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Abstract
We extend the work of Kimberling and Moses, Zaslavsky, and Bosma et al. on
anti-recurrence sequences. Kimberling and Moses formulated several questions
about these sequences, which together suggest the meta-conjecture that every anti-
recurrence sequence is the sum of a linear progression and an automatic sequence.
We solve this conjecture under a restriction on the linear form that generates the
anti-recurrence.

1. Introduction

In a linear recurrence sequence, each term is a linear combination of the ones that
came before it. The study of such sequences is a topic in itself [3]. The first example
that comes to mind is the Fibonacci sequence,

Fn+1 = Fn + Fn−1,

with the initial conditions F0 = 0 and F1 = 1.
Recurrence sequences are defined by earlier terms in the sequence. In contrast to

this, the anti-recurrence sequences, which we consider in this paper, are defined by
earlier terms that are not in the sequence. The anti-Fibonacci numbers start with
A0 = 0. They extend by the rule that “the next anti-Fibonacci number is the sum
of the two most recent non-members of the anti-Fibonacci sequence.”

To see how the rule works, note that the first two non-members 1 and 2 add up
to the anti-Fibonacci A1 = 3. The next two non-members are 4 and 5, which add
up to the anti-Fibonacci A2 = 9, and so on. This sequence is listed under A075326
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in the On-Line Encyclopedia of Integer Sequences (OEIS):

0, 3, 9, 13, 18, 23, 29, 33, 39, 43, 49, 53, 58, 63, 69, 73, 78, 83, 89, 93, 98, 103, 109, 113, . . . .

It was entered into the OEIS by Amarnath Murthy and was named anti-Fibonacci by
Douglas Hofstadter in an unpublished note [6]. He observed that the first difference
sequence

3, 6, 4, 5, 5, 6, 4, 6, 4, 6, 4, 5, 5, 6, 4, 5, 5, 6, 4, 5, 5, 6, 4, . . .

consists of the two-letter words 64 and 55, apart from the initial letter 3. This is
A249032 in the OEIS. All numbers with final digit 3 are anti-Fibonaccis, and the
other anti-Fibonaccis either end with a 9 or an 8. Hofstadter observed, without
giving a proof, that the pattern of 9’s and 8’s can be generated from a period-
doubling substitution

9 7→ 98, 8 7→ 99.

The proof was supplied by Thomas Zaslavsky, in another unpublished note [13]. In
particular, he gave an explicit equation for the anti-Fibonacci numbers:

For all n ≥ 1, A075326(n)− 5n+ 2 = PDn−1.

The period doubling sequence PDn consists of zeros and ones and is generated by

0 7→ 01, 1 7→ 00,

starting from PD0 = 0. It is entry A096268 in the OEIS. Note that the indexing
runs from 0 and not from 1. This is a convention. One needs to be aware that for
automatic sequences such as PD, indexing starts at zero.

Clark Kimberling and Peter Moses studied the more general class of comple-
mentary sequences [7], for which anti-recurrence sequences are a special case. They
observed some properties of anti-recurrence sequences, which Kimberling entered as
conjectures under A265389, A299409, A304499, and A304502 in the OEIS. The con-
jectures for the first two sequences were verified by Bosma et al. [2] using Hamoon
Mousavi’s automatic theorem prover Walnut [9]. We settle the other two conjec-
tures on A304499 and A304502 in this paper, again with the assistance of Walnut.
These conjectures can be combined into a meta-conjecture (Conjecture 1), which is
discussed in Section 6 of [7]. It was named the Clergyman’s Conjecture in [2].

Conjecture 1. Every anti-recurrence sequence is a sum of a linear sequence and
an automatic sequence.

The paper is organized as follows. In Section 1 we review the basic notions.
Section 2 settles the conjectures of Kimberling for A304499 and A304502 using
Walnut. In Section 3 we extend the results of Bosma et al. and solve the conjecture
for anti-bonaccis. Our main result, Theorem 4 in Section 4, settles the conjecture
under a restriction on the linear form that generates it. We are unable to settle the
full conjecture.

https://oeis.org/A249032
https://oeis.org/A075326
https://oeis.org/A096268
https://oeis.org/A265389
https://oeis.org/A299409
https://oeis.org/A304499
https://oeis.org/A304502
https://oeis.org/A304499
https://oeis.org/A304502
https://oeis.org/A304499
https://oeis.org/A304502
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2. Definitions, Notation, Preliminary Results

All numbers are natural numbers (positive integers) unless stated otherwise. We
will write sequences in capitals as Xn. It denotes either the sequence or a number
in the sequence, which should be clear from the context. The indexing starts at
n = 1 for the sequences. We note that Hofstadter [6] reserves the index zero for the
anti-recurrence number A0 = 0. It plays no role in our considerations.

Two strictly increasing sequences An and Bn of natural numbers are complemen-
tary if every natural number belongs to exactly one of them. Let a = (a1, . . . , ak)

be a positive integral vector of dimension k > 1 and all ai > 0. Let f(x) = a · x be
its associated linear form. We say that An is an anti-recurrence sequence of order
k if

An = f(B(n−1)k+1, B(n−1)k+2, . . . , Bnk) =

k∑
j=1

ajB(n−1)k+j .

The trace τ of the linear form is τ =
∑m

i=1 ai ≥ k.
In a precise but elaborate naming convention, An is the anti-recurrence sequence

and its complement Bn is the non-anti-recurrence sequence. We say that a set
{Bjk+1, Bjk+2, . . . , B(j+1)k} is the B-block that generates Aj+1. Note that we use
Xn both for the sequence and the individual number and the context will make
clear what we mean. If numbers {a, a+ 1, . . . , b} are consecutive, then we say that
they form the interval [a, b].

Lemma 1. Successive anti-recurrence numbers satisfy

An+1 −An ≥ kτ,

for n ≥ 1, where τ > 1 is the trace and k > 1 is the order of the sequence. The
above is an equality if the B-blocks for both An+1 and An are intervals such that
their union is also an interval. In particular, the inequality is strict if one block is
an interval and the other is not.

Proof. Let a = (a1, . . . , ak) and let Bn be the non-anti-recurrence sequence. We
have that

An =

k∑
j=1

ajBm+j

for m = k(n− 1) and

An+1 =

k∑
j=1

ajBk+m+j .

Now, Bk+m+j − Bm+j ≥ k since this sequence is increasing. If both B-blocks are
intervals, then this is an equality. If one is an interval and the other is not, then
there must be a j such that Bk+m+j −Bm+j > k.
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The mex or minimal excluded value of S ⊂ N is:

mex(S) = min (N \ S) .

It comes up naturally in anti-recurrence sequences, as observed by Kimberling and
Moses.

Lemma 2. A positive linear form a determines both the anti-recurrence sequence
An and its complementary sequence Bn.

Proof. We need to show that the complementary sequences An and Bn exist and
are unique. Let An = {Ai : i ≤ n} be the initial anti-recurrences and let Bkn =

{Bj : j ≤ kn} be the initial B-blocks. Assume inductively that

[1, Bkn] ⊂ An ∪ Bkn.

Let
b = mex (An ∪ Bkn) .

The interval [b, b + k − 1] has length k and by Lemma 1 can contain at most one
number from An. If it contains no such number, then [b, b + k − 1] must be the
B-block from Bkn+1 up to Bk(n+1) since the sequence Bn consists of all numbers
that are not in An. If one of the numbers in [b, b+k− 1] is in An, then the B-block
from Bkn+1 up to Bk(n+1) skip that number. In any case, the next B-block from
Bkn+1 up to Bk(n+1) is uniquely determined by a mex-rule and generates An+1.

The linear form a = (1, 1) gives the anti-Fibonacci numbers. Its complementary
sequence A249031

1, 2, 4, 5, 6, 7, 8, 10, 11, 12, 14, 15, 16, 17, 19, 20, 21, 22, . . . .

is the non-anti-Fibonacci sequence. The proof of Lemma 2 shows that the Bn are
defined blockwise by the mex. It is convenient to cut up these blocks into individual
parts and define the k subsequences

Bj
n = Bj+(n−1)k

for j = 1, . . . ,m. For instance, the non-anti-Fibonacci sequence can be divided
into A075325

1, 4, 6, 8, 11, 14, 16, 19, 21, . . .

and A047215
2, 5, 7, 10, 12, 15, 17, 20, 22, . . . .

We can generate the sequences Bj
n and An simultaneously, adding the mex to each

sequence Bj
n from j = 1 to j = m, and then An =

∑
j ajB

j
n. This is how Kimberling

and Moses define anti-recurrence sequences.

https://oeis.org/A249031
https://oeis.org/A075325
https://oeis.org/A047215
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A deterministic finite state automaton with output, or DFAO, is the simplest type
of computing machine. It is able to read a finite input word and return an output.
A DFAO is a 6-tuple A = (Q,Σ, δ, q0,Γ, λ), where:

• Q is a finite set of states,

• Σ is a finite input alphabet,

• δ : Q× Σ → Q is the transition function,

• q0 ∈ Q is the initial state,

• Γ is a finite output alphabet,

• λ : Q× Σ → Γ is the output function.

For instance, there is a DFAO for the Period Doubling sequence that returns the
digit PDn upon input n in binary; see Figure 1. According to Cobham’s little
theorem [11], a DFAO corresponds to a substitution σ. To a state a, it assigns
the word σ(a) such that the j-th digit of σ(a) corresponds to the transition from a

under j. The DFAO in Figure 1 corresponds to the Period Doubling substitution
a 7→ ab, b 7→ aa. Input of PDn is in binary and starts at n = 0 instead of n = 1.
The state a outputs 0 and state b outputs 1. For instance, n = 9 is expanded as
1001 in binary and has digit PD9 = 1.

Figure 1: The automaton for the Period Doubling sequence 0100010101000100 · · · .

A k-DFAO is an automaton with alphabet Σ = {0, 1, . . . , k−1}. It reads numbers
that are expanded in base k. Our DFAO for the Period Doubling word is a 2-DFAO.
A sequence Xn is k-automatic if there exists a k-DFAO that gives output Xn on
input n—another case where Xn is both a term and a sequence in one sentence.

We will use the automatic theorem prover Walnut. It has a transparent syntax
that can be easily understood, even by readers that are unfamiliar with the software.
We refer to Hamoon Mousavi’s user manual [9] and Jeffrey Shallit’s textbook [11] for
more information. In the words of Jeffrey Shallit [12], Walnut serves as a telescope
to view results that, at first, appear only distantly provable, and that is how we use
it in this paper.
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We now give a more precise statement of Conjecture 1.

Conjecture 2. Let a = (a1, . . . , ak) be positive and integral of dimension k > 1.
Let An be the anti-recurrence sequence generated by the linear form f(x) = a · x.
Then An − κn is τ -automatic for κ = kτ + 1 and τ the trace of the linear form.

We prove this conjecture under a restriction on a in the final section of our paper.
Thomas Zaslavsky [13] proved it for a = (1, 1) and Bosma et al. [2] proved it for
a = (1, 1, 1) and a = (1, 1, 1, 1), naming it the Clergyman’s Conjecture. A weak
form of the conjecture says that the difference sequence An − κn is bounded. In
fact, this is how Kimberling and Moses [7] formulate their conjectures, but they
do provide conjectured substitutions that generate the specific difference sequences.
We confirm these substitutions in Theorem 3.

3. The Anti-Pell and Anti-Jacobsthal Numbers

The recurrence Xn+1 = 2Xn + Xn−1 generates the Pell numbers A000129 while
Xn+1 = Xn + 2Xn−1 generates the Jacobsthal numbers A001045. We consider
their counterparts, the anti-recurrence sequences for a = (1, 2) and a = (2, 1).
Kimberling conjectured on the OEIS that the difference sequence is bounded for
these anti-recurrences.

For a = (1, 2), we get the anti-Pell numbers A304502

5, 11, 20, 26, 34, 41, 47, 53, 61, 68, 74, 83, 89, 95, 103, 110, . . . .

Here we ignore A0 = 0. Observe that the subsequence A3n+1 = 5 + 21n forms an
arithmetic progression, in analogy with what we saw for the anti-Fibonacci sequence.
The differences between consecutive numbers now show a period three:

6, 9, 6, 8, 7, 6, 6, 8, 7, 6, 9, 6, 6, 8, 7, . . . ,

with blocks 696, 876, and 687. This is in line with the meta-conjecture that the
difference sequence must be 3-automatic. On the OEIS, Kimberling conjectures
that:

0 ≤ An − 7n+ 3 ≤ 2.

We apply the method of guessing an automaton as described in Shallit’s ‘book of
Walnut’ [11, p. 75] to guess a DFAO for the difference sequence An − 7n. We shift
the index by one to comply with the convention that automatic sequences start at
index 0 and we adjust the sequence to An+1 − 7n− 4, to make the output alphabet
Γ = {0, 1, 2}, as shown in Figure 2. Notice that all inputs n ≡ 0 (mod 3) end in
state a with output 1. This means that An = 7n−2 if n ≡ 1 (mod 3). For instance,
if n = 11, then An+1 = A12. Now, feeding the base 3 expansion of n, i.e., 102, the

https://oeis.org/A000129
https://oeis.org/A001045
https://oeis.org/A304502
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3-DFAO outputs 2 for ending in state c. Therefore, A12 = 7 · 11 + 6 = 83. We
call this automaton a12 and we implement the anti-Pell numbers in Walnut by the
command:

def a304502 "?msd_3 (n>0) & s=(7*n-3+a12[n-1])":

In particular, the variable s is equal to An.

Figure 2: A 3-DFAO for the difference sequence An+1 − 7n − 4, of the anti-Pell
numbers.

To verify Kimberling’s conjecture for anti-Pell numbers, we also need the two
non-anti-Pell sequences B1

n and B2
n. The full conjecture is that

0 ≤ An − 7n+ 3 ≤ 2,

0 ≤ 3B1
n − 7n+ 6 ≤ 3,

0 ≤ 3B2
n − 7n+ 2 ≤ 3.

(1)

Observe that successive entries B1
n, B

2
n in a non-anti-recurrence sequence differ by

one or two, because there can be at most one anti-recurrence number in between.
Since 2B2

n + B1
n = An, it follows that 3B2

n = An + i for i ∈ {1, 2}, and this can be
used to obtain the third inequality from the first. In the OEIS, B1

n is A304500

1, 3, 6, 8, 10, 13, 15, 17, 19, 22, 24, 27, 29, 31, 33, 36, . . . ,

and B2
n is A304501

2, 4, 7, 9, 12, 14, 16, 18, 21, 23, 25, 28, 30, 32, 35, 37, . . . .

It is possible to derive these sequences from the anti-Pell numbers. As already
observed, B2

n is equal to (An + 2)/3 rounded down. If we have An and B2
n then we

also have B1
n = An − 2B2

n. The non-anti-recurrence sequences are implemented by
the following commands:

def a304501 "?msd_3 Es $a304502(n,s) & t=(s+2)/3":
def a304500 "?msd_3 Es,t $a304502(n,s) & $a304501(n,t) & u+2*t=s":

https://oeis.org/A304500
https://oeis.org/A304501
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Figure 3: The 3-DFAO’s for the non-anti-recurrences 3B1
n+1 − 7n − 1 (left) and

3B2
n+1 − 7n− 5 (right).

The automata for the difference sequences B1
n and B2

n are shown in Figure 3. For
instance, B2

8 can be computed from the input 7, which is 21 in base 3. It ends
in state b with output 0, and therefore B2

8 = 18. Observe that the final digit
determines the output mod 3. These DFAO’s are from [2], where they were given
in lsd format. They were converted to msd by Walnut.

Theorem 1. The anti-Pell numbers satisfy Kimberling’s bounds in Equation (1).

Proof. The outputs of the DFAO’s in Figure 2 and Figure 3 are within Kimberling’s
bounds. Note that we shifted An − 7n+ 3 to An+1 − 7(n+ 1) + 3, and likewise for
B1

n and B2
n, to comply with the rule that automatic sequences start at index 0. We

need to verify that these DFAO’s indeed correspond to the difference sequences for
the anti-Pell numbers, which we do with the assistance of Walnut.

According to Lemma 2, the sequences are determined by their initial values and
a mex rule. We first check that the initial values are B1

1 = 1, B2
1 = 2, A1 = 5:

eval test "?msd_3 $a304500(1,1) & $a304501(1,2) & $a304502(1,5)":

Walnut evaluates the statement as TRUE.
We check the mex rule for B1

n, which says that it is the least new number after
the first n have been defined. In first-order logic, the statement is:

∀n, s, t ∈ N
(
t < s ∧ s = B1

n

)
=⇒ ∃m < n (t = B1

m ∨ t = B2
m ∨ t = Am).

In Walnut this statement becomes:

eval testB1 "?msd_3 An,s,t ($a304500(n,s) & t>0 & t<s) => (Em (m<n)
& ($a304500(m,t)|$a304501(m,t)|$a304502(m,t)))":

It is evaluated as TRUE. The mex condition requires B2
n to be the first missing

number after B1
n:

∀n, s ∈ N
(
s > 1 ∧ s = B2

n

)
=⇒

(
s− 1 = B1

n ∨ ∃ m < n (s− 1 = Am)
)
.
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In Walnut this statement is:

eval testB2 "?msd_3 An,s (s>1 & $a304501(n,s)) =>
($a304500(n,s-1)|(E m (m<n) & $a304502(m,s-1)))":

It is evaluated as TRUE. The final condition is that An = B1
n +B2

n:

eval testA "?msd_3 An,s,t ($a304500(n,s) & $a304501(n,t)) =>
$a304502(n,s+2*t)":

It is evaluated as TRUE. This proves that these are indeed the anti-Pell sequence and
its non-anti-Pell counterparts. Conjecture 2 holds for a = (1, 2) and Kimberling’s
bounds in Equation (1) apply.

For a = (2, 1) we get the anti-Jacobsthal numbers A304499

4, 11, 19, 25, 32, 40, 46, 52, 61, 67, 74, 82, 88, 95, 103, 109, . . . ,

which resemble the anti-Pell numbers. If we divide the gaps An+1 − An between
anti-recurrence numbers into blocks of three, we now find that there are more blocks:
786, 678, 966, 696, 669. Again, the sum of all blocks is the same and the subsequence
A3n+1 is an arithmetic progression.

Kimberling’s conjecture for this anti-recurrence is

0 ≤ An − 7n+ 4 ≤ 3,

0 ≤ 3B1
n − 7n+ 6 ≤ 4,

0 ≤ 3B2
n − 7n+ 2 ≤ 3.

(2)

In this case, the second inequality follows from the first.

Figure 4: A 3-DFAO for the difference sequence An+1−7n−3 of the anti-Jacobsthals.

Our guessed automaton a21 for the difference sequence of the anti-Jacobsthals is
illustrated in Figure 4. All inputs n ≡ 0 (mod 3) end in state a with output 1, which
means that An = 7n − 3 if n ≡ 1 (mod 3). We use this automaton to implement
A304499 in Walnut:

def a304499 "?msd_3 (n>0) & s=(7*n-4+a21[n-1])":

https://oeis.org/A304499
https://oeis.org/A304499


INTEGERS: 26 (2026) 10

We check that these numbers are not divisible by three:

eval test "?msd_3 As (En $a304499(n,s)) => (Et (s=3*t+1 |
s=3*t+2))":

which is TRUE. We can define the non-anti-recurrence sequences from An. The
numbers B1

n are the rounded down An/3 and B2
n = An − 2B1

n:

def a304497 "?msd_3 Er $a304499(n,r) => s=r/3":
def a304498 "?msd_3 Eq,r ($a304497(n,q) & $a304499(n,r)) =>
s=r-2*q":

We have defined our candidate sequences in Walnut. We still need to satisfy that
our DFAO does indeed produce the right numbers.

Theorem 2. The anti-Jacobsthal numbers satisfy Kimberling’s bounds in Equa-
tion (2).

Proof. We verify, in exactly the same way as for the anti-Pell numbers, that these
sequences satisfy the criterion of Lemma 2, starting with the initial conditions:

eval test "?msd_3 $a304497(1,1) & $a304498(1,2) & $a304499(1,4)":

which is TRUE.
We test the mex conditions for the non-anti-recurrence sequences:

eval testB1 "?msd_3 An,s,t ($a304497(n,t) & s>0 & s<t) =>
(Em (m<n) & ($a304497(m,s)|$a304498(m,s)|$a304499(m,s)))":
eval testB2 "?msd_3 An,s (s>1 & $a304498(n,s)) =>
($a304497(n,s-1)|(E m (m<n) & $a304499(m,s-1)))":

and we test that the additive relation An = 2B1
n +B2

n holds:

eval testA "?msd_3 An,s,t
($a304497(n,s)&$a304498(n,t))=>$a304499(n,2*s+t)":

These are all TRUE, and therefore the anti-Jacobsthals satisfy Conjecture 2. To
verify Kimberling’s bounds in Equation (2), we only need to verify the first and
third inequality:

eval testA "?msd_3 An,s $a304499(n,s) => (7*n <= s+4 & s+4 <=
7*n+3)":
eval testB2 "?msd_3 An,s $a304498(n,s) => (7*n <= 3*s+2 & 3*s+2 <=
7*n+3)":

which is TRUE.

This settles Kimberling’s conjectures on A304499 and A304502.

https://oeis.org/A304499
https://oeis.org/A304502
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4. The Anti-Bonacci Numbers

The recurrence relation for a = (1, 1, . . . , 1) given by

Xn = Xn−1 + · · ·+Xn−k

starting from the initial conditions Xn = 0 for n ≤ 0 and X1 = 1 produces the
k-bonacci numbers. Apparently, they were first introduced in [8] under the name
of k-generalized Fibonacci numbers. The most familiar cases are the Tribonacci
numbers for k = 3 and the Tetrabonacci numbers for k = 4. Their anti-recurrent
counterparts are the anti-Tribonacci sequence A265389

6, 16, 27, 36, 46, 57, 66, 75, 87, 96, 106, 117, 126, 136, 147, 156, . . . ,

and the anti-Tetrabonacci sequence A299409

10, 26, 45, 62, 78, 94, 114, 130, 146, 162, 180, 198, 214, 230, 248, . . . .

Kimberling conjectured bounds on these two sequences that were verified by Bosma
et al. in [2] by using Walnut. In particular, Bosma et al. showed that the anti-
k-bonacci sequence is a sum of a linear sequence and a k-automatic sequence for
k = 3 and k = 4. However, the automata for the difference sequences in [2] are not
that easy to interpret. The automaton for k = 4 has 10 states, for instance, and
that is because these automata were given in lsd format. If we reverse them to msd
format, we get much cleaner machines as shown in Figure 5a and 5b. For instance,
in Figure (a), A15 = 147 and the input for the automaton is 112, with output 2.
The numbers with output 1 for the DFAO in (a) correspond to the positions of 0
in Stewart’s choral sequence A116178. The automaton in (a) was conjectured by
Kimberling and Moses [7]. The automaton in (b) corresponds to the substitution
a 7→ 21ā3 where ā = 5 − a, by Cobham’s little theorem. Both these DFAO’s, as
well as the DFAO for the anti-Fibonacci that we saw earlier, satisfy the following
properties:

• The number of states is equal to k.

• The outputs are unique.

• All transitions on input 0 lead back to the initial state.

The third property is equivalent to the fact that the subsequence Akn+1 forms an
arithmetic progression with increment kκ = k3 + k.

The 5-bonacci numbers, or Pentanacci numbers, are A145029, but the anti-5-
bonacci numbers have not yet been entered in the OEIS. The initial numbers are:

15, 40, 66, 95, 120, 145, 170, 197, 225, 250, 275, 300, 327, 355, 380, . . . .

https://oeis.org/A265389
https://oeis.org/A299409
https://oeis.org/A116178
https://oeis.org/A145029
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(a) The DFAO for a(1, 1, 1) (b) The DFAO for a(1, 1, 1, 1)

Figure 5: The 3-DFAO for the difference sequence An+1 − 10n − 5 for the anti-
Tribonacci sequence in (a) and An+1 − 17n− 8 for the anti-Tetrabonacci sequence
in (b).

We have guessed the automaton a11111 for the anti-5-bonacci sequence:

An − 26n+ 13

as illustrated in Figure 6. It is possible to check with Walnut that this DFAO does
indeed produce the anti-bonacci sequence for k = 5. The properties of the DFAO’s
that we observed for k = 2, 3, and 4 are again satisfied. We will now prove that
these hold for all k-anti-bonaccis.

We fix k and denote the k-anti-bonacci numbers by An without including k in
the notation. The difference sequence is An − κn with κ = k2 + 1. In particular,
A1 is equal to the triangular number tk = 1 + 2 + · · · + k =

(
k+1
2

)
. We consider

consecutive intervals of length k2 + 1:

In = [(n− 1)κ+ 1, nκ].

Recall that the set {B1
m, . . . , Bk

m} is the B-block that generates Am. We will show
that each In contains one anti-bonacci An and k such B-blocks. We can thus
associate An to In, which generates k anti-bonaccis Ak(n−1)+j for j = 1, . . . , k.
That gives a substitution rule for the anti-bonaccis. Since In contains only one
anti-recurrence, at most one of the blocks is not an interval. Lemma 1 implies that
at least k − 2 of the Ak(n−1)+j are k2 apart. Modulo κ, the next anti-recurrence
decreases by 1 if this is the case. The first k numbers of In form the first B-block,
which explains why the Akn+1 form an arithmetic progression. The following lemma
makes this precise.

Lemma 3. Let An be an anti-recurrence sequence of order k > 1. Let i = ⌊k
2 ⌋ and

κ = k2 + 1 for k > 2. Then An ∈ In and

An ≡ ik + an (mod κ)

for some 1 ≤ an ≤ k if k is even, and i+ 1 ≤ an ≤ i+ k if k is odd.
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Figure 6: The 5-DFAO for the difference sequence An+1 − 26n − 13 of the anti-5-
bonacci numbers.

Proof. We have A1 = tk ∈ [1, κ] = I1. If k is odd, then tk = ik + k, and if it
is even, then tk = ik + k

2 . So a1 = k if k is odd and a1 = k
2 if it is even. The

initial interval I1 contains k B-blocks, all of which are intervals except for one. The
possible exception is either the (i+ 1)-st block or the (i+ 2)-nd block. That is our
inductive hypothesis.

A B-block determines an anti-bonacci, and therefore each Ij determines k anti-
bonaccis. By Lemma 1, if blocks are consecutive intervals, then they determine
anti-bonaccis that are k2 = κ− 1 apart. Modulo κ, the next anti-bonacci decreases
by 1. If they are not consecutive intervals, then the anti-bonaccis are further apart.
Suppose that Aj = ik + aj for 1 ≤ aj ≤ k. If aj = 1, then the (i + 1)-st block
in Ij is an interval that generates an anti-bonacci A that is equal to k2 + k plus
the previous anti-bonacci. If 1 < aj ≤ k then the (i + 1)-st block in Ij is not an
interval. It generates an anti-bonacci A that is k2 + k + 1 − aj plus the previous
anti-bonacci. The next anti-bonacci is k2 + aj − 1 + A. If 1 ≤ aj ≤ k then the
interval Ij generates k anti-bonaccis with first differences

i−1︷ ︸︸ ︷
k2 · · · k2 x(2k2 + k − x)

k−i−1︷ ︸︸ ︷
k2 · · · k2 (3)

with x = k2 + k + 1− aj . For instance, if k = 4 then i = 2 and the differences are
16, x, 36 − x, 16 for x = 17, 18, 19, and 20, respectively. The final difference is k2,
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since the final block of Ij and the first block of Ij+1 are consecutive intervals. Note
that the total sum of the first differences is kκ, and therefore Ajk+1 ≡ A(j−1)k+1

(mod κ).
From these first differences we can compute a(j−1)k+1, . . . , ajk for the anti-bonaccis

that are generated from Ij . In Equation (3), the initial i − 1 differences are −1 ≡
(mod κ). These are followed by k + 1− aj and aj − 2 mod κ, followed by k − i− 1

differences of −1. If 1 ≤ aj ≤ k then

a(j−1)k+ℓ =

 a1 + 1− ℓ if 1 ≤ ℓ ≤ i,
a1 + 1− i+ k − aj if ℓ = i+ 1,
a1 + 1 + k − ℓ if i+ 2 ≤ ℓ ≤ k.

The (i + 1)-st entry is the only one that depends on aj . When k is even, we have
i = k

2 = a1, and so

a(j−1)k+ℓ =

 i+ 1− ℓ if 1 ≤ ℓ ≤ i,
k + 1− aj if ℓ = i+ 1,
k + 1− (ℓ− i) if i+ 2 ≤ ℓ ≤ k.

(4)

These numbers are between 1 and k. Therefore, when k is even, our inductive
hypothesis implies that the first kn values of aj lie between 1 and k. This completes
the case in which k is even.

When k is even, we have a1 = k/2, whereas when k is odd we obtain the larger
value a1 = k. In the case that k is odd, the A’s may lie in the (i+1)-st and (i+2)-nd
blocks. In particular, this is the case if aj > k. The first differences then are

i︷ ︸︸ ︷
k2 · · · k2 x(2k2 + k − x)

k−i−2︷ ︸︸ ︷
k2 · · · k2 (5)

with x = k2+2k+1−aj . As before, we can compute the a’s from these differences.

a(j−1)k+ℓ =

 a1 + 1− ℓ if 1 ≤ ℓ ≤ i+ 1,
a1 − i+ 2k − aj if ℓ = i+ 2,
a1 + k + 1− ℓ if i+ 3 ≤ ℓ ≤ k.

When k is odd, then a1 = k and i = k−1
2 . If aj ≤ k then we get

a(j−1)k+ℓ =

 k + 1− ℓ if 1 ≤ ℓ ≤ i,
k + i+ 2− aj if ℓ = i+ 1,
2k + 1− ℓ if i+ 2 ≤ ℓ ≤ k.

(6)

These numbers are in [i+ 2, i+ k]. If aj > k then we get

a(j−1)k+ℓ =

 k + 1− ℓ if 1 ≤ ℓ ≤ i+ 1,
2k + i+ 1− aj if ℓ = i+ 2,
2k + 1− ℓ if i+ 3 ≤ ℓ ≤ k.

(7)

These numbers are in [i+ 1, i+ k].
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Equations (4), (6), and (7) for the remainders an allow us to extend Zaslavsky’s
formula from k = 2 to k > 2. The following result settles Conjecture 2 for anti-
bonaccis.

Theorem 3. Let An be an anti-recurrence sequence of order k > 1, and let i = ⌊k
2 ⌋.

There exists a k-uniform substitution σ on {1, 2, . . . , k} if k is even and {0, 1, . . . , k−
1} if k is odd with unique fixed point ω = (in) such that

An = κ(n− 1) + tk − i+ in−1.

All σ(j) = wj have initial digit i, and therefore limn→∞ σn(i) = ω.

Proof. By Lemma 3, An = κ(n − 1) + ik + an. If k is even, then ik = tk − i,
and so we get An = κ(n − 1) + tk − i + an for numbers an ∈ [1, k]. Equation (4)
describes a k-substitution aj 7→ w where the digits wℓ are given by a(j−1)k+ℓ, which
is independent of aj , except if ℓ = i + 1, when the digit is k + 1 − aj . The initial
digit of each substitution word is equal to i. We write in−1 = an to comply with
the rule that automatic sequences start with index 0.

If k is odd, then ik = tk − k, and so we get that An = κ(n − 1) + tk − k + an
for numbers an ∈ [i + 1, i + k]. If we write in−1 = an − k + i then we get that
An = κ(n − 1) + tk + i + in−1. Since k = 2i + 1 if k is odd, in−1 ∈ [0, k − 1].
Equations (6) and (7) describe a k-substitution aj 7→ wj with initial digit a1. Then
we get that An = κ(n − 1) + tk − i + in−1 and the initial digit of the substitution
words is i. This confirms our observations on the DFAO’s for the anti-bonaccis.

5. Rusty Numbers and Other Anti-Recurrences

The recurrence
Xn+1 = dXn +Xn−1

produces the so-called metallic or metallonacci numbers [1, 10]. It is impossible to
resist the temptation to say that the An for the linear form a = (1, d) are the rusty
numbers. The 3-rusty numbers are:

7, 15, 23, 35, 43, 51, 62, 71, 79, 87, 99, 107, 115, 123, 131, 142, 151, . . . .

We can guess a 4-DFAO for its difference sequence, which is illustrated in Figure 7.
The Walnut verification for the anti-Pell and anti-Jacobsthal sequences can also be
applied to this DFAO, to check that it indeed produces the difference sequence.
Note that all 0-transitions lead back to the initial state, which implies that the
subsequence A4n+1 is an arithmetic progression. However, this does not apply to
the 4-rusty numbers:

9, 19, 29, 39, 54, 64, 74, 84, 98, 109, 119, 129, 139, 154, 164, 174, 184, . . . .
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Figure 7: A 4-DFAO for the difference sequence An − 9n − 4 for the linear form
a = (1, 3).

The subsequence A5n+1 is equal to the arithmetic progression A1 + 55n up until
n = 348, when A1741 ̸= 9 + 55 · 348. The metallic numbers are well-studied and
share many of the properties of the Fibonacci numbers. Surprisingly, proving or
disproving the conjecture for the rusty numbers remains a challenge.

The general quadratic recurrence Xn+1 = pXn + qXn−1 with arbitrary initial
values produces the Horadam numbers [5]. We will show that the anti-Horadam
numbers have an automatic difference sequence if p ≤ 2.

Definition 1. A positive linear form a of dimension k and trace τ is A1-bounded
if A1 ≤ (k − 1)τ + 2, where A1 is the first anti-recurrence number in the sequence
generated by a.

The linear form a = (a1, a2) of the anti-Horadam numbers is A1-bounded if
a2 ≤ 2.

Lemma 4. Let a be a form of trace τ and dimension k > 1. We have τ+tk−1 ≤ A1,
and the inequality is strict if k > 2 and the sequence An is not anti-bonacci.

Proof. The inequality follows from A1 =
∑k

j=1 jaj = τ +
∑k

j=1(j−1)aj ≥ τ + tk−1.

This inequality is strict if k > 2 and if one of the aj ’s is greater than 1.

Lemma 5. Let a be an A1-bounded linear form. Then An ∈ In = [κ(n−1)+1, κn],
with κ = kτ + 1. The initial B-block of each In is an interval.

Proof. By induction. For A1 we need to prove that k ≤ A1 ≤ κ. The left-hand
inequality follows from A1 ≥ τ + tk−1 ≥ k + tk−1. The right-hand inequality is
immediate.
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By our inductive assumption, each Ij contains one anti-recurrence and τ blocks.
Therefore, each Ij generates τ anti-recurrence numbers, and from our inductive
hypothesis we can generate nτ recurrence numbers. We only need to check An+1.
The initial block of Ij is an interval which generates A(j−1)τ+1 = A1 + (j − 1)κ.
This gives the familiar arithmetic progression.

If B-blocks are consecutive intervals, then they generate Ah and Ah+1 such that
Ah+1 − Ah = κ − 1 by Lemma 1. Modulo κ, the next number Ah+1 reduces by
one. Since there is only one anti-recurrence number, at least τ − 1 of the blocks are
intervals, and at least τ − 2 of these are consecutive to a preceding block that is an
interval. There is one B-block that is either not an interval, or not consecutive to a
preceding block. The latter happens if the anti-recurrence number is between two
B-blocks. In that case, Ah+1 −Ah = (k+1)τ = κ+ τ − 1. There are at most τ − 1

reductions by one for the τ anti-recurrence numbers that are generated by Ij . There
are at most 2 increases. The interval Ij generates τ anti-recurrences, which have τ−1

differences. If we include the first anti-recurrence of Ij+1, then we get τ differences.
The total sum of these differences is zero, since Ajτ+1 ≡ A1 (mod κ). It follows that
each anti-recurrence Ah that is generated by Ij is in the range [A1−τ+1, A1+τ−1]

modulo κ. By Lemma 4 we have that A1−τ+1 ≥ tk−1+1 ≥ k. By A1-boundedness
we have that A1 + τ − 1 ≤ kτ + 1 = κ. The numbers Ah that are generated by
Ij are contained in Ih and are not in its initial interval of length k. In particular,
An+1 meets the required conditions.

It follows from the proof of this lemma that the subsequence Anτ+1 is an arith-
metic progression if a is A1-bounded.

Theorem 4. If a is A1-bounded, then it generates an anti-recurrence sequence An

such that An − κn is τ -automatic.

Proof. In the proof of Lemma 5 we saw that Ij generates τ anti-recurrence numbers.
This process depends only on the value of Aj (mod κ). Furthermore, we found that
the anti-recurrence numbers are all in [A1−τ+1, A1+τ−1] if we compute modulo κ.
Therefore, there are only 2τ − 1 possible values. We have a uniform substitution of
length τ on an alphabet of size 2τ − 1. By Cobham’s little theorem, the difference
sequence An − κn is τ -automatic. It can be recognized by a DFAO with at most
2τ − 1 states.

6. Final Remarks

We have shown that a specific class of anti-recurrence sequences are the sums of
a linear sequence and an automatic sequence. Much remains to be explored, most
notably extending Theorem 4 to general anti-recurrence sequences. Does the con-
jecture hold without the restriction of A1-boundedness? Are the rusty numbers
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sums of linear sequences and automatic sequences? There is the more general class
of complementary sequences that goes back to Fraenkel [4]. Is it possible to sin-
gle out complementary sequences that are sums of linear sequences and automatic
sequences?
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