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Abstract

Let n,m be positive integers and ¢ € Z,, where Z,, is the ring of integers modulo
n. We address the following problem, partially solved by N. Alon. Does an infinite
sequence over Z, contain m same-length consecutive blocks By, ..., B,, such that
>.Bj+c][B;j =0forevery j =1,...,m (where ) B and [[ B denote, respectively,
the sum and the product of the elements in block B)? In the case of ¢ = 0, this
problem is equivalent to the van der Waerden theorem. We provide an almost
complete answer to the above problem, excluding only the case of square-free n and
¢ = —1. After investigating B — > B + c¢[] B, we provide related examples of
generalizing the Van der Waerden theorem to symmetric functions.

1. Background

In 1927, van der Waerden proved a seminal theorem stating that any finite coloring
of the integers contains a monochromatic arithmetic progression of arbitrary length
[15]. Subsequent generalizations established that this phenomenon persists in far
broader contexts, extending to the fields of number theory, logic, algebra, analysis,
and computer science. Below we list a few well-known generalizations of the van
der Waerden theorem.

e Hales and Jewett showed that any finite coloring of a sufficiently high-dimensional
combinatorial cube contains monochromatic combinational lines [9].
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e Gallai and Witt extended the van der Waerden theorem by showing that any
finite coloring of the integer lattice Z¢ contains a monochromatic affine copy
of every finite point configuration [16, 12].

e Rado characterized all linear equations that have monochromatic solutions in
every finite coloring [11].

e In the density setting, Szemerédi proved that any subset of the integers with
positive upper density must contain arbitrarily long arithmetic progressions
[13], a result that answered the Erdés—Turdn conjecture and can be seen as
a density version of van der Waerden’s theorem. Katznelson and Furstenberg
provided an additional proof of the Szemerédi theorem using ergodic theory
[7].

e Erdos and Graham later established the canonical van der Waerden theo-
rem by proving that any sufficiently large finite coloring of N yields either a
monochromatic or a rainbow arithmetic progression of arbitrary length [6].

e Bergelson and Leibman proved a polynomial generalization of the van der
Waerden theorem by replacing a linear polynomial that defines an arithmetic
progression with a polynomial of arbitrary degree [2].

In addition, a dispersed collection of other generalizations recently appeared in
Chapters 2—7 of [10], too varied to enumerate here.

2. Introduction

This work considers the zero-sum formulation of the van der Waerden theorem and
generalizes it to various symmetric functions. The problems addressed in our paper
lie on the intersection of combinatorics on words and Ramsey theory and stem from
two primary sources.

e The first one is the classical work of Thue [14],[3] who proved the existence
of an infinite sequence over a 3-letter alphabet with no identical consecutive
blocks. This seminal paper has developed into a broad theory of combinatorics
on words. One notable direction in this field involves assuming an algebraic
structure on the alphabet, particularly the ring of integers modulo n [1],[5].

e The second source is the zero-sum Ramsey theory on the integers, addressed
in Chapter 10 of [10]. In essence, the colors in the traditional Ramsey theory
are replaced with the elements of Z,, and the notion of monochromatic is
replaced with the notion of zero-sum. As will be seen below, the problems
addressed in our paper relate to the classical van der Waerden theorem [8].
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Let n be a positive integer and let Z,, be the ring of integers modulo n. Consider
an arbitrary sequence A = {ax}72, over Z,. A block of length [ consists of | > 1
consecutive elements from A, relabeled and reindexed as by’s and denoted by B =
(bsy1,.-.,bsty) € ZL . Furthermore, we say that blocks By, ..., B, are consecutive
if the first element of block Bj;, follows the last element of block B; for all j =
1,...,m— 1. Next, consider a family F = { f(}?°, where each f) : Z!, - Z,, is a
function in [ variables. For a positive integer m, we say that F is m-vanishing if for
all sequence A = {ax}72, over Z,, there exist integer { > 1 and m consecutive blocks
By, ..., By, each of length [ such that f®(B;) = ... = fO(B,,) = 0. Finally, we
say that F is vanishing if it is m-vanishing for all positive integer m.

For the sake of simplicity, we will denote the sum and the product over Z,, of all
the elements in a block B as, respectively, > B and [[ B. Furthermore, we will use
Z,, arithmetic throughout the paper unless stated otherwise.

In this paper, we investigate the vanishing property of the family

l l
fc:{(bla7bl)'_>zbz+CHb1l:2,3,}
i=1 i=1

for all ¢ € Z,,. It has been motivated by the following Theorem 1, which is equivalent
to the van der Waerden theorem (consider an auxiliary sequence A" = {a} }32, with
ap, = Zle a; and realize that a monochromatic arithmetic progression of length m
in A’ is equivalent to m — 1 consecutive zero-sum blocks in A, see, e.g., Theorem 4
in [1]).

Theorem 1. Let n be a positive integer. Then the family

l
F={(b,....0)) > bi:1=2.3,..}
=1

18 vanishing.

Considering F. is a particular case of a wider area of investigation of elementary
symmetric polynomials appearing in [4]. As it can be seen from Theorem 2 below,
we only need to investigate F, for ¢ € {1, —1}.

Theorem 2. Ifn > 1, then F. is not m-vanishing for any c € Zy, \ {0,1,—1} and
m > 0.

Proof. Consider sequence A = —1,1,—1,1,... over Z, and an arbitrary block B
within it. Trivially, Y. B € {0,1,—1} and [[ B € {1,—1}. Then >, B+¢[[B =0
implies either 0 = (—1)¥c or (—1)¥ = ¢, and either way we arrive at a contradiction.

O

In Sections 3 and 4 we consider the cases of ¢ = 1 and ¢ = —1, respectively.
In Section 5 we provide additional examples of generalizing Theorem 1, i.e., the
zero-sum formulation of the van der Waerden theorem.
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3. The Caseof c =1

The main result of this section is Theorem 3 below which gives a complete classifica-
tion of the m-vanishing property of F;. The proof follows from several propositions
provided further below, and Theorems 4 and 5 from Section 4.

Theorem 3. Letn > 1.
(a) If n ¢ {2,3,4,6,8}, then Fy is not m-vanishing for any m > 0.
(b) If n € {2,3,4,8}, then Fy is vanishing.
(c) If n =6, then F; is 1-vanishing but not m-vanishing for any m > 1.

Proof. Part (c) is a result of combining Propositions 3 and 4, and part (b) follows
from Theorem 4 for the case of n = 2, Proposition 1 for the case of n = 3, and
Proposition 2 for the case of n € {4, 8}.

Let m = p1...pr be the decomposition of n into prime factors (not necessarily
distinct). If p; > 3 for some ¢ = 1, ..., k, then either by Proposition 5 or Proposition
7 there exists an infinite sequence A over Z,, that does not contain any block B
satisfying >~ B+ [[ B = 0 mod p;. Viewing A as a sequence over Z,, then implies
that it cannot contain a block B satisfying > B + [[ B = 0 mod n.

To complete the proof of part (a), it remains to consider the case of n = 2"3F=" >
8 for 0 < h < k. It follows that k£ > 2, and the subcases of h = 0 and h = k are
handled by Propositions 9 and 8, respectively. Finally, the proof of the subcase of
0 < h < k, which implies k > 3, is given by Theorem 5. O

Lemma 1. Ifn = 3, then Fy is vanishing.

Proof. We will follow the idea of Noga Alon (see Theorem 3.5 (a) in [4]). By the
van der Waerden theorem, there exists a positive integer w such that every 3m+1-
coloring of 1,2, ..., w has a monochromatic arithmetic progression of length m + 1.
We consider two cases.

Case 1: every block of length w contains a 0. Because the van der Waerden theorem
guarantees the existence of m consecutive zero-sum blocks By, ..., B,, each of length
[ > w, it must be that 0 =][B; => B, forall j =1,...,m.

Case 2: there exists a block of length w with no 0’s, B = (b1,...,by) € {1,2}*.
Consider a 3™*1-coloring

k k . _
Z be—1 ifk>1 bi—ma1 fk>m-—1
k) = b“llbla gy
X <i1 i1 {0 otherwise 0 otherwise

forallk =1,...,w, induced by B. Let x(s) = x(s+1) = ... = x(s+ml) describe its
monochromatic arithmetic progression of length m + 1, so in particular the blocks
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Bj = (bst(j—1)i415- - - bsyj1) satisfy Y B; =0 and [[B; = 1forall j =1,...,m.
Because shifting the j-th block left by j — 1 for j = 1,...,m does not change its
elements due to the identity

bstji—t = bs+(j—1)l—t forallt=1,...,5—1,

the blocks B; =(bst(j—1)i—j+2s- - -»Dsyji—j+1) each of length [ must also each sum
to 0 and multiply to 1. Note that this entails [ > 3, and observe that every non-
zero residue in Zg is its own multiplicative inverse. It follows that the consecutive
blocks E; =(bs4(j—1)1—j+2s - - - » bstji—j) each of length [ — 1, obtained by removing

the right-most element from Bj, satisfy ZEJ_ =— HEJ_ forallj=1,...,m. O
Lemma 2. Ifn € {4,8}, then Fy is vanishing.

Proof. By the van der Waerden theorem, there exists a positive integer w such that
every n™+?
length m + 1. We consider two cases.

-coloring of 1,2,...,w has a monochromatic arithmetic progression of

Case 1: every block of length w multiplies to 0. Because the van der Waerden
theorem guarantees the existence of m consecutive zero-sum blocks Bi,..., By,
each of length [ > w, it must be that 0=[[B; =>_ B; forall j =1,...,m.

Case 2: there exists a block B = (b1,...by) € {1,...,n —1}" such that [[ B # 0.

{bk if by is odd -

Define b}, = for all k =1,...,w and consider a n™"*-coloring

1  otherwise

k k k . .
bp—1 ifk>1 bi—my1 ifk>m—1
k) = bi? b7'7 b/a Sy
X (; le[l ' };[1 ‘ {O otherwise 0 otherwise

forall k =1,...,w, induced by B. Let x(s) = x(s+1) = ... = x(s + ml) describe
its monochromatic arithmetic progression of length m + 1, so in particular the
blocks Bj = (bst(j—1)i+1,- - - bs4j1) satisfy > B; =0 for all j = 1,..., m. Because
[T, b = TI27" b; and the order of 2 in the prime factorization of [[F_, b; is
non-decreasing in k, it must be that by is odd for s < k < s + ml, which implies
[1B; = Zijsﬁr(jfl)lﬂ bj, =1 for all j = 1,...,m. Moreover, because shifting the
j-th block left by j — 1 for j = 1,...,m does not change its elements due to the
identity

bs+jl—t = bs+(j71)l7t for all t = 1, RN ,j — 1,

the blocks B; =(bst(j—1)i—j+2s- > Dsyji—j+1) each of length [ must also each sum
to 0 and multiply to 1. Note that this entails [ > 3, and observe that every odd
residue in Z, is its own multiplicative inverse. It follows that the consecutive
blocks Ej_ =(bsq(j—1)i—j42) - -5 bsyji—;) each of length [ — 1, obtained by removing
the right-most element from Bj, satisfy ZEJ_ =— HEJ_ forallj=1,...,m. O
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Lemma 3. Ifn =6, then F1 is I-vanishing.

Proof. Assume that some A does not contain a block whose sum and product add
to 0, which implies that it contains neither (1, 5) nor (5,1). By the van der Waerden
theorem, there exists a positive integer w such that every 6°-coloring of 1,...,w
has a monochromatic arithmetic progression of length 2 whose difference is at least
3. By the assumption, a zero-sum block of length at least w + 3, whose existence
is also guaranteed by the van der Waerden theorem, cannot multiply to 0. Let
B = (by,...,byt3) satisfy [[ B # 0. Then one of the following two scenarios must
hold.

be if by # 3

o fork=2,...,w+1 and
1  otherwise

Case 1: B € {1,3,5}*"3. Define b} = {

consider a 6*-coloring

k k
x(k) = (Z b,—,Hbg,bk,ka) forall k=2,...,w+1,
=2 =2

induced by B. Let x(s) = x(s+I) describe its monochromatic arithmetic progression
of length 2 for some [ > 3, so in particular ZZZH br, = 0 and ch—:s—&-l bj, = 1. This
implies 3 € {bsy1,...,bs+i} or else HZ‘LISH by = 1 which violates the assumption
by implying HZ‘:SH b, = bs1 1, due to the identity ZZJ;ISH by, = —bsy1. Therefore,

o bk =TI b =TI E Y b = 3, which entails 3 # by = by and 3 # byyy =
bsti+1 or else (bs,...,bsy1) or (bsi1,...,bsi41) violates the assumption. Because
1 and 5 cannot be neighbors in A, it must be that by = bs41 = bsy; = bsy;4+1. But
bs+i4+2 can be neither bsi ;41 (or else (bs,. .., bsyi42) violates the assumption) nor 3
(or else (bsyo,-..,bs1i12) does), and we arrive at a contradiction.

b ifb 2,4 3 ifb,=2

Case 2: B € {1,2,4,5}**"3. Define b}, = kot k¢{ ’ },bg: Ok .
1 otherwise 0 otherwise
for k =2,...,w+ 1 and consider a 6°-coloring

k k k
X(k) = <Z bia Hb’/t’ Zb;/7bkabk+l> for all k = 27 oW 15
=2 =2 =2

induced by B. Let x(s) = x(s+1) describe its monochromatic arithmetic progression
of length 2 for some | > 3, so in particular Zilsﬂ by = 0 and HZ’LZSH b, =
1. Analogously to Case 1, block (bsy1,...,bs4;) contains an even residue, and

because its count of 2’s is even due to the identity Ef;lsﬂ by, = 0, it must be that

Zils 410k = 4. Tt follows that neither bs11 nor bsy; is an even residue, or else
removing it would yield a block violating the assumption. Therefore, by = by =

bsti = bsti41 ¢ {2,4}. But this value can be neither 1 (or else (bs,...,bsq1+1)
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violates the assumption) nor 5 (or else (bsq2,...,bsyi—1) does), and we arrive at a
contradiction. O

Lemma 4. If n =6 and m > 1, then neither F_1 nor Fy is m-vanishing.

Proof. Consider A =1,3,5,3,1,3,5,3,..., and assume that it contains consecutive
blocks Bi, By each of length [ such that " B; —[[B; =0or > . B; +[[B; =0
for j = 1,2. Because every block of A contains a 3 it must be that [[B; = 3
and therefore > B; = 3 for j = 1,2. It follows that B; and B each contain an
odd number of 3’s and an even number of 1’s and 5’s combined, so in particular
I =4k +r for r € {1,3}. Then 4 1 2] and therefore 2/ consecutive elements from A
must contain an odd number of 3’s, which yields a contradiction. O

Lemma 5 (Theorem 3.6 in [4]). If n is a prime satisfying n = 1 mod 4, then F; is
not m-vanishing for any m > 0.

Lemma 6. If n > 3 is a prime satisfying n = 3 mod 4, then there exist x,y €
Z, \ {0} and r € {2,3} such that x4+ ry =0 and zy" = 1.

Proof. One of the following scenarios must hold.

Case 1: 4 is a cubic residue. Let x € Z, satisfy 2® = 4, then y = — % satisfy
x+2y:0andxy2:§:1.

Case 2: 4 is not a cubic residue. Because every a € Z, is a cubic residue when
n = 2 mod 3, it must be that n = 1 mod 3, and therefore every a € Z,, has either 0
or 3 distinct cubic roots in Z,,. In particular, 0 = a®—1 = (a—1)(a?+a+1) has two
solutions besides the unity, at least one of them being a root of a®> +a+1 = 0. The
discriminant of this quadratic polynomial is —3, and therefore there exists z € Z,,

satisfying 22 = —3. It follows that z = (3z)"F ,y = —3 satisfy 2 + 3y = 0 and
xy3 = 7_(3;’)77L+1 =1. O

Lemma 7. Ifn > 3 is a prime satisfying n = 3 mod 4, then F1 is not m-vanishing
for any m > 0.

Proof. One can verify that the sequences A = 2,3,3,3,3,2,3,3,3,3,... and A =
5,3,3,5,3,3,... satisfy the statement of the theorem for, respectively, n = 7 and
n = 11. Therefore, it only remains to consider the case of n > 11.

Let z,y € Z, \ {0} and r € {2,3} satisfy x = —ry and ry" "' = —1 as in Proposi-

tion 6, and consider the sequence A = z,¥,...,y,Z,y,...,¥,.... Any block B must
r times 7T times

then satisfy Y B = sz +ty and [[ B = x°y" for some s € {0,1},t € {0,...,r} such
that s +¢ < 14 r. Assume some B satisfies Y, B = — [[ B, which is equivalent to
(rs—t)y = (—r)%y**t. It immediately follows that (s, t) ¢ {(0,0),(0,1),(1,0)}, and
the remaining cases are examined below.
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Case 1: s = 0,t = 2. Then —2y = y?, which implies y = 2, and therefore
—1 =ry ™t € {32,48}. It follows that n | 33 or n | 49.

Case 2: s =0,t =r = 3. Then —3y = %%, which implies y? = —3, and therefore
—1=3y* = 27. It follows that n | 28.

Case 3: s = 1,t = 1. Then (r — 1)y = —ry?, which implies y = (1 — 7)r~! and
therefore —1 = (1 —r)" ™1y~ € {-272,16 - 373}. It follows that n | 5 or n | 25.
Case 4: s = 1,t = 2,r = 3. Then y = —3y>, which implies 3> = —3~! and

therefore —1 = 3y* = 371. It follows that n | 4.
Because the prime divisors of 33,49, 28,5,25,4 are at most 11, we arrive at a
contradiction. O

Lemma 8. If n = 8u for u > 1, then F1 is not m-vanishing for any m > 0.

Proof. Consider the sequence A = 3,—3,3,—3,... and assume that some block B
of length [ satisfies > B+ [[ B = 0. We consider three cases.

Case 1: liseven. Then Y. B=0but 0# [[B € {£3* : k =1,2,...}, which yields
a contradiction.

Case 2: | = 4r + 3 for some integer > 0. Then either Y. B = 3,[[ B = —3%*3
or Y B=-3,[[B=3""3500=73 B+ [[B entails

O — 3(34T+2 _ 1) — 34T+2 _ 1 — 2(34T+1 + 34T + . + 1)

and therefore 4u | 3%"*1 4+ 34" + ... + 1. Notice that u > 1 entails 7 # 0 due to
the fact that 4u { 4. Because 32" = 1 mod 4 and 3*"*! = 3 mod 4 for any integer
h > 0, it must be that 3% *1 + 3% + ..+ 1 = 3% *! = 3 mod 4, which yields a
contradiction.

Case 3: [ = 4r + 1 for some integer r > 0. Then either Y. B = 3,[[ B = 3% !
or ) B=-3,[[B=-3"*,500=>YB+][][B entails 0 = 3(3% + 1) = 3% + 1
which yields a contradiction because 3*" = 1 mod 4. O

Lemma 9. If n = 9u for u > 0, then F1 is not m-vanishing for any m > 0.

Proof. The proof will assume the context of Zg arithmetic unless stated other-
wise. Consider the sequence A = 7,4,4,7,4,4,.... Any block B in this sequence
is comprised of r + ¢ 7’s and 2r 4+ s 4’s for some r = 0,1,..., t € {0,1}, and
s €{0,1,2} such that ¢t + s < 3, and therefore > B = 6r + 4s+ 7t = s + ¢t mod 3
and [[ B = 477" = 1 mod 3. Assume that some block B satisfies > B+][[ B =0,
so in particular Y B+ [[ B = 0 mod 3 which implies s +¢ = 2 mod 3. We consider
two cases.

Case 1: s =t = 1. Then Y. B+ [[B = 6r + 2 + 4""17 = 3, which yields a

contradiction.
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Case 2: s = 2,t = 0. Then > B+ [[B = 6r + 8+ 4""2 = 6, which yields a
contradiction. Because A does not contain any block B satisfying > B+ ][ B =0,
it also cannot contain a block B such that > B+ [[ B = 0 mod n. O

4. The Case of c = —1

In this section we provide a classification of the m-vanishing property of F_; for all
n, excluding only the case where n is square-free.

Theorem 4. If n = p"* for a prime p and k > 0, then F_1 is vanishing.

Proof. By the van der Waerden theorem, there exists a positive integer w such that
every n™+?2
length m + 1. We consider two cases.

-coloring of 1,2,...,w has a monochromatic arithmetic progression of

Case 1: every block of length w in the sequence multiplies to 0. Because the van
der Waerden theorem guarantees the existence of m consecutive zero-sum blocks
By, ..., By, each of length | > w, it must be that 0 = [[B; = Y B; forall j =
1,...,m.

Case 2: there exists a block B = (by,...by) € {1,...,n—1}" such that [ B # 0.

b ifptd
Define bj, = e ifpt k. for k =1,...,w and consider a n™12-coloring
1 otherwise
k k k
x(k) = (Zbi,thHbz,bm,...,bk+m_1> for all k=1,...,w,
i=1 =1 =1
induced by B. Let x(s) = x(s+1) = ... = x(s + ml) describe its monochro-

matic arithmetic progression of length m + 1, so in particular the blocks B, =
(bst-(j=1)i41, - - - > bsyj1) satisfy D5 B; = 0 for all j = 1,...,m. Because [ b =
Hfiin ! b; and the order of p in the prime factorization of Hle b; is non-decreasing
in k, it must be that p { by, for s < k < s+ md and therefore

s+l

HBj: H bg:lforalljzl,...7m.
i=s+(j—1)I+1

Moreover, because shifting the j-th block right by 7 — 1 for j = 1,...,m does not
change its elements due to the identity

bst (-1t = bstjaye forall t =1,...,5 -1,

the blocks B; =(bst(j—1)14j> - - - » Ds4ji4j—1) must also each sum to 0 and multiply
to 1. It follows that the consecutive blocks E; =(bss(j—1)14j> -+ bstjirs) each
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of length [ + 1, obtained via extending Ej by one element on the right, satisfy
Zgjznﬁjforalljzl,...,m. O

Theorem 5. Ifn satisfies pg® | n for distinct primes p, q, then neither Fy nor F_q
is m-vanishing for any m > 0.

Proof. We repurpose the proof of Theorem 3.5 (b) in [4] as follows. Consider the
sequence A = ¢, —q,q, —q, ... and an arbitrary block B within it. Trivially, >* B €
{0,q,—q} and [[B € {£¢* : k = 2,3,...}. Assume > B+ c[[B = 0 for some
¢ € {1,—1}, which is equivalent to n | > B + c¢[[ B. It follows that > B # 0,
or otherwise > B + c[[B € {¢*, —¢*} for some integer k > 1, which yields a
contradiction because p { ¢* implies that n { ¢*. But 3. B € {q, —¢} would entail
SN B+c]]B € {q+q*, —q+4¢*,q—q*, —q—¢"} for some integer k > 1, and therefore
n | qlg"=!' —1) or n| q(¢" ' +1). However, neither ¢ f ¢"~!' — 1 nor ¢ f ¢*~* + 1,
which contradiction concludes the proof. O

5. Multivariate Generalization of the van der Waerden Theorem

The family of sums F = {(b1,...,b;) — 22:1 b, : 1 =2,3,...} can be viewed as an
instance of families of transformation sums,

l
]'_g:{(bb-..,bz)'—)Zg(bi):1:2,3,,,,},
1=1

in which the transformation g : Z,, — Z, is taken as the identity. Another common
example of a transformation is z — z” for some integer r > 1, which yields the
family of power sums of degree r.

Note that the m-vanishing property is naturally extended to families of vector-
valued functions f) : Z, — ZZ for | = 2,3,... by replacing the scalar zero in
fO(By) =...= fO(B,,) = 0 with its vector counterpart 0 € Z, i.e., by requiring
all d components of f) to simultaneously attain 0 on each of the m consecutive
blocks. This allows a further generalization of the families of transformation sums
by considering multiple transformations at once:

l l
Flgrgn) = {(bl,...,bl) = <Zgl(bi),...,ng(bi)> = 2,3,...}.
i=1 1=1

In the following simple result, we show that any function whose finite-dimensional
value is comprised of the transformation sums yields a vanishing family:

Theorem 6. Let n and d be positive integers and g; : Zyp — Zyn fori=1,...,d.

Then the family Fy, ... q,) 1S vanishing.
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Proof. Consider an n?coloring

1 !
x(k) = (Zgl(bi),...,ng(bi)> forall k=1,2...,

induced by A. Let x(s) = x(s+1) = ... = x(s + ml) describe its monochromatic
arithmetic progression of length m + 1 for some [ > 2. Because the blocks B; =
(bs+(j—1)l+17 RN b5+jl) satisfy 22:1 gi(bSJr(j,l)lJrk) =0forall j=1,...,m and
1=1,...,d, the result immediately follows. O

In particular, choosing any integer r > 0 and applying Theorem 6 for d = r and
g; =x— ' for i = 1,...,d implies that the family of the combined first  power
sums

l l l
Fpowers,r = {(bl,...,bl) > (Zbi,be,...,Zb;”) :5=2,3,...}
i=1 i=1 i=1

is vanishing. Because the elementary symmetric polynomial of degree r can be
expressed as a polynomial in the first r power sums with no constant term via the
Newton identities, it follows that the family of elementary symmetric polynomials
of degree r

Fetomr = (b1,..., b)) — > bibiy ... b, 1=2,3,...

1<i1<i2<...<1,- <1

is also vanishing. This presents a simpler proof of Theorem 3.4 from [4].

Acknowledgement. The authors would like to thank the referee for her/his in-
sightful comments, which improve the presentation of this paper.
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