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Abstract
In this work, we construct Farey graphs in the field of rational functions analogous
to the idea in the classical case. We explore their properties and establish some
relationships between these graphs and their associated regular continued fraction
expansions.

1. Introduction

In a 1991 article by Jones, Singerman, and Wicks [1], the graph F,, n, where u and
N are natural numbers and ged(u, N) = 1, was introduced. The vertex set of the
graph is

p
XN{q:p,q€Z,q>0,(p,Q)1, anleq}U{OOL (1)

and any vertices g and % are joined by an edge if and only if rq — sp = N with

p=ur (mod N)orrg—sp=—N withp = —ur (mod N). The graph F1 ; is known
as the Farey graph. An interesting observation is that the Farey graph is intimately
connected with the continued fractions arising from its subgraphs. Since then,
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numerous studies have investigated the relationships between F,, x and continued
fractions.

For example, in 2015, Sarma, Kushwaha, and Krishnan [4] introduced a specific
kind of semi-regular continued fractions which is referred to as an Fj 2-continued

fraction, a finite continued fraction of the form
l2a e % sy
0+ b+ a1+ as+ an

or an infinite continued fraction of the form

1 2 € € €n

0+ b+ a1+ as+ o an+ B

)

where b is an odd integer, a; is an even positive integer, and ¢; € {£1} for each i.
They established that each finite F; 2-continued fraction corresponds to a path
starting from oo and ending at its value. Also, in 2018, similar results for a graph
F1,3 were established by Kushwaha and Sarma [2]. Recently, in 2022, Kushwaha
and Sarma [3] relaxed the conditions of two adjacent vertices in the graph F, n
and got a new family of graphs Fy defined as follows: the set of vertices is x
(as in Equation (1)) and two vertices £ and % are connected by an edge if and
only if rq — sp = £N. Similarly, they also constructed Fy-continued fractions and
established the parallel results of their earlier works.

Shaped by the article of Kushwaha and Sarma, we are very interested in the
study of relationships between graphs and continued fractions, but in some other
structure, namely, the field of rational functions. For the continued fraction part,
we focus on the regular continued fractions that have already been constructed and
well known; for example, see [5]. We next recall the definitions and basic results
regarding regular continued fractions in the field of rational functions.

Throughout this paper, we let F be a field, F(z) the field of rational functions
over F, and F((z~1)) the field of formal series over F complete with respect to the
degree valuation | - |. Recall that for each nonzero element

Cc_ Cc_
a:cmmm+...+clx+co+71+x—22+...e]F((xfl)), (2)

where m € Z and ¢; € F (i < m) with ¢, # 0, the degree valuation is defined
by |a| = €™ and |0] = 0. The integral part of «, denoted by [a], is defined to be
[a] = ema™+ ...+ 1z + ¢o. Note that when «, as expressed in (2), has no integral
part, it becomes

C—t  C—(t+1) | C—(t+2)

a=—"+
xt i+l rt+2

+...,

where t is a positive integer.
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Every element « in F((z71)) can be uniquely represented as a finite or infinite
expression of the form

a =ap+ 1 = [ao, a1,az,as,.. ],
e

ag + —
2 az+ ..

where g is in F[z] and the a, are in Flz] \ F (n > 1). The polynomials a,, are
called the partial quotients of the continued fraction expansion of o and each «,, =
[@n, Gpt1, - -] is called the nth complete quotient of a. The sequence of convergents,
A, /By, can be generated from two sequences {A,} and {B, } of polynomials in the
following way:

A1 =1, Ap=ap, Apyi=anAn+A4,1 (n>0),
B_1 =0, By = 1, Bn+1 = an+1Bn +B,_1 (TL > O)

We then have the following results.

Lemma 1 ([5]). For any non-negative integer n > 0 and 3 € F((z=1)) \ {0}, we
have

6An + Anfl
‘ ﬁBn + Bn—l

2. Aan—l - An—an = (71)71717

1 :[a07a17a27"'7an>ﬂ]a

3. |Bn| > |Bn-1] > 0, and

A, 1
Jola-Z2=———  (n>1).
Ba| " TamriBaP 2V
From Lemma 1, every g—z = [ag, a1, a9, ...,ay] is a reduced fraction and satisfies
Ap
——|—=0 — 00).
a B, (n — o)

Then we call % the nth convergent of the regular continued fraction of a where
A, and B, are called the nth partial numerator and nth partial denominator,
respectively.

Theorem 1 ([5]). Let a € F((z™1)). Then « is a rational function if and only if
its continued fraction is finite.

In this article, we construct Farey graphs, analogous to those defined in [1], over
the field of rational functions. Also, we aim to explore their properties and establish
some relationships between regular continued fractions and their associated Farey
graphs.
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2. Main Results

In this section, we first introduce the Farey graph over a field F. It is the graph
whose vertex set is

Y = {u 1,0 € Fla] with v # 0 and (u,v) = 1}
v

and two vertices l and r are connected by an edge, denoted by Lo i, if and only
¢ v S VoS
rv—su € F\ {0}.
So, we are able to consider the Farey graph over F as a simple and undirected graph.
It is clear to see that, for any ¢ in F and for any nonzero polynomial v over F,
two vertices ¢ and ¢+ % (: “’U—H) in ¥’ are adjacent. In addition, the path from c to
c+ = defines the regular continued fraction of ¢+ 1 if v is a nonconstant polynomial.

In the remainder, we focus on the path starting from a nonconstant polynomial over
F.

Remark 1. We denote the set of vertices by x;,» when we consider the Farey graph
over F,r, the finite field of p” elements (p is a prime and r is a positive integer).
Also, for convenience, we usually use X;r to stand for the Farey graph over F,-. We
usually use long arrows to indicate and emphasize the direction of a path between
two vertices, as it helps us visualize the relation between paths and their associated
continued fractions.

Example 1. In the Farey graph x4, here are some examples of paths starting from
the vertex x:

2 +1 3 —x 41 x5+ 28
T 2 +1 R a— x4 +17
22 -1 a3 a2 —1 -2+
T — — — —
x 2+ 1 33—z —zt— 22417
241 x3 iy | —d—at a4 ar+1
r— — — —
x 2 —1 3+ —xt -2+ -+ 1
and
z? -1 3+ —zt 42?41 28—t -t -2 -
r — —

x z?2 -1 —a3 x® —a2 41
We now recall the concept of Farey series from [6] and establish its connections
with our Farey graphs.

Definition 1 ([6]). Let p be a prime, and let n and r be positive integers. The
Farey series of order n is defined as

Fn = {ﬁ | u,v € Fpr[z],degu < degv < n, (u,v) =1, and v is monic}.
v
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Remark 2. From Definition 1, it follows immediately that F,, C X;T with p, n,
and r as above.

Definition 2 ([6]). For any distinct fractions ¥ and % in a given F,, with v and
k/monic, we say that % is a deg k-neighbor of = if |% — %| < |% - Z—:
% € F, with deg k' = deg k.

for every

Definition 3 ([6]). Any fractions % and % in a given F,, are called neighbors if 7

is a deg v-neighbor of % and % is a deg k-neighbor of .

Theorem 2 ([6]). For any natural number n, two fractions “ and % in F, are

neighbors if and only if deg(uk — hv) = 0.

Remark 3. From Theorem 2, we see that all elements that are neighbors in F,
are adjacent in the Farey graph x’.

Theorem 3 ([6]). Let p be a prime and let n be a natural number. If % is in Fp,
and q = degv, then % has exactly (p — 1)pt neighbors of degree q+1 for any integer
t > 0, and has only one neighbor of degree less than q.

Example 2. Consider the vertex Im—'*;l in F C x%. By Theorem 3, with p = 3 and
q = 2, there is only one neighbor of degree 1, which must come from

{O 1 2 1 2 1 2 }
'z’ z2’z+12+1"2+2" 2+2

and, through direct computation, it is found to be ﬁ Note that a vertex of

degree zero cannot be a neighbor, as it is not connected to any other vertex. Figure
1 shows the number of neighbors of %1 for different degrees.

2-3" neighbors

2- 3" neighbors of 7 ~ of degree 240

degree 2 +1 o TN

3 the neighbor
-/ of degree < 2

2- 3" neighbors of
degree 2+t (" g —

24l at each degree.
xr

Figure 1: The number of neighbors of
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Next, we show how to construct a path in the Farey graph associated with a
given continued fraction.

Theorem 4. The value of every finite reqular continued fraction belongs to x' and
every finite continued fraction defines a path from its integral part to its value with
the convergents as the vertices.

Proof. The first part is clear. The latter part comes automatically from Lemma 1
(2). O

Conversely, for a given path, we show how to define an associated continued
fraction as follows.

Theorem 5. Given the path Z—S — Z—; — oo = = et [ag, a1, az, ..., an] be

V1
the associated continued fraction of 7= with all convergents as vertices of the path,
and let % € x' be such that deg v,+1 > degv,,. Then the path

U Ul (s U 1
Vo U1 Un, Un+41
defines the continued fraction |ag, a1, a9, ..., an, apt1] Of Z”ii, where
n
Un1A4n—1 — Unt1Bn_1
Apt+1 = S ]F[l‘] \IF

unJran - UnJrlAn

Proof. Suppose that the path
(%) uy ug Unp
—_ % R % e
Vo U1 V2 Un,

defines the continued fraction [ag, a1, as,...,a,] with the convergents as vertices.
Consider the path

Uug (5% u Unp+1
Vo U1 Un Un41
Suppose that w10, — tyUp4+1 = ¢ for some ¢ in F\ {0} and Z"—E is represented by

the continued fraction of the form [ag, a1, a9, ..., an, ant1]. We now solve for a,41.

n i Ap+Ap R
We have ZE = ZE B"i 5=, which implies that

Un+1An71 - unJranfl
Up41Bp — Un+1An

Ap4+1 =

Next, we will show that a1 € F[z]\F. We first show that a,11 € F[z]| by showing
that w41 Bn — Unt14, is in F\ {0}. Since :j—: = % and they are reduced fractions,

n

there is a unit ¢ in F \ {0} such that A,, = tu,, and B,, = tv,,. Therefore,

Unt1Bn — Vnr1An = Upy1(tvn) — g1 (tuy,) =tc € F\ {0},
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We now show that a1 is a nonconstant polynomial over F. By Lemma 1 (2) and
|Un41] > |vn| = |Bn| > |Bn—1|, we have

VUnt1An—1 — Uny1Bn1 ‘ Up+1  An—a ‘ _|_ te n (=p"! ‘

vn+1Bn Ban—l
1 1

Un—i—an—l 'Un—}-l Bn—l

- maX{ |Un+1Bn| ’ ‘Ban—1| } - |Ban—l‘ .

Then | B |
Un4+1Dn—-1
nt1An—1 — Upy1Bn_1| = ————=— > 1.
‘v i ! “ + 1| |B7LBn—1|
Equivalently, we have v, 14,1 — unt1Bn—1 € Flz] \ F. This implies that a,41 €
Flz] \ F, as required. O

Theorem 6. Let u_y = 1 = vy, v_1 = 0, ¢g = 1, and ug € Flz]. For each
i€4{1,2,...,n}, let u;,v; € Flz] with (u;,v;) = 1,deg(v;—1) < deg(v;), and wjv;_1 —
ui—1v; = ¢; € F\ {0}. Then the path

(%) (5% U2 us Unp,
Gpi=— —— — — — — — - — —
Vo U1 V2 U3 Un
from ag to 7= defines the finite regular continued fraction of +*, where each vertex
w; . . . . . s |
o defines its ith convergent. In particular, the partial quotients a1 = cj v,

as = —cglcl(ugvo — ugus), and

a; = (71)”10_101-_10;_22012_3 cee cg_l) '2(uivi_2 —u;—ov;) (1 >3)

i
with the ith partial numerators and ith partial denominators (i > 1)
A= ci_lci,lci__120i,3 . cg_l)zu_i, ifi=0,1 (mod 4)
' —cjlci,lcz_lgci,g . cg_l) u;, if 1 =2,3 (mod 4)
and
B — citeiic; ez cgfl)lv?, if 1=0,1 (mod 4)
’ —c[lci,lc;gci,g e cgfl)'vi, if i = 2,3 (mod 4),
respectively.

Proof. Consider the path
ug U1
— — —.

Vo U1
By the assumption, we have u; = agv1 4 ¢1. Moreover, since deg(vy) > deg(vg) = 0,
we have vy € Flz] \ F. We then have the regular continued fraction of - as
Uy agv1 + ¢

= =@+ 7= [ao, a1]
U1 U1 L U1
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with the partial quotient a; = cflvl. Note that Ay = ug, Bo = 1 = vy, and the first
partial denominator

—1 —11
B1:a1B0+B,1:(Z1261 7}120(1 )’Ul.

Since Z—; = %1 and they are reduced fractions, we have

A1 = Cg_ Uy .
Consider the path
Ug (5% U
— — — —
Vo U1 (%)
By Theorem 5, we have
va Ao — u2 By

-1
az = p— =~ e (uavo — uovz) € Fla).

Since deg vy > deg vy, we have as € F[z] \ F. Therefore,

-1 -1 -1 —1 (-1)?
By =asBy + By =—c¢5; 1 (UQ'UO — uovg)(cl v1)+1=—c5 cruva = —c Y Vg

and it follows that

1 1 (—1)?

Ay = —c; clug —c, ¢ Us.
Consider the path
Ug Uy Uz us
—_— = — = — —,
Vo U1 V2 U3

Again by Theorem 5, we have

1)3141 — U3Bl

as = = (=1)*cz eact *(ugvr — wrvg) € Fla] \ F.

usBy —vsAy
Similarly, by direct computation, we get

Bs = agBy + By = —c3 eaey tvg = —c5 teacl T
3 = a3by + D1 = —C3 €€ U3 = —C3 C2€; ~ U3

and

_ —1)3
Az = —c5 1czc( ) us.

Consider the path

() Ul (5 us Uy
—— = — = — = — —.
Vo U1 U2 U3 Vg
e : : _ 5.-1. —2 2
Similar to the previous cases, we obtain ay = (—1)%c; 'cscy?c? (uave — ugvy) €
Flz] \ F. By direct computation, we also have

By = auBa + By — ¢~ Leacsl =1, -1 (-1)*
4 = a4b3 + bBo =4 C3Cy C1U4 = C4 C3CH C; V4
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and X
=17,

-1, —1
Ay =c; e3ey ¢ 4.

For the inductive step, assume that the statement is true for k£ > 4, and that we

are given a path

4) — H oo .
Vo U1 V2 U3 Vk+1

Then, by the induction hypothesis, the path

uo Uy U2 us Uk41
—_— — — = oy

uo U U2 us Uk
Vo V1 V2 U3 Vg

U u U
from —2 to — defines the finite regular continued fraction of —k, say
Uk

Vo Vg
U
—_— = [ao,al, e ,ak],
Vk
h _ -1 _ —1
where a1 = ¢] "v1,a2 = —c5 ¢1(u2,v9 — ugva), and

_ i+1 —1 —2 2 (-1)"-2
ai = (=1)""¢; cimic; HCig 0

)

(uivi_g — ui_g’Ui) S ]F[x] \F

with 3 < ¢ < k. Moreover, for each 1 < i < k, its ith partial numerator and

denominator are

s = {ci_lci_lci__gci_g _ c(l_l)iui, ifi=0,1 (mod 4)

—c Ve e Ty, i i =23 (mod 4)

and

B, =
g — 71 . 71 . DY
C; Ci—1C;_5Ci—3-"-C

C;lciflc;_120i73 e cg_l)ivi, if i=0,1 (mod 4)
571)*%7 if i =2,3 (mod 4),

respectively. Note that the assumptions ug41v, — UgVE+1 = cxy1 and ugvgp—1 —

Ugp_1Vg = ¢ imply that

CkVk+1 + Ck+1Vk—1
Vi

In order to show that

Uo Ui U2 us Uk+1
- s = N s 2y BT
Vo U1 V2 U3 Vk41

) = Uk4+1Vk—1 — Uk—1Vk+1-

3)

satisfies the statement of the theorem, we divide the proof into four cases, as one
might expect. However, due to the tedious nature of the argument, we present only

the case when k +1 =1 (mod 4).
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Assume that £k +1 =1 (mod 4). Then £k =0 (mod 4) and k —1 = 3 (mod 4).
By the induction hypothesis, we have Ay = cglck_lc,;_lQCk_g . cz_lcluk and By, =
cglck_lcl:Qck_g e cglclvk. Also, Ap_1 = —cl;llck_gcl;lg e @cfluk_l and
Br_1 = —c,;_llck,gc,;_lg’ . cchlvk,l. Therefore, by Theorem 5,

Vg1 Ag—1 — U1 Br—1

Ap4+1 =
Up11 Bk — vp1 A
1 -1 -1 -1 -1
k1 (=0 Ch—2C g€ Uk—1) — Uk (—Cp_ Ch—2 € Vk—1)
= 1 1 -1 1 1 1
uk“ck Ckflck_QCkfg c0rCy C1UE — Uk+1ck Ckflck_Q e Cy ClUE
1 -1
Gy Ch—2 (U1 Up—1 — Uk +10k—1)
=1 1
Chp Ch—1Cf_oCk—3 - C1 (U4 1V — Vpy1U)
_ k+2 —1 -2 2 2 —2
= (1) e ere 2 g 0 (U4 1Uk—1 — Vkg1Up—1),
as desired.

Moreover, by Equation (3), we have

k+2

o —o [ CkVk+1 + Cry1Vk—1
Akp4+1 = (—1) < .

-1 —2 2
Cr 1 1CLCL Z1Ch_ o CHC
kr16kCr_1Ck—2 2C1 U
Then one can see that

Biy1 = ag41Bi + Br—1
= ak+1(c,;1ck_1 ey teug) + (—c,;llck_g T
= c,;llck e chl_lvk_H.
Similarly, replacing vg by ux and vg_1 by ux_1, we obtain the analogous expression
Ajy1 = CoyqCh - 207 Uy,
as required. O

Next, adopting the same notation as in Theorem 6, we present special cases
of Theorem 6 over the finite fields Fo and F3. Note that in Fy(z), the results
essentially coincide, since 1 = —1 (mod 2). Over F3, however, the outcomes are
more interesting and varied.

Corollary 1. If u;v;_1 —ui_1v; = (—1)"=1 (1 <i < n), then the path

uQ (5% u9 us Unp,
apg = — —> — —> — —— — —— = — —
Vo U1 U2 U3 Un

Un Un

from ag to 7= defines the finite reqular continued fraction of <
’;—1 defines its ith convergent. In particular, the ith partial numerator and partial

where each vertex

denominator are u; and v;, respectively, with the partial quotient

Gi = (*1)i(ui’Uz’—2 - ui—QUi) (1<i<n).
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Corollary 2. If ujv;_1 —u;—1v; = (—1)* (1 <i < n), then the path

Uo Uq U2 us Un,
ap:=— — — — — — — — . —
Vo U1 V2 V3 Un
from ag to Z—: defines the finite regular continued fraction of 7:—2 where each vertex
=L defines its ith convergent. In particular, the ith partial numerator and partial
denominator are (—1)'u; and (—1)%v;, respectively, with the partial quotient a; =
—v1 and
a; = (7].)Z (Ui’l)i_g — Ui_g’l}i) (2 S 7 S Tl)

Corollary 3. If u;v;—1 —uj—1v; =1 (1 < i <n), then the path

Uo U1 U2 us Un,
ag:=— — — — — — — —F - — —
Vo U1 V2 U3 Un

Upn

from ag to o defines the finite regular continued fraction of z—z where each ver-

tex ot defines its convergent. In particular, the ith partial numerator and partial
denominator, respectively, are

A = Uu;, ij%EO,l (mod 4) and B, = v;, Z‘fZ’EO,l (mod 4)
—u;, ifi=2,3 (mod 4) —v;, ifi=2,3 (mod 4)

with the partial quotient a1 = vy and a; = (71)”1(uivi_2 - ui_gvi) (2<i<n).

Corollary 4. If u;v;—1 —uj—1v; = =1 (1 < i < n), then the path

(') (5% u9 us Unp
QGpi=— — — —> — — — — . —
Yo U1 V2 U3 Un,
from ag to 7= defines the finite regular continued fraction of ™ where each ver-
n n

tex ot defines its convergent. In particular, the ith partial numerator and partial
denominator, respectively, are

A = Uu;, %f%50,3 (mod 4) and B, = v;, z‘fz'EO,i} (mod 4)
—u;, ifi=1,2 (mod 4) —v;, ifi=1,2 (mod 4)

with the partial quotient a; = (*1)i+1(u,ﬂ)¢_2 - ui_gvi) (1<i<n).

We now return to Example 1 to examine how the conclusions of the preceding
corollaries relate to the paths under consideration. For convenience, we set the
notation as follows: for any two vertices u/v and r/s in x4,

u o4 T uooro,

— —— — means — ~ — with v —su =1, and
v s v S8

u o u

— — — means — ~ — with rv—su= -1
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By Corollary 1, the path

L o22+1 - 22—z 4 41

x 22 +1 3 —x
defines the regular continued fraction
x® + 23

T—H = [.T,l',x,x,x].

x5+x3

12

4+ 1

Table 1 displays the vertices of the path in (4) and their associated convergents.

i | Vertex u;/v; | Convergent A;/B;
0 T T
1 m2+1 12+1
X X
2 [L’S —x x3 —X
241 241
3 x4+1 m4+1
z3—x z3—x
4 z° =’
441 441

Table 1: The vertices of the path and their associated convergents of [z, z, x, z, z].

By Corollary 2, the path

_ ox2-1 3
r —

+ X _

a2 —-1 4
—

—
x 22 +1
defines the regular continued fraction

—x5+x

et 2+l

[z,

3 — =z

—x,—x,—x,x].

—1'4—1'2+1

—x5—|—x

()

Table 2 displays the vertices of the path in (5) and their associated convergents.

i | Vertex u;/v; | Convergent A;/B;
0 z x
2 —1 —z2+1
1 z —x
2 _a® _z®
2241 2241
3 w4+x2—1 —14—;1:2+1
T3 —x —z34x
4 —15+:c —z5+z
—zt—x241 —xt—x241

Table 2: The vertices of the path and their associated convergents of

[x, —z, —z, —z, ]

By Corollary 3, the path

2 3 4
v+ 1 T T
+ + +

— X

2 1 5
_ _pd
LN

a4+l

T 2 —1

3+

P

B+ —z+1
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defines the regular continued fraction

S -ttt a4l _
—rt 342z +1

[z, 2, —2z,z,x + 1].

Table 3 displays the vertices of the path in (6) and their associated convergents.

1 Vertex u; /v; Convergent A;/B;
0 x T
1 m2+1 m2+1
Ly L
T —z
2 z2—1 —x241
3 | 7I4+I2+1
i, 34 ) —x3—zx
4 [ I | [ |
—xt—a34a—x41 —xt—a34x? x4l

Table 3: The vertices of the path and their associated convergents of [z, z, —z, z, z+
1].

By Corollary 4, the path

_ox?2—1 - 24 - —at4a?4+1 - S —at—at—?2—g

— — 7
v x 2 —1 —x3 o —x2+1 (7)

defines the regular continued fraction

1'67;’17471’371’271’ 2]

o =[z,—z,x,z,—x

) ) 3

Table 4 displays the vertices of the path in (7) and their associated convergents.

i Vertex u; /v; Convergent A;/B;
0 x T
z P
z—1 —z”41
1 x —x
2 x3+:c L
z2—1 —x2+1
3 7:1:4+z2+1 7m4+12+1
— 3 — 43
4 2 —aT—2® 272 20—zt —2®—27—2
5 —x241 x5 —x2+41

Table 4: The vertices of the path and their associated convergents of
[, —x, 2,7, —2?].

Acknowledgements. The authors would like to express their gratitude to the
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