

Theorem. Let m be a positive integer. If k > 2 satisfies k = 1 (mod m!/m#),
then Ny > m. In particular, supyso Ny = 00.

2. Preliminaries

Let k > 2, r > 1 be integers and p a prime. Let Z,) be the localization of Z
at (p) and vp(n) be the p-adic valuation of n. For any positive integer n with
vp(n) < r, we define gy, (n) € Z/p"~*»("Z U {F} as in [6, Definition 9]: for
n =1, grpr(1) = 2modp". For n > 2, when gy p.(n —1) =F, gxpr(n) =F.
When gy, . »(n — 1) = a mod p"~¥»(("=1)

F if (n—1)a+ad*#0 (mod p*»™),
gk,p,r(n) - (TL — 1)a -+ (Zk
pv,,(n)

r—uvp(n!)

-cmod p otherwise,

where c is an integer such that ¢-(n/p”»(™) =1 (mod p"~*»(")). As Lemma 2 below
shows, one can determine whether gy, ,, is p-integral from the value of g, »(n), which
can be calculated recursively. The symbol F is an arbitrary object that is distinct
from every element of Z/p"~*»(")Z; we simply adopt the notation of [6], where the
initial letter of the word “false” is used to indicate a failure to be p-integral.

Let ¢(n) denote Euler’s totient function. We utilize the following three results
of Matsuhira, Matsusaka, and Tsuchida in our proof.

Lemma 1 ([6, Lemma 4]). For all 1 < n < p, we have gy n € Z(,).

Lemma 2 ([6, Lemma 10]). Let n be a positive integer with vy,(n!) < r. Then,
Gk,pr(n) = F if and only if gr.n & Zpy-

Lemma 3 ([6, Proposition 12]). Let k and [ be integers satisfying r +1 < k <1
and k =1 (mod ¢(p")). Then for any positive integer n satisfying vp(n!) < r, we
have gip,r(n) = gip,r(n).

3. Proof

Proof of Theorem. Let k > 2 and m be positive integers. Since gi1 = 2, gr2 =
1+ 281 and 3gr3 = 2+ 28 + (1 + 2871)* = 0 (mod 3) by definition, we have
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Ni > 3 and may assume m > 4. Assume that £k = 1 (mod m!/m+#). For each
prime p < m, set 7, = v,(m!) and k, = p(p?) + 1. It is clear that k, > r, > 1.
Let us temporarily suppose that for some prime p < m, we have gg, pr, (m) # F.
Since o(p™r) divides m!/m# (as m > 4), we see that k = k, (mod ¢(p™)), and
thus, by Lemma 3, it follows that g, ., (m) = gk, pr,(m) # F. Therefore, by
Lemma 2, we conclude that gy, € Z(p) for all 1 < n < m. In order to prove
Ny, > m, it suffices to show that g, ., (m) # F for each prime p < m. Indeed,
once this has been established, the case p < m is covered by the above argument
and the case p > m by Lemma 1, so that for every prime p we have gi ., € Z(,) for
all 1 <n < m. We then obtain g ,, € ﬂp Ly =17 for all 1 < n < m, which implies
that Ny > m.
Since kg > 7o, we see that 2 + 282 = 2 (mod 272). Hence, we have

Gz ,2,r5(2) = 1 mod 27271
It is clear that, subsequently,
Gka2.r,(n) = 1 mod 27272

for 2 <n < m. In particular, gg, 2,,(m) # F.
Let p < m be an odd prime. For any 1 < n < m, we have

rp—vp(n!)

Gky,porp (1) = 2 mod p .
In fact, if gi, pr, (n — 1) = 2 mod pm»~*»(("=1Y " then since

(n—1)242% =2n  (mod p»»((n=1Y)

by Euler’s theorem, we have g, ,.»,(n) = 2 mod p"»~»(") In particular,

Gkyopory (M) # F. O

4. Remark

By replacing the initial value in the definition of the k-Gobel sequence with gx 1 =1,
we define the (k,1)-Gobel sequence, which has been investigated in [1, 3, 5]. Gener-
alizing our previous arguments as follows, the theorem holds in the same form for
(k,1)-Gobel sequences as well.

Fix [ and a prime p < m, and in the definition of g, replace the initial
condition with g p.(1) = I modp”. We use the notation r, and k, as in the
previous section. We can easily check that by induction on n, for n < p*»®,

ey oy () = (1/p"?™) - ¢, , mod p"r e (M)
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holds, while for n > p"»(), we have
iy oy (1) = 1/p" D mod prr =2 (M),
Here, ¢, , € Z satisfies
Cnp - (n/p™) =1 (mod p»=+»™),

Therefore, the same proof works for a general .
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