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Abstract

Let n,m be positive integers and c ∈ Zn, where Zn is the ring of integers modulo
n. We address the following problem, partially solved by N. Alon. Does an infinite
sequence over Zn contain m same-length consecutive blocks B1, . . . , Bm such that∑

Bj+c
∏

Bj = 0 for every j = 1, . . . ,m (where
∑

B and
∏

B denote, respectively,
the sum and the product of the elements in block B)? In the case of c = 0, this
problem is equivalent to the van der Waerden theorem. We provide an almost
complete answer to the above problem, excluding only the case of square-free n and
c = −1. After investigating B 7→

∑
B + c

∏
B, we provide related examples of

generalizing the Van der Waerden theorem to symmetric functions.

1. Background

In 1927, van der Waerden proved a seminal theorem stating that any finite coloring

of the integers contains a monochromatic arithmetic progression of arbitrary length

[15]. Subsequent generalizations established that this phenomenon persists in far

broader contexts, extending to the fields of number theory, logic, algebra, analysis,

and computer science. Below we list a few well-known generalizations of the van

der Waerden theorem.

• Hales and Jewett showed that any finite coloring of a sufficiently high-dimensional

combinatorial cube contains monochromatic combinational lines [9].
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• Gallai and Witt extended the van der Waerden theorem by showing that any

finite coloring of the integer lattice Zd contains a monochromatic affine copy

of every finite point configuration [16, 12].

• Rado characterized all linear equations that have monochromatic solutions in

every finite coloring [11].

• In the density setting, Szemerédi proved that any subset of the integers with

positive upper density must contain arbitrarily long arithmetic progressions

[13], a result that answered the Erdös–Turán conjecture and can be seen as

a density version of van der Waerden’s theorem. Katznelson and Furstenberg

provided an additional proof of the Szemerédi theorem using ergodic theory

[7].

• Erdös and Graham later established the canonical van der Waerden theo-

rem by proving that any sufficiently large finite coloring of N yields either a

monochromatic or a rainbow arithmetic progression of arbitrary length [6].

• Bergelson and Leibman proved a polynomial generalization of the van der

Waerden theorem by replacing a linear polynomial that defines an arithmetic

progression with a polynomial of arbitrary degree [2].

In addition, a dispersed collection of other generalizations recently appeared in

Chapters 2–7 of [10], too varied to enumerate here.

2. Introduction

This work considers the zero-sum formulation of the van der Waerden theorem and

generalizes it to various symmetric functions. The problems addressed in our paper

lie on the intersection of combinatorics on words and Ramsey theory and stem from

two primary sources.

• The first one is the classical work of Thue [14],[3] who proved the existence

of an infinite sequence over a 3-letter alphabet with no identical consecutive

blocks. This seminal paper has developed into a broad theory of combinatorics

on words. One notable direction in this field involves assuming an algebraic

structure on the alphabet, particularly the ring of integers modulo n [1],[5].

• The second source is the zero-sum Ramsey theory on the integers, addressed

in Chapter 10 of [10]. In essence, the colors in the traditional Ramsey theory

are replaced with the elements of Zn, and the notion of monochromatic is

replaced with the notion of zero-sum. As will be seen below, the problems

addressed in our paper relate to the classical van der Waerden theorem [8].



INTEGERS: 26 (2026) 3

Let n be a positive integer and let Zn be the ring of integers modulo n. Consider

an arbitrary sequence A = {ak}∞k=1 over Zn. A block of length l consists of l > 1

consecutive elements from A, relabeled and reindexed as bk’s and denoted by B =

(bs+1, . . . , bs+l) ∈ Zl
n. Furthermore, we say that blocks B1, . . . , Bm are consecutive

if the first element of block Bj+1 follows the last element of block Bj for all j =

1, . . . ,m− 1. Next, consider a family F = {f (l)}∞l=2 where each f (l) : Zl
n → Zn is a

function in l variables. For a positive integer m, we say that F is m-vanishing if for

all sequence A = {ak}∞k=1 over Zn there exist integer l > 1 and m consecutive blocks

B1, . . . , Bm each of length l such that f (l)(B1) = . . . = f (l)(Bm) = 0. Finally, we

say that F is vanishing if it is m-vanishing for all positive integer m.

For the sake of simplicity, we will denote the sum and the product over Zn of all

the elements in a block B as, respectively,
∑

B and
∏

B. Furthermore, we will use

Zn arithmetic throughout the paper unless stated otherwise.

In this paper, we investigate the vanishing property of the family

Fc ={(b1, . . . , bl) 7→
l∑

i=1

bi + c

l∏
i=1

bi : l = 2, 3, . . .}

for all c ∈ Zn. It has been motivated by the following Theorem 1, which is equivalent

to the van der Waerden theorem (consider an auxiliary sequence A′ = {a′k}∞k=1 with

a′k =
∑k

i=1 ai and realize that a monochromatic arithmetic progression of length m

in A′ is equivalent to m− 1 consecutive zero-sum blocks in A, see, e.g., Theorem 4

in [1]).

Theorem 1. Let n be a positive integer. Then the family

F = {(b1, . . . , bl) 7→
l∑

i=1

bi : l = 2, 3, . . .}

is vanishing.

Considering Fc is a particular case of a wider area of investigation of elementary

symmetric polynomials appearing in [4]. As it can be seen from Theorem 2 below,

we only need to investigate Fc for c ∈ {1,−1}.

Theorem 2. If n > 1, then Fc is not m-vanishing for any c ∈ Zn \ {0, 1,−1} and

m > 0.

Proof. Consider sequence A = −1, 1,−1, 1, . . . over Zn and an arbitrary block B

within it. Trivially,
∑

B ∈ {0, 1,−1} and
∏

B ∈ {1,−1}. Then
∑

B + c
∏

B = 0

implies either 0 = (−1)kc or (−1)k = c, and either way we arrive at a contradiction.

In Sections 3 and 4 we consider the cases of c = 1 and c = −1, respectively.

In Section 5 we provide additional examples of generalizing Theorem 1, i.e., the

zero-sum formulation of the van der Waerden theorem.
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3. The Case of c = 1

The main result of this section is Theorem 3 below which gives a complete classifica-

tion of the m-vanishing property of F1. The proof follows from several propositions

provided further below, and Theorems 4 and 5 from Section 4.

Theorem 3. Let n > 1.

(a) If n /∈ {2, 3, 4, 6, 8}, then F1 is not m-vanishing for any m > 0.

(b) If n ∈ {2, 3, 4, 8}, then F1 is vanishing.

(c) If n = 6, then F1 is 1-vanishing but not m-vanishing for any m > 1.

Proof. Part (c) is a result of combining Propositions 3 and 4, and part (b) follows

from Theorem 4 for the case of n = 2, Proposition 1 for the case of n = 3, and

Proposition 2 for the case of n ∈ {4, 8}.
Let n = p1 . . . pk be the decomposition of n into prime factors (not necessarily

distinct). If pi > 3 for some i = 1, . . . , k, then either by Proposition 5 or Proposition

7 there exists an infinite sequence A over Zpi that does not contain any block B

satisfying
∑

B +
∏

B ≡ 0 mod pi. Viewing A as a sequence over Zn then implies

that it cannot contain a block B satisfying
∑

B +
∏

B ≡ 0 mod n.

To complete the proof of part (a), it remains to consider the case of n = 2h3k−h >

8 for 0 ≤ h ≤ k. It follows that k ≥ 2, and the subcases of h = 0 and h = k are

handled by Propositions 9 and 8, respectively. Finally, the proof of the subcase of

0 < h < k, which implies k ≥ 3, is given by Theorem 5.

Lemma 1. If n = 3, then F1 is vanishing.

Proof. We will follow the idea of Noga Alon (see Theorem 3.5 (a) in [4]). By the

van der Waerden theorem, there exists a positive integer w such that every 3m+1-

coloring of 1, 2, . . . , w has a monochromatic arithmetic progression of length m+1.

We consider two cases.

Case 1: every block of length w contains a 0. Because the van der Waerden theorem

guarantees the existence ofm consecutive zero-sum blocks B1, . . . , Bm each of length

l ≥ w, it must be that 0 =
∏

Bj =
∑

Bj for all j = 1, . . . ,m.

Case 2: there exists a block of length w with no 0’s, B = (b1, . . . , bw) ∈ {1, 2}w.
Consider a 3m+1-coloring

χ(k) =

(
k∑

i=1

bi,

k∏
i=1

bi,

{
bk−1 if k > 1

0 otherwise
, . . . ,

{
bk−m+1 if k > m− 1

0 otherwise

)

for all k = 1, . . . , w, induced by B. Let χ(s) = χ(s+l) = . . . = χ(s+ml) describe its

monochromatic arithmetic progression of length m+ 1, so in particular the blocks
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Bj = (bs+(j−1)l+1, . . . , bs+jl) satisfy
∑

Bj = 0 and
∏

Bj = 1 for all j = 1, . . . ,m.

Because shifting the j-th block left by j − 1 for j = 1, . . . ,m does not change its

elements due to the identity

bs+jl−t = bs+(j−1)l−t for all t = 1, . . . , j − 1,

the blocks Bj =(bs+(j−1)l−j+2, . . . , bs+jl−j+1) each of length l must also each sum

to 0 and multiply to 1. Note that this entails l ≥ 3, and observe that every non-

zero residue in Z3 is its own multiplicative inverse. It follows that the consecutive

blocks B
−
j =(bs+(j−1)l−j+2, . . . , bs+jl−j) each of length l− 1, obtained by removing

the right-most element from Bj , satisfy
∑

B
−
j = −

∏
B

−
j for all j = 1, . . . ,m.

Lemma 2. If n ∈ {4, 8}, then F1 is vanishing.

Proof. By the van der Waerden theorem, there exists a positive integer w such that

every nm+2-coloring of 1, 2, . . . , w has a monochromatic arithmetic progression of

length m+ 1. We consider two cases.

Case 1: every block of length w multiplies to 0. Because the van der Waerden

theorem guarantees the existence of m consecutive zero-sum blocks B1, . . . , Bm

each of length l ≥ w, it must be that 0 =
∏

Bj =
∑

Bj for all j = 1, . . . ,m.

Case 2: there exists a block B = (b1, . . . bw) ∈ {1, . . . , n− 1}w such that
∏

B ̸= 0.

Define b′k =

{
bk if bk is odd

1 otherwise
for all k = 1, . . . , w and consider a nm+2-coloring

χ(k) =

(
k∑

i=1

bi,

k∏
i=1

bi,

k∏
i=1

b′i,

{
bk−1 if k > 1

0 otherwise
, . . . ,

{
bk−m+1 if k > m− 1

0 otherwise

)
for all k = 1, . . . , w, induced by B. Let χ(s) = χ(s+ l) = . . . = χ(s+ml) describe

its monochromatic arithmetic progression of length m + 1, so in particular the

blocks Bj = (bs+(j−1)l+1, . . . , bs+jl) satisfy
∑

Bj = 0 for all j = 1, . . . ,m. Because∏s
i=1 bi =

∏s+ml
i=1 bi and the order of 2 in the prime factorization of

∏k
i=1 bi is

non-decreasing in k, it must be that bk is odd for s < k ≤ s + ml, which implies∏
Bj =

∏s+jl
k=s+(j−1)l+1 b

′
k = 1 for all j = 1, . . . ,m. Moreover, because shifting the

j-th block left by j − 1 for j = 1, . . . ,m does not change its elements due to the

identity

bs+jl−t = bs+(j−1)l−t for all t = 1, . . . , j − 1,

the blocks Bj =(bs+(j−1)l−j+2, . . . , bs+jl−j+1) each of length l must also each sum

to 0 and multiply to 1. Note that this entails l ≥ 3, and observe that every odd

residue in Zn is its own multiplicative inverse. It follows that the consecutive

blocks B
−
j =(bs+(j−1)l−j+2, . . . , bs+jl−j) each of length l− 1, obtained by removing

the right-most element from Bj , satisfy
∑

B
−
j = −

∏
B

−
j for all j = 1, . . . ,m.
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Lemma 3. If n = 6, then F1 is 1-vanishing.

Proof. Assume that some A does not contain a block whose sum and product add

to 0, which implies that it contains neither (1, 5) nor (5, 1). By the van der Waerden

theorem, there exists a positive integer w such that every 65-coloring of 1, . . . , w

has a monochromatic arithmetic progression of length 2 whose difference is at least

3. By the assumption, a zero-sum block of length at least w + 3, whose existence

is also guaranteed by the van der Waerden theorem, cannot multiply to 0. Let

B = (b1, . . . , bw+3) satisfy
∏

B ̸= 0. Then one of the following two scenarios must

hold.

Case 1: B ∈ {1, 3, 5}w+3. Define b′k =

{
bk if bk ̸= 3

1 otherwise
for k = 2, . . . , w + 1 and

consider a 64-coloring

χ(k) =

(
k∑

i=2

bi,

k∏
i=2

b′i, bk, bk+1

)
for all k = 2, . . . , w + 1,

induced byB. Let χ(s) = χ(s+l) describe its monochromatic arithmetic progression

of length 2 for some l ≥ 3, so in particular
∑s+l

k=s+1 bk = 0 and
∏s+l

k=s+1 b
′
k = 1. This

implies 3 ∈ {bs+1, . . . , bs+l} or else
∏s+l

k=s+1 bk = 1 which violates the assumption

by implying
∏s+l

k=s+2 bk = bs+1, due to the identity
∑s+l

k=s+2 bk = −bs+1. Therefore,∏s+l
k=s+1 bk =

∏s+l
k=s bk =

∏s+l+1
k=s+1 bk = 3, which entails 3 ̸= bs = bs+l and 3 ̸= bs+1 =

bs+l+1 or else (bs, . . . , bs+l) or (bs+1, . . . , bs+l+1) violates the assumption. Because

1 and 5 cannot be neighbors in A, it must be that bs = bs+1 = bs+l = bs+l+1. But

bs+l+2 can be neither bs+l+1 (or else (bs, . . . , bs+l+2) violates the assumption) nor 3

(or else (bs+2, . . . , bs+l+2) does), and we arrive at a contradiction.

Case 2: B ∈ {1, 2, 4, 5}w+3. Define b′k =

{
bk if bk /∈ {2, 4}
1 otherwise

, b′′k =

{
3 if bk = 2

0 otherwise

for k = 2, . . . , w + 1 and consider a 65-coloring

χ(k) =

(
k∑

i=2

bi,

k∏
i=2

b′i,

k∑
i=2

b′′i , bk, bk+1

)
for all k = 2, . . . , w + 1,

induced byB. Let χ(s) = χ(s+l) describe its monochromatic arithmetic progression

of length 2 for some l ≥ 3, so in particular
∑s+l

k=s+1 bk = 0 and
∏s+l

k=s+1 b
′
k =

1. Analogously to Case 1, block (bs+1, . . . , bs+l) contains an even residue, and

because its count of 2’s is even due to the identity
∑s+l

k=s+1 b
′′
k = 0, it must be that∏s+l

k=s+1 bk = 4. It follows that neither bs+1 nor bs+l is an even residue, or else

removing it would yield a block violating the assumption. Therefore, bs = bs+1 =

bs+l = bs+l+1 /∈ {2, 4}. But this value can be neither 1 (or else (bs, . . . , bs+l+1)
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violates the assumption) nor 5 (or else (bs+2, . . . , bs+l−1) does), and we arrive at a

contradiction.

Lemma 4. If n = 6 and m > 1, then neither F−1 nor F1 is m-vanishing.

Proof. Consider A = 1, 3, 5, 3, 1, 3, 5, 3, . . ., and assume that it contains consecutive

blocks B1, B2 each of length l such that
∑

Bj −
∏

Bj = 0 or
∑

Bj +
∏

Bj = 0

for j = 1, 2. Because every block of A contains a 3 it must be that
∏

Bj = 3

and therefore
∑

Bj = 3 for j = 1, 2. It follows that B1 and B2 each contain an

odd number of 3’s and an even number of 1’s and 5’s combined, so in particular

l = 4k + r for r ∈ {1, 3}. Then 4 ∤ 2l and therefore 2l consecutive elements from A

must contain an odd number of 3’s, which yields a contradiction.

Lemma 5 (Theorem 3.6 in [4]). If n is a prime satisfying n ≡ 1 mod 4, then F1 is

not m-vanishing for any m > 0.

Lemma 6. If n > 3 is a prime satisfying n ≡ 3 mod 4, then there exist x, y ∈
Zn \ {0} and r ∈ {2, 3} such that x+ ry = 0 and xyr = 1.

Proof. One of the following scenarios must hold.

Case 1: 4 is a cubic residue. Let x ∈ Zn satisfy x3 = 4, then y = −x
2 satisfy

x+ 2y = 0 and xy2 = x3

4 = 1.

Case 2: 4 is not a cubic residue. Because every a ∈ Zn is a cubic residue when

n ≡ 2 mod 3, it must be that n ≡ 1 mod 3, and therefore every a ∈ Zn has either 0

or 3 distinct cubic roots in Zn. In particular, 0 = a3−1 = (a−1)(a2+a+1) has two

solutions besides the unity, at least one of them being a root of a2 + a+1 = 0. The

discriminant of this quadratic polynomial is −3, and therefore there exists z ∈ Zn

satisfying z2 = −3. It follows that x = (3z)
n+1
4 , y = −x

3 satisfy x + 3y = 0 and

xy3 = −(3z)n+1

27 = 1.

Lemma 7. If n > 3 is a prime satisfying n ≡ 3 mod 4, then F1 is not m-vanishing

for any m > 0.

Proof. One can verify that the sequences A = 2, 3, 3, 3, 3, 2, 3, 3, 3, 3, . . . and A =

5, 3, 3, 5, 3, 3, . . . satisfy the statement of the theorem for, respectively, n = 7 and

n = 11. Therefore, it only remains to consider the case of n > 11.

Let x, y ∈ Zn \{0} and r ∈ {2, 3} satisfy x = −ry and ryr+1 = −1 as in Proposi-

tion 6, and consider the sequence A = x, y, . . . , y︸ ︷︷ ︸
r times

, x, y, . . . , y︸ ︷︷ ︸
r times

, . . .. Any block B must

then satisfy
∑

B = sx+ ty and
∏

B = xsyt for some s ∈ {0, 1}, t ∈ {0, . . . , r} such

that s+ t < 1 + r. Assume some B satisfies
∑

B = −
∏

B, which is equivalent to

(rs− t)y = (−r)sys+t. It immediately follows that (s, t) /∈ {(0, 0), (0, 1), (1, 0)}, and
the remaining cases are examined below.
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Case 1: s = 0, t = 2. Then −2y = y2, which implies y = 2, and therefore

−1 = ryr+1 ∈ {32, 48}. It follows that n | 33 or n | 49.

Case 2: s = 0, t = r = 3. Then −3y = y3, which implies y2 = −3, and therefore

−1 = 3y4 = 27. It follows that n | 28.

Case 3: s = 1, t = 1. Then (r − 1)y = −ry2, which implies y = (1 − r)r−1 and

therefore −1 = (1− r)r+1r−r ∈ {−2−2, 16 · 3−3}. It follows that n | 5 or n | 25.

Case 4: s = 1, t = 2, r = 3. Then y = −3y3, which implies y2 = −3−1 and

therefore −1 = 3y4 = 3−1. It follows that n | 4.
Because the prime divisors of 33, 49, 28, 5, 25, 4 are at most 11, we arrive at a

contradiction.

Lemma 8. If n = 8u for u > 1, then F1 is not m-vanishing for any m > 0.

Proof. Consider the sequence A = 3,−3, 3,−3, . . . and assume that some block B

of length l satisfies
∑

B +
∏

B = 0. We consider three cases.

Case 1: l is even. Then
∑

B = 0 but 0 ̸=
∏

B ∈ {±3k : k = 1, 2, . . .}, which yields

a contradiction.

Case 2: l = 4r + 3 for some integer r ≥ 0. Then either
∑

B = 3,
∏

B = −34r+3

or
∑

B = −3,
∏

B = 34r+3, so 0 =
∑

B +
∏

B entails

0 = 3(34r+2 − 1) = 34r+2 − 1 = 2(34r+1 + 34r + . . .+ 1)

and therefore 4u | 34r+1 + 34r + . . . + 1. Notice that u > 1 entails r ̸= 0 due to

the fact that 4u ∤ 4. Because 32h ≡ 1 mod 4 and 32h+1 ≡ 3 mod 4 for any integer

h ≥ 0, it must be that 34r+1 + 34r + . . . + 1 ≡ 34r+1 ≡ 3 mod 4, which yields a

contradiction.

Case 3: l = 4r + 1 for some integer r > 0. Then either
∑

B = 3,
∏

B = 34r+1

or
∑

B = −3,
∏

B = −34r+1, so 0 =
∑

B +
∏

B entails 0 = 3(34r + 1) = 34r + 1

which yields a contradiction because 34r ≡ 1 mod 4.

Lemma 9. If n = 9u for u > 0, then F1 is not m-vanishing for any m > 0.

Proof. The proof will assume the context of Z9 arithmetic unless stated other-

wise. Consider the sequence A = 7, 4, 4, 7, 4, 4, . . .. Any block B in this sequence

is comprised of r + t 7’s and 2r + s 4’s for some r = 0, 1, . . ., t ∈ {0, 1}, and

s ∈ {0, 1, 2} such that t + s < 3, and therefore
∑

B = 6r + 4s + 7t ≡ s + t mod 3

and
∏

B = 4r+s7t ≡ 1 mod 3. Assume that some block B satisfies
∑

B+
∏

B = 0,

so in particular
∑

B+
∏

B ≡ 0 mod 3 which implies s+ t ≡ 2 mod 3. We consider

two cases.

Case 1: s = t = 1. Then
∑

B +
∏

B = 6r + 2 + 4r+17 = 3, which yields a

contradiction.
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Case 2: s = 2, t = 0. Then
∑

B +
∏

B = 6r + 8 + 4r+2 = 6, which yields a

contradiction. Because A does not contain any block B satisfying
∑

B +
∏

B = 0,

it also cannot contain a block B such that
∑

B +
∏

B ≡ 0 mod n.

4. The Case of c = −1

In this section we provide a classification of the m-vanishing property of F−1 for all

n, excluding only the case where n is square-free.

Theorem 4. If n = pk for a prime p and k > 0, then F−1 is vanishing.

Proof. By the van der Waerden theorem, there exists a positive integer w such that

every nm+2-coloring of 1, 2, . . . , w has a monochromatic arithmetic progression of

length m+ 1. We consider two cases.

Case 1: every block of length w in the sequence multiplies to 0. Because the van

der Waerden theorem guarantees the existence of m consecutive zero-sum blocks

B1, . . . , Bm each of length l ≥ w, it must be that 0 =
∏

Bj =
∑

Bj for all j =

1, . . . ,m.

Case 2: there exists a block B = (b1, . . . bw) ∈ {1, . . . , n− 1}w such that
∏

B ̸= 0.

Define b′k =

{
bk if p ∤ bk
1 otherwise

for k = 1, . . . , w and consider a nm+2-coloring

χ(k) =

(
k∑

i=1

bi,

k∏
i=1

bi,

k∏
i=1

b′i, bk+1, . . . , bk+m−1

)
for all k = 1, . . . , w,

induced by B. Let χ(s) = χ(s + l) = . . . = χ(s + ml) describe its monochro-

matic arithmetic progression of length m + 1, so in particular the blocks Bj =

(bs+(j−1)l+1, . . . , bs+jl) satisfy
∑

Bj = 0 for all j = 1, . . . ,m. Because
∏s

i=1 bi =∏s+ml
i=1 bi and the order of p in the prime factorization of

∏k
i=1 bi is non-decreasing

in k, it must be that p ∤ bk for s < k ≤ s+md and therefore

∏
Bj =

s+jl∏
i=s+(j−1)l+1

b′i = 1 for all j = 1, . . . ,m.

Moreover, because shifting the j-th block right by j − 1 for j = 1, . . . ,m does not

change its elements due to the identity

bs+(j−1)l+t = bs+jd+t for all t = 1, . . . , j − 1,

the blocks Bj =(bs+(j−1)l+j , . . . , bs+jl+j−1) must also each sum to 0 and multiply

to 1. It follows that the consecutive blocks B
+

j =(bs+(j−1)l+j , . . . , bs+jl+j) each
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of length l + 1, obtained via extending Bj by one element on the right, satisfy∑
B

+

j =
∏

B
+

j for all j = 1, . . . ,m.

Theorem 5. If n satisfies pq2 | n for distinct primes p, q, then neither F1 nor F−1

is m-vanishing for any m > 0.

Proof. We repurpose the proof of Theorem 3.5 (b) in [4] as follows. Consider the

sequence A = q,−q, q,−q, . . . and an arbitrary block B within it. Trivially,
∑

B ∈
{0, q,−q} and

∏
B ∈ {±qk : k = 2, 3, . . .}. Assume

∑
B + c

∏
B = 0 for some

c ∈ {1,−1}, which is equivalent to n |
∑

B + c
∏

B. It follows that
∑

B ̸= 0,

or otherwise
∑

B + c
∏

B ∈ {qk,−qk} for some integer k > 1, which yields a

contradiction because p ∤ qk implies that n ∤ qk. But
∑

B ∈ {q,−q} would entail∑
B+c

∏
B ∈ {q+qk,−q+qk, q−qk,−q−qk} for some integer k > 1, and therefore

n | q(qk−1 − 1) or n | q(qk−1 + 1). However, neither q ∤ qk−1 − 1 nor q ∤ qk−1 + 1,

which contradiction concludes the proof.

5. Multivariate Generalization of the van der Waerden Theorem

The family of sums F = {(b1, . . . , bl) 7→
∑l

i=1 bi : l = 2, 3, . . .} can be viewed as an

instance of families of transformation sums,

Fg = {(b1, . . . , bl) 7→
l∑

i=1

g(bi) : l = 2, 3, . . .},

in which the transformation g : Zn → Zn is taken as the identity. Another common

example of a transformation is x 7→ xr for some integer r > 1, which yields the

family of power sums of degree r.

Note that the m-vanishing property is naturally extended to families of vector-

valued functions f (l) : Zn → Zd
n for l = 2, 3, . . . by replacing the scalar zero in

f (l)(B1) = . . . = f (l)(Bm) = 0 with its vector counterpart 0 ∈ Zd, i.e., by requiring

all d components of f (l) to simultaneously attain 0 on each of the m consecutive

blocks. This allows a further generalization of the families of transformation sums

by considering multiple transformations at once:

F(g1,...,gd) =

{
(b1, . . . , bl) 7→

(
l∑

i=1

g1(bi), . . . ,

l∑
i=1

gd(bi)

)
: l = 2, 3, . . .

}
.

In the following simple result, we show that any function whose finite-dimensional

value is comprised of the transformation sums yields a vanishing family:

Theorem 6. Let n and d be positive integers and gi : Zn → Zn for i = 1, . . . , d.

Then the family F(g1,...,gd) is vanishing.
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Proof. Consider an nd-coloring

χ(k) =

(
l∑

i=1

g1(bi), . . . ,

l∑
i=1

gd(bi)

)
for all k = 1, 2 . . . ,

induced by A. Let χ(s) = χ(s + l) = . . . = χ(s +ml) describe its monochromatic

arithmetic progression of length m + 1 for some l ≥ 2. Because the blocks Bj =

(bs+(j−1)l+1, . . . , bs+jl) satisfy
∑l

k=1 gi(bs+(j−1)l+k) = 0 for all j = 1, . . . ,m and

i = 1, . . . , d, the result immediately follows.

In particular, choosing any integer r > 0 and applying Theorem 6 for d = r and

gi = x 7→ xi for i = 1, . . . , d implies that the family of the combined first r power

sums

Fpowers,r =

{
(b1, . . . , bl) 7→

(
l∑

i=1

bi,

l∑
i=1

b2i , . . . ,

l∑
i=1

bri

)
: l = 2, 3, . . .

}

is vanishing. Because the elementary symmetric polynomial of degree r can be

expressed as a polynomial in the first r power sums with no constant term via the

Newton identities, it follows that the family of elementary symmetric polynomials

of degree r

Felem,r =

(b1, . . . , bl) 7→
∑

1≤i1<i2<...<ir≤l

bi1bi2 . . . bir : l = 2, 3, . . .


is also vanishing. This presents a simpler proof of Theorem 3.4 from [4].

Acknowledgement. The authors would like to thank the referee for her/his in-

sightful comments, which improve the presentation of this paper.
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mathématiques et d’informatique, Université du Québec à Montréal, 1995.

[4] A. Bialostocki and P. Dierker, Zero sum Ramsey theorems, Congr. Numer. 70 (1990), 119–
130.



INTEGERS: 26 (2026) 12

[5] J. Cassaigne, J. D. Currie, L. Schaeffer, and J. Shallit, Avoiding three consecutive blocks of
the same size and same sum, J. ACM 61 (2) (2014), 1–17.

[6] P. Erdös and R. L. Graham, Old and New Problems and Results in Combinatorial Number
Theory, L’Enseignement Mathematiques Un. Geneve, 1980.

[7] H. Furstenberg and Y. Katznelson, A density version of the Hales–Jewett theorem, J. Anal.
Math 57 (1) (1991), 64–119.

[8] R. L. Graham, B. L. Rothschild, and J. H. Spencer, Ramsey Theory, John Wiley & Sons,
1991.

[9] A. W. Hales and R. I. Jewett, Regularity and positional games, in Classic Papers in Com-
binatorics, Springer, 2009.

[10] B. M. Landman and A. Robertson, Ramsey Theory on the Integers, Second edition, American
Mathematical Soc., 2014.

[11] R. Rado, Studien zur kombinatorik, Math. Z. 36 (1) (1933), 424–470.

[12] A. Soifer, Ramsey Theory: Yesterday, Today, and Tomorrow, Springer Science & Business
Media, 2010.
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