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Abstract

We prove that the sequence (Nk)k, where each Nk is defined as the smallest positive
integer n for which the nth term gk,n of the k-Göbel sequence is not an integer, is
unbounded.

1. Introduction

For k ≥ 2, the k-Göbel sequence (gk,n)n is defined by the initial value gk,1 = 2 and

the recursion ngk,n = (n− 1)gk,n−1 + gkk,n−1. Let Nk := inf{n ≥ 1 | gk,n ̸∈ Z}. The
2-Göbel sequence with N2 = 43, which is Göbel’s original sequence [7, A003504],

has attracted interest as an example of the strong law of small numbers ([2]). (The

growth of gk,n is very fast. In fact, the value g2,43 ≈ 5.4 × 10178485291567 is very

large.)

The behavior of the sequence (Nk)k ([7, A108394]) is not yet understood well

and remains mysterious. In [6], Matsuhira, Matsusaka, and Tsuchida proved that

mink≥2 Nk = 19. As mentioned in [6, Section 3] and [4, Episode 3], the following

three questions are fundamental problems about the sequence (Nk)k:

1. Why is Nk a prime number for most values of k? Or rather, in what cases

does Nk become a composite number?

2. Does Nk always take a finite value for any k ≥ 2?

3. Is the sequence (Nk)k unbounded?
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For Problems (1) and (2), only numerical data has been obtained. In [5], it is

shown that Nk is prime for 86.5% of values up to k ≤ 107, and that Nk is finite for

k ≤ 1014.

In this short note, however, we report that Problem (3) can be solved in a very

elementary way within the framework of [6]. Let m# denote the primorial of m or,

in other words, the radical of m!.

Theorem. Let m be a positive integer. If k ≥ 2 satisfies k ≡ 1 (mod m!/m#),

then Nk > m. In particular, supk≥2 Nk = ∞.

2. Preliminaries

Let k ≥ 2, r ≥ 1 be integers and p a prime. Let Z(p) be the localization of Z
at (p) and νp(n) be the p-adic valuation of n. For any positive integer n with

νp(n!) ≤ r, we define gk,p,r(n) ∈ Z/pr−νp(n!)Z ∪ {F} as in [6, Definition 9]: for

n = 1, gk,p,r(1) = 2 mod pr. For n ≥ 2, when gk,p,r(n − 1) = F, gk,p,r(n) = F.

When gk,p,r(n− 1) = a mod pr−νp((n−1)!),

gk,p,r(n) =

F if (n− 1)a+ ak ̸≡ 0 (mod pνp(n)),

(n− 1)a+ ak

pνp(n)
· c mod pr−νp(n!) otherwise,

where c is an integer such that c·(n/pνp(n)) ≡ 1 (mod pr−νp(n!)). As Lemma 2 below

shows, one can determine whether gk,n is p-integral from the value of gk,p,r(n), which

can be calculated recursively. The symbol F is an arbitrary object that is distinct

from every element of Z/pr−νp(n!)Z; we simply adopt the notation of [6], where the

initial letter of the word “false” is used to indicate a failure to be p-integral.

Let φ(n) denote Euler’s totient function. We utilize the following three results

of Matsuhira, Matsusaka, and Tsuchida in our proof.

Lemma 1 ([6, Lemma 4]). For all 1 ≤ n < p, we have gk,n ∈ Z(p).

Lemma 2 ([6, Lemma 10]). Let n be a positive integer with νp(n!) ≤ r. Then,

gk,p,r(n) = F if and only if gk,n ̸∈ Z(p).

Lemma 3 ([6, Proposition 12]). Let k and l be integers satisfying r + 1 ≤ k ≤ l

and k ≡ l (mod φ(pr)). Then for any positive integer n satisfying νp(n!) ≤ r, we

have gk,p,r(n) = gl,p,r(n).

3. Proof

Proof of Theorem. Let k ≥ 2 and m be positive integers. Since gk,1 = 2, gk,2 =

1 + 2k−1, and 3gk,3 = 2 + 2k + (1 + 2k−1)k ≡ 0 (mod 3) by definition, we have
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Nk > 3 and may assume m ≥ 4. Assume that k ≡ 1 (mod m!/m#). For each

prime p ≤ m, set rp := νp(m!) and kp := φ(prp) + 1. It is clear that kp > rp ≥ 1.

Let us temporarily suppose that for some prime p ≤ m, we have gkp,p,rp(m) ̸= F.

Since φ(prp) divides m!/m# (as m ≥ 4), we see that k ≡ kp (mod φ(prp)), and

thus, by Lemma 3, it follows that gk,p,rp(m) = gkp,p,rp(m) ̸= F. Therefore, by

Lemma 2, we conclude that gk,n ∈ Z(p) for all 1 ≤ n ≤ m. In order to prove

Nk > m, it suffices to show that gkp,p,rp(m) ̸= F for each prime p ≤ m. Indeed,

once this has been established, the case p ≤ m is covered by the above argument

and the case p > m by Lemma 1, so that for every prime p we have gk,n ∈ Z(p) for

all 1 ≤ n ≤ m. We then obtain gk,n ∈
⋂

p Z(p) = Z for all 1 ≤ n ≤ m, which implies

that Nk > m.

Since k2 > r2, we see that 2 + 2k2 ≡ 2 (mod 2r2). Hence, we have

gk2,2,r2(2) = 1 mod 2r2−1.

It is clear that, subsequently,

gk2,2,r2(n) = 1 mod 2r2−ν2(n!)

for 2 ≤ n ≤ m. In particular, gk2,2,r2(m) ̸= F.

Let p ≤ m be an odd prime. For any 1 ≤ n ≤ m, we have

gkp,p,rp(n) = 2 mod prp−νp(n!).

In fact, if gkp,p,rp(n− 1) = 2 mod prp−νp((n−1)!), then since

(n− 1)2 + 2kp ≡ 2n (mod prp−νp((n−1)!))

by Euler’s theorem, we have gkp,p,rp(n) = 2 mod prp−νp(n!). In particular,

gkp,p,rp(m) ̸= F.

4. Remark

By replacing the initial value in the definition of the k-Göbel sequence with gk,1 = l,

we define the (k, l)-Göbel sequence, which has been investigated in [1, 3, 5]. Gener-

alizing our previous arguments as follows, the theorem holds in the same form for

(k, l)-Göbel sequences as well.

Fix l and a prime p ≤ m, and in the definition of gk,p,r, replace the initial

condition with gk,p,r(1) = l mod pr. We use the notation rp and kp as in the

previous section. We can easily check that by induction on n, for n ≤ pνp(l),

gkp,p,rp(n) = (l/pνp(n)) · cn,p mod prp−νp(n!)



INTEGERS: 26 (2026) 4

holds, while for n ≥ pνp(l), we have

gkp,p,rp(n) = l/pνp(l) mod prp−νp(n!).

Here, cn,p ∈ Z satisfies

cn,p · (n/pνp(n)) ≡ 1 (mod prp−νp(n!)).

Therefore, the same proof works for a general l.
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