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Abstract

Let Tℓ,k(n) denote the number of ℓ-regular k-tuple partitions of n. In a recent work,
Nath, Saikia, and Sarma derived several families of congruences for Tℓ,k(n), with
particular emphasis on the cases T2,3(n) and T4,3(n). In the concluding remarks
of their paper, they conjectured that T2,3(n) satisfies an infinite set of congruences
modulo 6. In this paper, we confirm their conjecture by proving a much more
general result using elementary q-series techniques. We also present new families of
congruences satisfied by Tℓ,k(n).

1. Introduction

A partition of a non-negative integer n is a non-increasing sequence of positive

integers, called parts, whose sum is n. By convention, zero has only one parti-

tion, namely, the empty sequence. Let p(n) denote the number of partitions of n.
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Ramanujan [15] famously established the celebrated congruences

p(5n+ 4) ≡ 0 (mod 5),

p(7n+ 5) ≡ 0 (mod 7),

p(11n+ 6) ≡ 0 (mod 11).

Since Ramanujan’s pioneering work, mathematicians have investigated further

congruences for p(n) and the arithmetic properties of its various generalizations. In

this paper, we consider the following generalization. If

n1, n2, . . . , nk ≥ 0 with n1 + n2 + · · ·+ nk = n,

and if λi is a partition of ni for each i = 1, . . . , k, then the sequence

(λ1, λ2, . . . , λk)

is called a k-tuple partition of n. For instance, if λ1 = (3, 2, 1) and λ2 = (7, 6, 2),

then (λ1, λ2) forms a 2-tuple partition of 21.

A partition is called ℓ-regular if none of its parts is divisible by ℓ. Correspond-

ingly, a k-tuple partition is said to be ℓ-regular if each λi is an ℓ-regular partition

of ni for 1 ≤ i ≤ k. We denote the number of k-tuple ℓ-regular partitions of n by

Tℓ,k(n) and, in particular, define

Tℓ(n) := Tℓ,3(n).

The theory of ℓ-regular partitions has been extensively developed in the literature

(see, for example, [6], [8], and [10]). More recently, ℓ-regular k-tuple partitions

have attracted significant interest, and various divisibility properties of Tℓ,k(n) have

been explored. For instance, the case (ℓ, k) = (3, 3) was studied by Adiga and

Dasappa [1], da Silva and Sellers [5], and Gireesh and Mahadeva Naika [7]; the

cases (ℓ, k) = (3, 9) and (3, 27) by Baruah and Das [2]; the case (ℓ, k) = (3, 6) by

Murugan and Fathima [11]; and both (ℓ, k) = (2, 3) and (3, 3) by Nadji and Ahmia

[12]. Additionally, Rahman and Saikia [14] examined the cases (ℓ, k) = (5, 3) and

(5, 5), while Vidya [16] considered cases with k = 3 and ℓ ∈ {2, 4, 10, 20}.
In a recent work [13], Nath, Saikia, and Sarma analyzed the cases (ℓ, k) = (2, 3)

and (4, 3), and in some instances for general (ℓ, k). In particular, they proved [13,

Theorem 1.3] that for n ≥ 0 and α ≥ 0, we have

T2

(
34α+2n+

2α∑
i=0

32i + 34α+1

)
≡ 0 (mod 24), (1)

T2

(
34α+2n+

2α∑
i=0

32i + 2 · 34α+1

)
≡ 0 (mod 24). (2)
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They also proved [13, Theorem 1.6] that if p ≡ 5 or 7 (mod 8) and n, α ≥ 0 with

p ∤ n, then

T2

(
9p2α+1n+

9p2α+2 − 1

8

)
≡ 0 (mod 6). (3)

Moreover, their analysis led them to propose the following conjecture:

Conjecture 1 (Nath, Saikia, Sarma [13]). Let p ≥ 5 be a prime with

(
−2

p

)
L

= −1

and, let t be a positive integer with (t, 6) = 1 and p | t. Then for all n ≥ 0 and

1 ≤ j ≤ p− 1, we have

T2

(
9 · t2n+

9 · t2j
p

+
57 · t2 − 1

8

)
≡ 0 (mod 6).

Motivated by this conjecture, we establish the following theorem as a stronger

version of it.

Theorem 1. Let t be a positive integer with gcd(t, 6) = 1. Then, for n ≥ 0 and

N = 33 or 57, we have

T2

(
9n+

Nt2 − 1

8

)
≡ 0 (mod 24). (4)

Corollary 1. Conjecture 1 is true.

Proof. Using N = 57 and replacing n by t2n+
t2j

p
in (4) completes the proof.

With the goal of extending such congruences even further, we prove the following

infinite family of congruences modulo 8 in extremely elementary fashion.

Theorem 2. Let p ≡ 3, 5 or 7 (mod 8) be a prime. Then, for n, α ≥ 0 with p ∤ n,
we have

T2

(
p2α+1n+

p2α+2 − 1

8

)
≡ 0 (mod 8).

In addition, if 3 ∤ n, then

T2

(
p2α+1n+

p2α+2 − 1

8

)
≡ 0 (mod 24). (5)

Lastly, we note that (3) holds modulo 24, and it also holds for primes p ≡ 3

(mod 8).

Corollary 2. Let p ≡ 3, 5 or 7 (mod 8) be a prime and p ̸= 3. Then, for n, α ≥ 0

with p ∤ n, we have

T2

(
9p2α+1n+

9p2α+2 − 1

8

)
≡ 0 (mod 24).
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Proof. Replacing n by 9n+ p in (5) gives the result.

After collecting a number of necessary mathematical tools in Section 2, we pro-

vide elementary proofs of Theorem 1 and Theorem 2 in Section 3, and we share

several closing comments in Section 4.

2. Preliminaries

Our proofs of the aforementioned theorems are entirely elementary, relying solely on

generating function manipulations and classical q-series results. In this section, we

present several elementary facts, obtained from elementary q-series analysis, that

will be utilized in the course of our proofs below.

We recall the q-Pochhammer symbol defined by

(a; q)∞ :=

∞∏
i=0

(1− aqi)

and denote

fk := (qk; qk)∞.

With this notation, it is clear that the generating function for Tℓ,k(n) is given by

∑
n≥0

Tℓ,k(n)q
n =

fk
ℓ

fk
1

,

and, in particular, the generating function for Tℓ(n) is∑
n≥0

Tℓ(n)q
n =

f3
ℓ

f3
1

.

We now collect the results which will be necessary in our work below.

Lemma 1. We have

f1 =
∑
m∈Z

(−1)mqm(3m−1)/2. (6)

Proof. A proof of this identity can be found in [9, Section 1.6].

Lemma 2. We have

f3
1 =

∑
m≥0

(−1)m(2m+ 1)qm(m+1)/2. (7)

Proof. This identity can be found in [9, (1.7.1)].
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Lemma 3. We have
f5
1

f2
2

=
∑
m∈Z

(6m+ 1)qm(3m+1)/2. (8)

Proof. This identity appears in [9, (10.7.3)].

Lemma 4. We have

(−q;−q)∞ =
f3
2

f1f4
. (9)

Proof. Note that

f3
2

f1f4
=

(q2; q2)3∞
(q; q)∞(q4; q4)∞

=
(q2; q2)2∞

(q; q2)∞(q4; q4)∞

=
(q2; q2)∞(q2; q4)∞

(q; q2)∞

= (q2; q2)∞(−q; q2)∞

= (−q;−q)∞.

Lemma 5. We have

f2
1

f2
=
∑
n∈Z

(−1)nqn
2

= 1 + 2
∑
n≥1

(−1)nqn
2

. (10)

Proof. See [9, (1.5.8)] for a proof of this result.

Corollary 3. We have
f2
2

f4
= 1 + 2

∑
n≥1

(−1)nq2n
2

. (11)

Proof. This follows from Lemma 5 by replacing q by q2 everywhere in (10).

We now provide the congruence–related tools necessary to complete our proofs in

the next section. We begin with an extremely well–known result which, in essence,

follows from the Binomial Theorem.

Lemma 6. For a prime p and positive integers k and l,

fpk

l ≡ fpk−1

lp (mod pk). (12)

Proof. See [4, Lemma 3] for a proof.
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In [13, Theorem 1.1], Nath, Saikia, and Sarma use Lemma 6 to prove that, if p

is a prime and 1 ≤ r ≤ p− 1, then

Tℓ,p(pn+ r) ≡ 0 (mod p). (13)

Note that Lemma 6 can be generalized in a natural way in order to obtain the

following:

Lemma 7. For a prime p and positive integers k, l, and s with k − s ≥ 0,

fpkm
l ≡ fpk−sm

lps (mod pk−s+1). (14)

Proof. The congruence follows by applying (12) s times.

With Lemma 7 in hand, we can introduce a generalized version of the congruence

in (13), the proof of which is almost immediate.

Theorem 3. Let p be a prime and m, ℓ > 0 be integers. For α, s > 0 satisfying

α− s ≥ 0 and 1 ≤ r ≤ ps − 1,

Tℓ,pαm(psn+ r) ≡ 0 (mod pα−s+1).

Proof. We use Lemma 7 to obtain∑
n≥0

Tℓ,pαm(n)pn =
fpαm
ℓ

fpαm
1

≡
fpα−sm
psℓ

fpα−sm
ps

(mod pα−s+1).

Notice that the right-hand side is a function of qp
s

. Thus, the coefficients of qp
sn+r

with 1 ≤ r ≤ ps − 1 equal zero. This completes the proof.

We close this section by proving a parity characterization for the particular func-

tion T2(n).

Lemma 8. For all n ≥ 0,

T2(n) ≡

{
1 (mod 2), if n = m(m+ 1)/2 for some m

0 (mod 2), otherwise.

Proof. We see that∑
n≥0

T2(n)q
n =

f3
2

f3
1

≡ f6
1

f3
1

(mod 2) thanks to (12)

= f3
1 .

Thanks to (7), the result follows.

With the above tools in hand, we now proceed to prove Theorem 1 and Theorem

2.
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3. Proofs of Our Results

We begin by sharing our proof of Theorem 1 which generalizes the original conjec-

ture of Nath, Saikia, and Sarma [13].

Proof of Theorem 1. Using α = 0 in (1) and (2) gives

T2(9n+ 4) ≡ 0 (mod 24),

T2(9n+ 7) ≡ 0 (mod 24),

respectively. Thus, writing

k = 9n+
Nt2 − 1

8
,

it suffices to show that k ≡ 4 or 7 (mod 9). Since gcd(t, 6) = 1, t must have one of

the forms 6m+ 1 or 6m+ 5. Therefore,

Nt2 ≡

{
6 (mod 9) if N = 33,

3 (mod 9) if N = 57.

Observing that 8−1 ≡ −1 (mod 9), we have

k ≡

{
4 (mod 9) if N = 33,

7 (mod 9) if N = 57.

Next, we provide an elementary proof of Theorem 2.

Proof of Theorem 2. Thanks to (12), we have

∑
n≥0

T2(n)q
n =

f3
2

f3
1

=
f4
2

f3
1 f2

≡ f5
1

f2
2

f2 (mod 8). (15)

Using (6) and (8) in (15), we obtain∑
n≥0

T2(n)q
n ≡

∑
m∈Z

∑
k∈Z

(−)k(6m+ 1)qm(3m+1)/2+k(3k−1) (mod 8).

We now need to check whether l := p2α+1n +
p2α+2 − 1

8
can be represented as

m(3m+ 1)

2
+ k(3k − 1). Equivalently, we check whether

24l + 3 = (6m+ 1)2 + 2(6k − 1)2.
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Let νp(N) be the highest power of p dividing N . We first consider primes p ≡ 5 or 7

(mod 8). Then, we have

(
− 2

p

)
= −1. So, if N = x2 + 2y2, then 2|νp(N). Also,

for p ∤ n, we have νp(24l+3) = 2α+1. Thus, 24l+3 cannot be of the form x2+2y2.

Hence, for p ≡ 5 or 7 (mod 8),

T2

(
p2α+1n+

p2α+2 − 1

8

)
≡ 0 (mod 8).

The above proof only deals with the cases p ≡ 5 or 7 (mod 8), which still leaves

us with the case p ≡ 3 (mod 8). This requires a different idea. In this case, we

replace q by −q and then, using (9) and (12), we obtain

∑
n≥0

T2(n)(−q)n = f3
2

(
f1f4
f3
2

)3

=
f3
1 f

3
4 f

2
2

f8
2

≡ f3
1 f

3
4 f

2
2

f4
4

= f3
1

f2
2

f4
(mod 8). (16)

Substituting (7) and (11) in (16) gives

∑
n≥0

T2(n)(−q)n ≡
∑
m∈Z

(−1)m(2m+ 1)qm(m+1)/2

1 + 2
∑
k≥1

(−1)kq2k
2

 (mod 8).

Now we need to check whether we have

l =
m(m+ 1)

2
+ 2k2,

that is,

8l + 1 = (2m+ 1)2 + (4k)2.

For primes p ≡ 3 (mod 4), we note that

(
− 1

p

)
= −1. So, for any N = x2 + y2,

we have 2|νp(N). However, for p ∤ n, νp(8l+1) = 2α+1. This completes the proof

of the congruences modulo 8.

For the second part, it suffices to show that T2(l) ≡ 0 (mod 3). For this, we

check whether 3|l (in order to apply (13)). Since 8−1 ≡ −1 (mod 3), we have

l = p2α+1n+
p2α+2 − 1

8
≡


n (mod 3) if p ≡ 1 (mod 3),

−n (mod 3) if p ≡ −1 (mod 3),

1 (mod 3) if p = 3.

Since 3 ∤ n, we have 3 ∤ l and, by (13), T2(l) ≡ 0 (mod 3).
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4. Closing Thoughts

We conclude by mentioning some additional observations. In the case when α = 0

and n is replaced by pn+ s for 1 ≤ s ≤ p− 1, Theorem 2 shows that

T2(p
2n+ r) ≡ 0 (mod 8),

when p ≡ 3, 5, or 7 (mod 8) is prime, and r = ps+
p2 − 1

8
. Our computations

further indicate that T2(n) is divisible by 32 in the following cases:

T2(25n+ 8) ≡ 0 (mod 32),

T2(25n+ 13) ≡ 0 (mod 32),

T2(25n+ 18) ≡ 0 (mod 32),

T2(25n+ 23) ≡ 0 (mod 32),

T2(49n+ 13) ≡ 0 (mod 32),

T2(49n+ 20) ≡ 0 (mod 32),

T2(49n+ 27) ≡ 0 (mod 32),

T2(49n+ 34) ≡ 0 (mod 32),

T2(49n+ 41) ≡ 0 (mod 32),

T2(49n+ 48) ≡ 0 (mod 32).

It would be interesting to determine whether these congruences hold for all n ≥ 0,

and whether they extend to T2(p
2n+ r) for primes p > 7. Moreover, our computa-

tions suggest that, with only a few exceptions, the congruence

T2(7n+ 6) ≡ 0 (mod 29) (17)

appears to hold. We leave these questions for the interested reader. After our

preprint was posted on arXiv, Shi-Chao Chen kindly informed us that the congru-

ence (17) had been proved for (n, 7) = 1 in their paper [3, Theorem 1].
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