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Abstract

In this work, we construct Farey graphs in the field of rational functions analogous
to the idea in the classical case. We explore their properties and establish some
relationships between these graphs and their associated regular continued fraction
expansions.

1. Introduction

In a 1991 article by Jones, Singerman, and Wicks [1], the graph Fu,N , where u and

N are natural numbers and gcd(u,N) = 1, was introduced. The vertex set of the

graph is

χ
N

=

{
p

q
: p, q ∈ Z, q > 0, (p, q) = 1, and N | q

}
∪ {∞}, (1)

and any vertices p
q and r

s are joined by an edge if and only if rq − sp = N with

p ≡ ur (mod N) or rq−sp = −N with p ≡ −ur (mod N). The graph F1,1 is known

as the Farey graph. An interesting observation is that the Farey graph is intimately

connected with the continued fractions arising from its subgraphs. Since then,
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numerous studies have investigated the relationships between Fu,N and continued

fractions.

For example, in 2015, Sarma, Kushwaha, and Krishnan [4] introduced a specific

kind of semi-regular continued fractions which is referred to as an F1,2-continued

fraction, a finite continued fraction of the form

1

0+

2

b+

ϵ1
a1+

ϵ2
a2+

· · · ϵn
an

(n ≥ 0)

or an infinite continued fraction of the form

1

0+

2

b+

ϵ1
a1+

ϵ2
a2+

· · · ϵn
an+

· · · ,

where b is an odd integer, ai is an even positive integer, and ϵi ∈ {±1} for each i.

They established that each finite F1,2-continued fraction corresponds to a path

starting from ∞ and ending at its value. Also, in 2018, similar results for a graph

F1,3 were established by Kushwaha and Sarma [2]. Recently, in 2022, Kushwaha

and Sarma [3] relaxed the conditions of two adjacent vertices in the graph Fu,N

and got a new family of graphs FN defined as follows: the set of vertices is χ
N

(as in Equation (1)) and two vertices p
q and r

s are connected by an edge if and

only if rq − sp = ±N . Similarly, they also constructed FN -continued fractions and

established the parallel results of their earlier works.

Shaped by the article of Kushwaha and Sarma, we are very interested in the

study of relationships between graphs and continued fractions, but in some other

structure, namely, the field of rational functions. For the continued fraction part,

we focus on the regular continued fractions that have already been constructed and

well known; for example, see [5]. We next recall the definitions and basic results

regarding regular continued fractions in the field of rational functions.

Throughout this paper, we let F be a field, F(x) the field of rational functions

over F, and F((x−1)) the field of formal series over F complete with respect to the

degree valuation | · |. Recall that for each nonzero element

α = cmxm + . . .+ c1x+ c0 +
c−1

x
+

c−2

x2
+ . . . ∈ F((x−1)), (2)

where m ∈ Z and ci ∈ F (i ≤ m) with cm ̸= 0, the degree valuation is defined

by |α| = em and |0| = 0. The integral part of α, denoted by [α], is defined to be

[α] = cmxm + . . .+ c1x+ c0. Note that when α, as expressed in (2), has no integral

part, it becomes

α =
c−t

xt
+

c−(t+1)

xt+1
+

c−(t+2)

xt+2
+ . . . ,

where t is a positive integer.
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Every element α in F((x−1)) can be uniquely represented as a finite or infinite

expression of the form

α = a0 +
1

a1 +
1

a2 +
1

a3 + ...

= [a0, a1, a2, a3, . . .],

where a0 is in F[x] and the an are in F[x] \ F (n ≥ 1). The polynomials an are

called the partial quotients of the continued fraction expansion of α and each αn =

[an, an+1, . . .] is called the nth complete quotient of α. The sequence of convergents,

An/Bn, can be generated from two sequences {An} and {Bn} of polynomials in the

following way:

A−1 = 1, A0 = a0, An+1 = an+1An +An−1 (n ≥ 0),
B−1 = 0, B0 = 1, Bn+1 = an+1Bn +Bn−1 (n ≥ 0).

We then have the following results.

Lemma 1 ([5]). For any non-negative integer n ≥ 0 and β ∈ F((x−1)) \ {0}, we
have

1.
βAn +An−1

βBn +Bn−1
= [a0, a1, a2, . . . , an, β],

2. AnBn−1 −An−1Bn = (−1)n−1,

3. |Bn| > |Bn−1| > 0, and

4.

∣∣∣∣α− An

Bn

∣∣∣∣ = 1

|an+1||Bn|2
(n ≥ 1).

From Lemma 1, every An

Bn
= [a0, a1, a2, . . . , an] is a reduced fraction and satisfies∣∣∣∣α− An

Bn

∣∣∣∣ → 0 (n → ∞).

Then we call An

Bn
the nth convergent of the regular continued fraction of α where

An and Bn are called the nth partial numerator and nth partial denominator,

respectively.

Theorem 1 ([5]). Let α ∈ F((x−1)). Then α is a rational function if and only if

its continued fraction is finite.

In this article, we construct Farey graphs, analogous to those defined in [1], over

the field of rational functions. Also, we aim to explore their properties and establish

some relationships between regular continued fractions and their associated Farey

graphs.
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2. Main Results

In this section, we first introduce the Farey graph over a field F. It is the graph

whose vertex set is

χ′ =

{
u

v
: u, v ∈ F[x] with v ̸= 0 and (u, v) = 1

}
and two vertices

u

v
and

r

s
are connected by an edge, denoted by

u

v
∼ r

s
, if and only

if

rv − su ∈ F \ {0}.

So, we are able to consider the Farey graph over F as a simple and undirected graph.

It is clear to see that, for any c in F and for any nonzero polynomial v over F,
two vertices c and c+ 1

v

(
= cv+1

v

)
in χ′ are adjacent. In addition, the path from c to

c+ 1
v defines the regular continued fraction of c+ 1

v if v is a nonconstant polynomial.

In the remainder, we focus on the path starting from a nonconstant polynomial over

F.

Remark 1. We denote the set of vertices by χ′
pr when we consider the Farey graph

over Fpr , the finite field of pr elements (p is a prime and r is a positive integer).

Also, for convenience, we usually use χ′
pr to stand for the Farey graph over Fpr . We

usually use long arrows to indicate and emphasize the direction of a path between

two vertices, as it helps us visualize the relation between paths and their associated

continued fractions.

Example 1. In the Farey graph χ′
3, here are some examples of paths starting from

the vertex x:

x −→ x2 + 1

x
−→ x3 − x

x2 + 1
−→ x4 + 1

x3 − x
−→ x5 + x3

x4 + 1
,

x −→ x2 − 1

x
−→ x3

x2 + 1
−→ x4 + x2 − 1

x3 − x
−→ −x5 + x

−x4 − x2 + 1
,

x −→ x2 + 1

x
−→ x3

x2 − 1
−→ x4 − x2 − 1

x3 + x
−→ −x5 − x4 + x2 + x+ 1

−x4 − x3 + x2 − x+ 1
,

and

x −→ x2 − 1

x
−→ x3 + x

x2 − 1
−→ −x4 + x2 + 1

−x3
−→ x6 − x4 − x3 − x2 − x

x5 − x2 + 1
.

We now recall the concept of Farey series from [6] and establish its connections

with our Farey graphs.

Definition 1 ([6]). Let p be a prime, and let n and r be positive integers. The

Farey series of order n is defined as

Fn =
{u

v
| u, v ∈ Fpr [x], deg u < deg v ≤ n, (u, v) = 1, and v is monic

}
.
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Remark 2. From Definition 1, it follows immediately that Fn ⊆ χ′
pr with p, n,

and r as above.

Definition 2 ([6]). For any distinct fractions u
v and h

k in a given Fn with v and

k monic, we say that h
k is a deg k-neighbor of u

v if
∣∣u
v − h

k

∣∣ ≤
∣∣u
v − h′

k′

∣∣ for every
h′

k′ ∈ Fn with deg k′ = deg k.

Definition 3 ([6]). Any fractions u
v and h

k in a given Fn are called neighbors if u
v

is a deg v-neighbor of h
k and h

k is a deg k-neighbor of u
v .

Theorem 2 ([6]). For any natural number n, two fractions u
v and h

k in Fn are

neighbors if and only if deg(uk − hv) = 0.

Remark 3. From Theorem 2, we see that all elements that are neighbors in Fn

are adjacent in the Farey graph χ′.

Theorem 3 ([6]). Let p be a prime and let n be a natural number. If u
v is in Fn

and q = deg v, then u
v has exactly (p− 1)pt neighbors of degree q+ t for any integer

t ≥ 0, and has only one neighbor of degree less than q.

Example 2. Consider the vertex x+1
x2 in F2 ⊆ χ′

3. By Theorem 3, with p = 3 and

q = 2, there is only one neighbor of degree 1, which must come from{0

1
,
1

x
,
2

x
,

1

x+ 1
,

2

x+ 1
,

1

x+ 2
,

2

x+ 2

}
and, through direct computation, it is found to be 1

x+2 . Note that a vertex of

degree zero cannot be a neighbor, as it is not connected to any other vertex. Figure

1 shows the number of neighbors of x+1
x2 for different degrees.

Figure 1: The number of neighbors of x+1
x2 at each degree.
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Next, we show how to construct a path in the Farey graph associated with a

given continued fraction.

Theorem 4. The value of every finite regular continued fraction belongs to χ′ and

every finite continued fraction defines a path from its integral part to its value with

the convergents as the vertices.

Proof. The first part is clear. The latter part comes automatically from Lemma 1

(2).

Conversely, for a given path, we show how to define an associated continued

fraction as follows.

Theorem 5. Given the path u0

v0
→ u1

v1
→ u2

v2
→ · · · → un

vn
, let [a0, a1, a2, ..., an] be

the associated continued fraction of un

vn
with all convergents as vertices of the path,

and let un+1

vn+1
∈ χ′ be such that deg vn+1 > deg vn. Then the path

u0

v0
→ u1

v1
→ · · · → un

vn
→ un+1

vn+1

defines the continued fraction [a0, a1, a2, ..., an, an+1] of
un+1

vn+1
, where

an+1 =
vn+1An−1 − un+1Bn−1

un+1Bn − vn+1An
∈ F[x] \ F.

Proof. Suppose that the path

u0

v0
→ u1

v1
→ u2

v2
→ · · · → un

vn

defines the continued fraction [a0, a1, a2, ..., an] with the convergents as vertices.

Consider the path
u0

v0
→ u1

v1
→ · · · → un

vn
→ un+1

vn+1
.

Suppose that un+1vn−unvn+1 = c for some c in F \ {0} and un+1

vn+1
is represented by

the continued fraction of the form [a0, a1, a2, ..., an, an+1]. We now solve for an+1.

We have un+1

vn+1
= an+1An+An−1

an+1Bn+Bn−1
, which implies that

an+1 =
vn+1An−1 − un+1Bn−1

un+1Bn − vn+1An
.

Next, we will show that an+1 ∈ F[x]\F. We first show that an+1 ∈ F[x] by showing

that un+1Bn−vn+1An is in F\{0}. Since un

vn
= An

Bn
and they are reduced fractions,

there is a unit t in F \ {0} such that An = tun and Bn = tvn. Therefore,

un+1Bn − vn+1An = un+1(tvn)− vn+1(tun) = tc ∈ F \ {0}.
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We now show that an+1 is a nonconstant polynomial over F. By Lemma 1 (2) and

|vn+1| > |vn| = |Bn| > |Bn−1|, we have∣∣∣vn+1An−1 − un+1Bn−1

vn+1Bn−1

∣∣∣ =
∣∣∣un+1

vn+1
− An−1

Bn−1

∣∣∣ = ∣∣∣ tc

vn+1Bn
+

(−1)n−1

BnBn−1

∣∣∣
= max

{ 1

|vn+1Bn|
,

1

|BnBn−1|

}
=

1

|BnBn−1|
.

Then

|vn+1An−1 − un+1Bn−1| =
|vn+1Bn−1|
|BnBn−1|

> 1.

Equivalently, we have vn+1An−1 − un+1Bn−1 ∈ F[x] \ F. This implies that an+1 ∈
F[x] \ F, as required.

Theorem 6. Let u−1 = 1 = v0, v−1 = 0, c0 = 1, and u0 ∈ F[x]. For each

i ∈ {1, 2, ..., n}, let ui, vi ∈ F[x] with (ui, vi) = 1, deg(vi−1) < deg(vi), and uivi−1 −
ui−1vi = ci ∈ F \ {0}. Then the path

a0 :=
u0

v0
−→ u1

v1
−→ u2

v2
−→ u3

v3
−→ · · · −→ un

vn

from a0 to un

vn
defines the finite regular continued fraction of un

vn
, where each vertex

ui

vi
defines its ith convergent. In particular, the partial quotients a1 = c−1

1 v1,

a2 = −c−1
2 c1(u2v0 − u0v2), and

ai = (−1)i+1c−1
i ci−1c

−2
i−2c

2
i−3 · · · c

(−1)i·2
1 (uivi−2 − ui−2vi) (i ≥ 3)

with the ith partial numerators and ith partial denominators (i ≥ 1)

Ai =

{
c−1
i ci−1c

−1
i−2ci−3 · · · c(−1)i

1 ui, if i ≡ 0, 1 (mod 4)

−c−1
i ci−1c

−1
i−2ci−3 · · · c(−1)i

1 ui, if i ≡ 2, 3 (mod 4)

and

Bi =

{
c−1
i ci−1c

−1
i−2ci−3 · · · c(−1)i

1 vi, if i ≡ 0, 1 (mod 4)

−c−1
i ci−1c

−1
i−2ci−3 · · · c(−1)i

1 vi, if i ≡ 2, 3 (mod 4),

respectively.

Proof. Consider the path
u0

v0
−→ u1

v1
.

By the assumption, we have u1 = a0v1+c1. Moreover, since deg(v1) > deg(v0) = 0,

we have v1 ∈ F[x] \ F. We then have the regular continued fraction of u1

v1
as

u1

v1
=

a0v1 + c1
v1

= a0 +
1

c−1
1 v1

= [a0, a1]
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with the partial quotient a1 = c−1
1 v1. Note that A0 = u0, B0 = 1 = v0, and the first

partial denominator

B1 = a1B0 +B−1 = a1 = c−1
1 v1 = c

(−1)1

1 v1.

Since u1

v1
= A1

B1
and they are reduced fractions, we have

A1 = c
(−1)1

1 u1.

Consider the path
u0

v0
−→ u1

v1
−→ u2

v2
.

By Theorem 5, we have

a2 =
v2A0 − u2B0

u2B1 − v2A1
= −c−1

2 c1
(
u2v0 − u0v2

)
∈ F[x].

Since deg v2 > deg v1, we have a2 ∈ F[x] \ F. Therefore,

B2 = a2B1 +B0 = −c−1
2 c1

(
u2v0 − u0v2

)
(c−1

1 v1) + 1 = −c−1
2 c1v2 = −c−1

2 c
(−1)2

1 v2

and it follows that

A2 = −c−1
2 c1u2 − c−1

2 c
(−1)2

1 u2.

Consider the path
u0

v0
−→ u1

v1
−→ u2

v2
−→ u3

v3
.

Again by Theorem 5, we have

a3 =
v3A1 − u3B1

u3B2 − v3A2
= (−1)4c−1

3 c2c
−2
1

(
u3v1 − u1v3

)
∈ F[x] \ F.

Similarly, by direct computation, we get

B3 = a3B2 +B1 = −c−1
3 c2c

−1
1 v3 = −c−1

3 c2c
(−1)3

1 v3

and

A3 = −c−1
3 c2c

(−1)3

1 u3.

Consider the path

u0

v0
−→ u1

v1
−→ u2

v2
−→ u3

v3
−→ u4

v4
.

Similar to the previous cases, we obtain a4 = (−1)5c−1
4 c3c

−2
2 c21

(
u4v2 − u2v4

)
∈

F[x] \ F. By direct computation, we also have

B4 = a4B3 +B2 = c−1
4 c3c

−1
2 c1v4 = c−1

4 c3c
−1
2 c

(−1)4

1 v4
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and

A4 = c−1
4 c3c

−1
2 c

(−1)4

1 u4.

For the inductive step, assume that the statement is true for k ≥ 4, and that we

are given a path

u0

v0
−→ u1

v1
−→ u2

v2
−→ u3

v3
−→ · · · −→ uk+1

vk+1
.

Then, by the induction hypothesis, the path

u0

v0
−→ u1

v1
−→ u2

v2
−→ u3

v3
−→ · · · −→ uk

vk

from
u0

v0
to

uk

vk
defines the finite regular continued fraction of

uk

vk
, say

uk

vk
= [a0, a1, . . . , ak],

where a1 = c−1
1 v1, a2 = −c−1

2 c1(u2, v0 − u0v2), and

ai = (−1)i+1c−1
i ci−1c

−2
i−2c

2
i−3 · · · c

(−1)i·2
1 (uivi−2 − ui−2vi) ∈ F[x] \ F

with 3 ≤ i ≤ k. Moreover, for each 1 ≤ i ≤ k, its ith partial numerator and

denominator are

Ai =

{
c−1
i ci−1c

−1
i−2ci−3 · · · c(−1)i

1 ui, if i ≡ 0, 1 (mod 4)

−c−1
i ci−1c

−1
i−2ci−3 · · · c(−1)i

1 ui, if i ≡ 2, 3 (mod 4)

and

Bi =

{
c−1
i ci−1c

−1
i−2ci−3 · · · c(−1)i

1 vi, if i ≡ 0, 1 (mod 4)

−c−1
i ci−1c

−1
i−2ci−3 · · · c(−1)i

1 vi, if i ≡ 2, 3 (mod 4),

respectively. Note that the assumptions uk+1vk − ukvk+1 = ck+1 and ukvk−1 −
uk−1vk = ck imply that(

ckvk+1 + ck+1vk−1

vk

)
= uk+1vk−1 − uk−1vk+1. (3)

In order to show that

u0

v0
−→ u1

v1
−→ u2

v2
−→ u3

v3
−→ · · · −→ uk+1

vk+1

satisfies the statement of the theorem, we divide the proof into four cases, as one

might expect. However, due to the tedious nature of the argument, we present only

the case when k + 1 ≡ 1 (mod 4).
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Assume that k + 1 ≡ 1 (mod 4). Then k ≡ 0 (mod 4) and k − 1 ≡ 3 (mod 4).

By the induction hypothesis, we have Ak = c−1
k ck−1c

−1
k−2ck−3 · · · c−1

2 c1uk and Bk =

c−1
k ck−1c

−1
k−2ck−3 · · · c−1

2 c1vk. Also, Ak−1 = −c−1
k−1ck−2c

−1
k−3 · · · c2c

−1
1 uk−1 and

Bk−1 = −c−1
k−1ck−2c

−1
k−3 · · · c2c

−1
1 vk−1. Therefore, by Theorem 5,

ak+1 =
vk+1Ak−1 − uk+1Bk−1

uk+1Bk − vk+1Ak

=
vk+1(−c−1

k−1ck−2c
−1
k−3 · · · c

−1
1 uk−1)− uk+1(−c−1

k−1ck−2 · · · c−1
1 vk−1)

uk+1c
−1
k ck−1c

−1
k−2ck−3 · · · c−1

2 c1vk − vk+1c
−1
k ck−1c

−1
k−2 · · · c

−1
2 c1uk

=
−c−1

k−1ck−2 · · · c−1
1 (vk+1uk−1 − uk+1vk−1)

c−1
k ck−1c

−1
k−2ck−3 · · · c1(uk+1vk − vk+1uk)

= (−1)k+2c−1
k+1ckc

−2
k−1c

2
k−2 · · · c22c−2

1 (uk+1vk−1 − vk+1uk−1),

as desired.

Moreover, by Equation (3), we have

ak+1 = (−1)k+2c−1
k+1ckc

−2
k−1c

2
k−2 · · · c22c−2

1

(
ckvk+1 + ck+1vk−1

vk

)
.

Then one can see that

Bk+1 = ak+1Bk +Bk−1

= ak+1(c
−1
k ck−1 · · · c−1

2 c1vk) + (−c−1
k−1ck−2 · · · c2c−1

1 vk−1)

= c−1
k+1ck · · · c2c

−1
1 vk+1.

Similarly, replacing vk by uk and vk−1 by uk−1, we obtain the analogous expression

Ak+1 = c−1
k+1ck · · · c2c

−1
1 uk+1,

as required.

Next, adopting the same notation as in Theorem 6, we present special cases

of Theorem 6 over the finite fields F2 and F3. Note that in F2(x), the results

essentially coincide, since 1 ≡ −1 (mod 2). Over F3, however, the outcomes are

more interesting and varied.

Corollary 1. If uivi−1 − ui−1vi = (−1)i−1 (1 ≤ i ≤ n), then the path

a0 :=
u0

v0
−→ u1

v1
−→ u2

v2
−→ u3

v3
−→ · · · −→ un

vn

from a0 to un

vn
defines the finite regular continued fraction of un

vn
where each vertex

ui

vi
defines its ith convergent. In particular, the ith partial numerator and partial

denominator are ui and vi, respectively, with the partial quotient

ai = (−1)i
(
uivi−2 − ui−2vi

)
(1 ≤ i ≤ n).
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Corollary 2. If uivi−1 − ui−1vi = (−1)i (1 ≤ i ≤ n), then the path

a0 :=
u0

v0
−→ u1

v1
−→ u2

v2
−→ u3

v3
−→ · · · −→ un

vn

from a0 to un

vn
defines the finite regular continued fraction of un

vn
where each vertex

ui

vi
defines its ith convergent. In particular, the ith partial numerator and partial

denominator are (−1)iui and (−1)ivi, respectively, with the partial quotient a1 =

−v1 and

ai = (−1)i
(
uivi−2 − ui−2vi

)
(2 ≤ i ≤ n).

Corollary 3. If uivi−1 − ui−1vi = 1 (1 ≤ i ≤ n), then the path

a0 :=
u0

v0
−→ u1

v1
−→ u2

v2
−→ u3

v3
−→ · · · −→ un

vn

from a0 to un

vn
defines the finite regular continued fraction of un

vn
where each ver-

tex ui

vi
defines its convergent. In particular, the ith partial numerator and partial

denominator, respectively, are

Ai =

{
ui, if i ≡ 0, 1 (mod 4)

−ui, if i ≡ 2, 3 (mod 4)
and Bi =

{
vi, if i ≡ 0, 1 (mod 4)

−vi, if i ≡ 2, 3 (mod 4)

with the partial quotient a1 = v1 and ai = (−1)i+1
(
uivi−2 − ui−2vi

)
(2 ≤ i ≤ n).

Corollary 4. If uivi−1 − ui−1vi = −1 (1 ≤ i ≤ n), then the path

a0 :=
u0

v0
−→ u1

v1
−→ u2

v2
−→ u3

v3
−→ · · · −→ un

vn

from a0 to un

vn
defines the finite regular continued fraction of un

vn
where each ver-

tex ui

vi
defines its convergent. In particular, the ith partial numerator and partial

denominator, respectively, are

Ai =

{
ui, if i ≡ 0, 3 (mod 4)

−ui, if i ≡ 1, 2 (mod 4)
and Bi =

{
vi, if i ≡ 0, 3 (mod 4)

−vi, if i ≡ 1, 2 (mod 4)

with the partial quotient ai = (−1)i+1
(
uivi−2 − ui−2vi

)
(1 ≤ i ≤ n).

We now return to Example 1 to examine how the conclusions of the preceding

corollaries relate to the paths under consideration. For convenience, we set the

notation as follows: for any two vertices u/v and r/s in χ′
3,

u

v

+−−→ r

s
means

u

v
∼ r

s
with rv − su = 1, and

u

v

−−−→ r

s
means

u

v
∼ r

s
with rv − su = −1.
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By Corollary 1, the path

x
+−−→ x2 + 1

x

−−−→ x3 − x

x2 + 1

+−−→ x4 + 1

x3 − x

−−−→ x5 + x3

x4 + 1
(4)

defines the regular continued fraction

x5 + x3

x4 + 1
= [x, x, x, x, x].

Table 1 displays the vertices of the path in (4) and their associated convergents.

i Vertex ui/vi Convergent Ai/Bi

0 x x

1 x2+1
x

x2+1
x

2 x3−x
x2+1

x3−x
x2+1

3 x4+1
x3−x

x4+1
x3−x

4 x5+x3

x4+1
x5+x3

x4+1

Table 1: The vertices of the path and their associated convergents of [x, x, x, x, x].

By Corollary 2, the path

x
−−−→ x2 − 1

x

+−−→ x3

x2 + 1

−−−→ x4 + x2 − 1

x3 − x

+−−→ −x5 + x

−x4 − x2 + 1
(5)

defines the regular continued fraction

−x5 + x

−x4 − x2 + 1
= [x,−x,−x,−x, x].

Table 2 displays the vertices of the path in (5) and their associated convergents.

i Vertex ui/vi Convergent Ai/Bi

0 x x

1 x2−1
x

−x2+1
−x

2 x3

x2+1
x3

x2+1

3 x4+x2−1
x3−x

−x4−x2+1
−x3+x

4 −x5+x
−x4−x2+1

−x5+x
−x4−x2+1

Table 2: The vertices of the path and their associated convergents of
[x,−x,−x,−x, x].

By Corollary 3, the path

x
+−−→ x2 + 1

x

+−−→ x3

x2 − 1

+−−→ x4 − x2 − 1

x3 + x

+−−→ −x5 − x4 + x2 + x+ 1

−x4 − x3 + x2 − x+ 1
(6)



INTEGERS: 26 (2026) 13

defines the regular continued fraction

−x5 − x4 + x2 + x+ 1

−x4 − x3 + x2 − x+ 1
= [x, x,−x, x, x+ 1].

Table 3 displays the vertices of the path in (6) and their associated convergents.

i Vertex ui/vi Convergent Ai/Bi

0 x x

1 x2+1
x

x2+1
x

2 x3

x2−1
−x3

−x2+1

3 x4−x2−1
x3+x

−x4+x2+1
−x3−x

4 −x5−x4+x2+x+1
−x4−x3+x2−x+1

−x5−x4+x2+x+1
−x4−x3+x2−x+1

Table 3: The vertices of the path and their associated convergents of [x, x,−x, x, x+
1].

By Corollary 4, the path

x
−−−→ x2 − 1

x

−−−→ x3 + x

x2 − 1

−−−→ −x4 + x2 + 1

−x3

−−−→ x6 − x4 − x3 − x2 − x

x5 − x2 + 1
(7)

defines the regular continued fraction

x6 − x4 − x3 − x2 − x

x5 − x2 + 1
= [x,−x, x, x,−x2].

Table 4 displays the vertices of the path in (7) and their associated convergents.

i Vertex ui/vi Convergent Ai/Bi

0 x x

1 x2−1
x

−x2+1
−x

2 x3+x
x2−1

−x3−x
−x2+1

3 −x4+x2+1
−x3

−x4+x2+1
−x3

4 x6−x4−x3−x2−x
x5−x2+1

x6−x4−x3−x2−x
x5−x2+1

Table 4: The vertices of the path and their associated convergents of
[x,−x, x, x,−x2].
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