

EXTENDING RECENT WORK OF NATH, SAIKIA, AND SARMA ON k -TUPLE ℓ -REGULAR PARTITIONS

Bishnu Paudel

*Mathematics and Statistics Department, University of Minnesota Duluth, Duluth,
Minnesota
bpaudel@d.umn.edu*

James A. Sellers

*Mathematics and Statistics Department, University of Minnesota Duluth, Duluth,
Minnesota
jsellers@d.umn.edu*

Haiyang Wang

*Mathematics and Statistics Department, University of Minnesota Duluth, Duluth,
Minnesota
wan02600@d.umn.edu*

Received: 5/7/25, Accepted: 11/24/25, Published: 1/5/26

Abstract

Let $T_{\ell,k}(n)$ denote the number of ℓ -regular k -tuple partitions of n . In a recent work, Nath, Saikia, and Sarma derived several families of congruences for $T_{\ell,k}(n)$, with particular emphasis on the cases $T_{2,3}(n)$ and $T_{4,3}(n)$. In the concluding remarks of their paper, they conjectured that $T_{2,3}(n)$ satisfies an infinite set of congruences modulo 6. In this paper, we confirm their conjecture by proving a much more general result using elementary q -series techniques. We also present new families of congruences satisfied by $T_{\ell,k}(n)$.

1. Introduction

A *partition* of a non-negative integer n is a non-increasing sequence of positive integers, called parts, whose sum is n . By convention, zero has only one partition, namely, the empty sequence. Let $p(n)$ denote the number of partitions of n .

Ramanujan [15] famously established the celebrated congruences

$$\begin{aligned} p(5n+4) &\equiv 0 \pmod{5}, \\ p(7n+5) &\equiv 0 \pmod{7}, \\ p(11n+6) &\equiv 0 \pmod{11}. \end{aligned}$$

Since Ramanujan's pioneering work, mathematicians have investigated further congruences for $p(n)$ and the arithmetic properties of its various generalizations. In this paper, we consider the following generalization. If

$$n_1, n_2, \dots, n_k \geq 0 \quad \text{with} \quad n_1 + n_2 + \dots + n_k = n,$$

and if λ_i is a partition of n_i for each $i = 1, \dots, k$, then the sequence

$$(\lambda_1, \lambda_2, \dots, \lambda_k)$$

is called a k -tuple partition of n . For instance, if $\lambda_1 = (3, 2, 1)$ and $\lambda_2 = (7, 6, 2)$, then (λ_1, λ_2) forms a 2-tuple partition of 21.

A partition is called ℓ -regular if none of its parts is divisible by ℓ . Correspondingly, a k -tuple partition is said to be ℓ -regular if each λ_i is an ℓ -regular partition of n_i for $1 \leq i \leq k$. We denote the number of k -tuple ℓ -regular partitions of n by $T_{\ell,k}(n)$ and, in particular, define

$$T_{\ell}(n) := T_{\ell,3}(n).$$

The theory of ℓ -regular partitions has been extensively developed in the literature (see, for example, [6], [8], and [10]). More recently, ℓ -regular k -tuple partitions have attracted significant interest, and various divisibility properties of $T_{\ell,k}(n)$ have been explored. For instance, the case $(\ell, k) = (3, 3)$ was studied by Adiga and Dasappa [1], da Silva and Sellers [5], and Gireesh and Mahadeva Naika [7]; the cases $(\ell, k) = (3, 9)$ and $(3, 27)$ by Baruah and Das [2]; the case $(\ell, k) = (3, 6)$ by Murugan and Fathima [11]; and both $(\ell, k) = (2, 3)$ and $(3, 3)$ by Nadji and Ahmia [12]. Additionally, Rahman and Saikia [14] examined the cases $(\ell, k) = (5, 3)$ and $(5, 5)$, while Vidya [16] considered cases with $k = 3$ and $\ell \in \{2, 4, 10, 20\}$.

In a recent work [13], Nath, Saikia, and Sarma analyzed the cases $(\ell, k) = (2, 3)$ and $(4, 3)$, and in some instances for general (ℓ, k) . In particular, they proved [13, Theorem 1.3] that for $n \geq 0$ and $\alpha \geq 0$, we have

$$T_2 \left(3^{4\alpha+2}n + \sum_{i=0}^{2\alpha} 3^{2i} + 3^{4\alpha+1} \right) \equiv 0 \pmod{24}, \quad (1)$$

$$T_2 \left(3^{4\alpha+2}n + \sum_{i=0}^{2\alpha} 3^{2i} + 2 \cdot 3^{4\alpha+1} \right) \equiv 0 \pmod{24}. \quad (2)$$

They also proved [13, Theorem 1.6] that if $p \equiv 5$ or $7 \pmod{8}$ and $n, \alpha \geq 0$ with $p \nmid n$, then

$$T_2 \left(9p^{2\alpha+1}n + \frac{9p^{2\alpha+2}-1}{8} \right) \equiv 0 \pmod{6}. \quad (3)$$

Moreover, their analysis led them to propose the following conjecture:

Conjecture 1 (Nath, Saikia, Sarma [13]). Let $p \geq 5$ be a prime with $\left(\frac{-2}{p}\right)_L = -1$ and, let t be a positive integer with $(t, 6) = 1$ and $p \mid t$. Then for all $n \geq 0$ and $1 \leq j \leq p-1$, we have

$$T_2 \left(9 \cdot t^2 n + \frac{9 \cdot t^2 j}{p} + \frac{57 \cdot t^2 - 1}{8} \right) \equiv 0 \pmod{6}.$$

Motivated by this conjecture, we establish the following theorem as a stronger version of it.

Theorem 1. *Let t be a positive integer with $\gcd(t, 6) = 1$. Then, for $n \geq 0$ and $N = 33$ or 57 , we have*

$$T_2 \left(9n + \frac{Nt^2 - 1}{8} \right) \equiv 0 \pmod{24}. \quad (4)$$

Corollary 1. *Conjecture 1 is true.*

Proof. Using $N = 57$ and replacing n by $t^2 n + \frac{t^2 j}{p}$ in (4) completes the proof. \square

With the goal of extending such congruences even further, we prove the following infinite family of congruences modulo 8 in extremely elementary fashion.

Theorem 2. *Let $p \equiv 3, 5$ or $7 \pmod{8}$ be a prime. Then, for $n, \alpha \geq 0$ with $p \nmid n$, we have*

$$T_2 \left(p^{2\alpha+1}n + \frac{p^{2\alpha+2}-1}{8} \right) \equiv 0 \pmod{8}.$$

In addition, if $3 \nmid n$, then

$$T_2 \left(p^{2\alpha+1}n + \frac{p^{2\alpha+2}-1}{8} \right) \equiv 0 \pmod{24}. \quad (5)$$

Lastly, we note that (3) holds modulo 24, and it also holds for primes $p \equiv 3 \pmod{8}$.

Corollary 2. *Let $p \equiv 3, 5$ or $7 \pmod{8}$ be a prime and $p \neq 3$. Then, for $n, \alpha \geq 0$ with $p \nmid n$, we have*

$$T_2 \left(9p^{2\alpha+1}n + \frac{9p^{2\alpha+2}-1}{8} \right) \equiv 0 \pmod{24}.$$

Proof. Replacing n by $9n + p$ in (5) gives the result. \square

After collecting a number of necessary mathematical tools in Section 2, we provide elementary proofs of Theorem 1 and Theorem 2 in Section 3, and we share several closing comments in Section 4.

2. Preliminaries

Our proofs of the aforementioned theorems are entirely elementary, relying solely on generating function manipulations and classical q -series results. In this section, we present several elementary facts, obtained from elementary q -series analysis, that will be utilized in the course of our proofs below.

We recall the q -Pochhammer symbol defined by

$$(a; q)_\infty := \prod_{i=0}^{\infty} (1 - aq^i)$$

and denote

$$f_k := (q^k; q^k)_\infty.$$

With this notation, it is clear that the generating function for $T_{\ell,k}(n)$ is given by

$$\sum_{n \geq 0} T_{\ell,k}(n)q^n = \frac{f_\ell^k}{f_1^k},$$

and, in particular, the generating function for $T_\ell(n)$ is

$$\sum_{n \geq 0} T_\ell(n)q^n = \frac{f_\ell^3}{f_1^3}.$$

We now collect the results which will be necessary in our work below.

Lemma 1. *We have*

$$f_1 = \sum_{m \in \mathbb{Z}} (-1)^m q^{m(3m-1)/2}. \quad (6)$$

Proof. A proof of this identity can be found in [9, Section 1.6]. \square

Lemma 2. *We have*

$$f_1^3 = \sum_{m \geq 0} (-1)^m (2m+1) q^{m(m+1)/2}. \quad (7)$$

Proof. This identity can be found in [9, (1.7.1)]. \square

Lemma 3. *We have*

$$\frac{f_1^5}{f_2^2} = \sum_{m \in \mathbb{Z}} (6m+1)q^{m(3m+1)/2}. \quad (8)$$

Proof. This identity appears in [9, (10.7.3)]. \square

Lemma 4. *We have*

$$(-q; -q)_\infty = \frac{f_2^3}{f_1 f_4}. \quad (9)$$

Proof. Note that

$$\begin{aligned} \frac{f_2^3}{f_1 f_4} &= \frac{(q^2; q^2)_\infty^3}{(q; q)_\infty (q^4; q^4)_\infty} \\ &= \frac{(q^2; q^2)_\infty^2}{(q; q^2)_\infty (q^4; q^4)_\infty} \\ &= \frac{(q^2; q^2)_\infty (q^2; q^4)_\infty}{(q; q^2)_\infty} \\ &= (q^2; q^2)_\infty (-q; q^2)_\infty \\ &= (-q; -q)_\infty. \end{aligned}$$

\square

Lemma 5. *We have*

$$\frac{f_1^2}{f_2} = \sum_{n \in \mathbb{Z}} (-1)^n q^{n^2} = 1 + 2 \sum_{n \geq 1} (-1)^n q^{n^2}. \quad (10)$$

Proof. See [9, (1.5.8)] for a proof of this result. \square

Corollary 3. *We have*

$$\frac{f_2^2}{f_4} = 1 + 2 \sum_{n \geq 1} (-1)^n q^{2n^2}. \quad (11)$$

Proof. This follows from Lemma 5 by replacing q by q^2 everywhere in (10). \square

We now provide the congruence-related tools necessary to complete our proofs in the next section. We begin with an extremely well-known result which, in essence, follows from the Binomial Theorem.

Lemma 6. *For a prime p and positive integers k and l ,*

$$f_l^{p^k} \equiv f_{lp}^{p^{k-1}} \pmod{p^k}. \quad (12)$$

Proof. See [4, Lemma 3] for a proof. \square

In [13, Theorem 1.1], Nath, Saikia, and Sarma use Lemma 6 to prove that, if p is a prime and $1 \leq r \leq p - 1$, then

$$T_{\ell,p}(pn + r) \equiv 0 \pmod{p}. \quad (13)$$

Note that Lemma 6 can be generalized in a natural way in order to obtain the following:

Lemma 7. *For a prime p and positive integers k, l , and s with $k - s \geq 0$,*

$$f_l^{p^k m} \equiv f_{lp^s}^{p^{k-s} m} \pmod{p^{k-s+1}}. \quad (14)$$

Proof. The congruence follows by applying (12) s times. \square

With Lemma 7 in hand, we can introduce a generalized version of the congruence in (13), the proof of which is almost immediate.

Theorem 3. *Let p be a prime and $m, \ell > 0$ be integers. For $\alpha, s > 0$ satisfying $\alpha - s \geq 0$ and $1 \leq r \leq p^s - 1$,*

$$T_{\ell,p^\alpha m}(p^s n + r) \equiv 0 \pmod{p^{\alpha-s+1}}.$$

Proof. We use Lemma 7 to obtain

$$\sum_{n \geq 0} T_{\ell,p^\alpha m}(n)p^n = \frac{f_\ell^{p^\alpha m}}{f_1^{p^\alpha m}} \equiv \frac{f_{p^s \ell}^{p^{\alpha-s} m}}{f_{p^s}^{p^{\alpha-s} m}} \pmod{p^{\alpha-s+1}}.$$

Notice that the right-hand side is a function of q^{p^s} . Thus, the coefficients of $q^{p^s n + r}$ with $1 \leq r \leq p^s - 1$ equal zero. This completes the proof. \square

We close this section by proving a parity characterization for the particular function $T_2(n)$.

Lemma 8. *For all $n \geq 0$,*

$$T_2(n) \equiv \begin{cases} 1 \pmod{2}, & \text{if } n = m(m+1)/2 \text{ for some } m \\ 0 \pmod{2}, & \text{otherwise.} \end{cases}$$

Proof. We see that

$$\begin{aligned} \sum_{n \geq 0} T_2(n)q^n &= \frac{f_2^3}{f_1^3} \\ &\equiv \frac{f_1^6}{f_1^3} \pmod{2} \quad \text{thanks to (12)} \\ &= f_1^3. \end{aligned}$$

Thanks to (7), the result follows. \square

With the above tools in hand, we now proceed to prove Theorem 1 and Theorem 2.

3. Proofs of Our Results

We begin by sharing our proof of Theorem 1 which generalizes the original conjecture of Nath, Saikia, and Sarma [13].

Proof of Theorem 1. Using $\alpha = 0$ in (1) and (2) gives

$$\begin{aligned} T_2(9n+4) &\equiv 0 \pmod{24}, \\ T_2(9n+7) &\equiv 0 \pmod{24}, \end{aligned}$$

respectively. Thus, writing

$$k = 9n + \frac{Nt^2 - 1}{8},$$

it suffices to show that $k \equiv 4$ or $7 \pmod{9}$. Since $\gcd(t, 6) = 1$, t must have one of the forms $6m + 1$ or $6m + 5$. Therefore,

$$Nt^2 \equiv \begin{cases} 6 & (\text{mod } 9) \quad \text{if } N = 33, \\ 3 & (\text{mod } 9) \quad \text{if } N = 57. \end{cases}$$

Observing that $8^{-1} \equiv -1 \pmod{9}$, we have

$$k \equiv \begin{cases} 4 & (\text{mod } 9) \quad \text{if } N = 33, \\ 7 & (\text{mod } 9) \quad \text{if } N = 57. \end{cases}$$

□

Next, we provide an elementary proof of Theorem 2.

Proof of Theorem 2. Thanks to (12), we have

$$\sum_{n \geq 0} T_2(n)q^n = \frac{f_2^3}{f_1^3} = \frac{f_2^4}{f_1^3 f_2} \equiv \frac{f_1^5}{f_2^2} f_2 \pmod{8}. \quad (15)$$

Using (6) and (8) in (15), we obtain

$$\sum_{n \geq 0} T_2(n)q^n \equiv \sum_{m \in \mathbb{Z}} \sum_{k \in \mathbb{Z}} (-1)^k (6m+1) q^{m(3m+1)/2 + k(3k-1)} \pmod{8}.$$

We now need to check whether $l := p^{2\alpha+1}n + \frac{p^{2\alpha+2}-1}{8}$ can be represented as $\frac{m(3m+1)}{2} + k(3k-1)$. Equivalently, we check whether

$$24l + 3 = (6m+1)^2 + 2(6k-1)^2.$$

Let $\nu_p(N)$ be the highest power of p dividing N . We first consider primes $p \equiv 5$ or $7 \pmod{8}$. Then, we have $\left(\frac{-2}{p}\right) = -1$. So, if $N = x^2 + 2y^2$, then $2|\nu_p(N)$. Also, for $p \nmid n$, we have $\nu_p(24l+3) = 2\alpha+1$. Thus, $24l+3$ cannot be of the form $x^2 + 2y^2$. Hence, for $p \equiv 5$ or $7 \pmod{8}$,

$$T_2 \left(p^{2\alpha+1}n + \frac{p^{2\alpha+2}-1}{8} \right) \equiv 0 \pmod{8}.$$

The above proof only deals with the cases $p \equiv 5$ or $7 \pmod{8}$, which still leaves us with the case $p \equiv 3 \pmod{8}$. This requires a different idea. In this case, we replace q by $-q$ and then, using (9) and (12), we obtain

$$\sum_{n \geq 0} T_2(n)(-q)^n = f_2^3 \left(\frac{f_1 f_4}{f_2^3} \right)^3 = \frac{f_1^3 f_4^3 f_2^2}{f_2^8} \equiv \frac{f_1^3 f_4^3 f_2^2}{f_4^4} = f_1^3 \frac{f_2^2}{f_4} \pmod{8}. \quad (16)$$

Substituting (7) and (11) in (16) gives

$$\sum_{n \geq 0} T_2(n)(-q)^n \equiv \sum_{m \in \mathbb{Z}} (-1)^m (2m+1) q^{m(m+1)/2} \left(1 + 2 \sum_{k \geq 1} (-1)^k q^{2k^2} \right) \pmod{8}.$$

Now we need to check whether we have

$$l = \frac{m(m+1)}{2} + 2k^2,$$

that is,

$$8l + 1 = (2m+1)^2 + (4k)^2.$$

For primes $p \equiv 3 \pmod{4}$, we note that $\left(\frac{-1}{p}\right) = -1$. So, for any $N = x^2 + y^2$, we have $2|\nu_p(N)$. However, for $p \nmid n$, $\nu_p(8l+1) = 2\alpha+1$. This completes the proof of the congruences modulo 8.

For the second part, it suffices to show that $T_2(l) \equiv 0 \pmod{3}$. For this, we check whether $3|l$ (in order to apply (13)). Since $8^{-1} \equiv -1 \pmod{3}$, we have

$$l = p^{2\alpha+1}n + \frac{p^{2\alpha+2}-1}{8} = \begin{cases} n \pmod{3} & \text{if } p \equiv 1 \pmod{3}, \\ -n \pmod{3} & \text{if } p \equiv -1 \pmod{3}, \\ 1 \pmod{3} & \text{if } p = 3. \end{cases}$$

Since $3 \nmid n$, we have $3 \nmid l$ and, by (13), $T_2(l) \equiv 0 \pmod{3}$.

□

4. Closing Thoughts

We conclude by mentioning some additional observations. In the case when $\alpha = 0$ and n is replaced by $pn + s$ for $1 \leq s \leq p - 1$, Theorem 2 shows that

$$T_2(p^2n + r) \equiv 0 \pmod{8},$$

when $p \equiv 3, 5$, or $7 \pmod{8}$ is prime, and $r = ps + \frac{p^2 - 1}{8}$. Our computations further indicate that $T_2(n)$ is divisible by 32 in the following cases:

$$\begin{aligned} T_2(25n + 8) &\equiv 0 \pmod{32}, \\ T_2(25n + 13) &\equiv 0 \pmod{32}, \\ T_2(25n + 18) &\equiv 0 \pmod{32}, \\ T_2(25n + 23) &\equiv 0 \pmod{32}, \\ T_2(49n + 13) &\equiv 0 \pmod{32}, \\ T_2(49n + 20) &\equiv 0 \pmod{32}, \\ T_2(49n + 27) &\equiv 0 \pmod{32}, \\ T_2(49n + 34) &\equiv 0 \pmod{32}, \\ T_2(49n + 41) &\equiv 0 \pmod{32}, \\ T_2(49n + 48) &\equiv 0 \pmod{32}. \end{aligned}$$

It would be interesting to determine whether these congruences hold for all $n \geq 0$, and whether they extend to $T_2(p^2n + r)$ for primes $p > 7$. Moreover, our computations suggest that, with only a few exceptions, the congruence

$$T_2(7n + 6) \equiv 0 \pmod{2^9} \tag{17}$$

appears to hold. We leave these questions for the interested reader. After our preprint was posted on arXiv, Shi-Chao Chen kindly informed us that the congruence (17) had been proved for $(n, 7) = 1$ in their paper [3, Theorem 1].

References

- [1] C. Adiga and R. Dasappa, On 3-regular tripartitions, *Acta Math. Sin. (Engl. Ser.)* **35** (2019), no. 3, 355–368.
- [2] N. D. Baruah and H. Das, Generating functions and congruences for 9-regular and 27-regular partitions in 3 colours, *Hardy-Ramanujan J.* **44** (2021), 102–115.
- [3] S.-C. Chen, Arithmetic properties of a partition pair function, *Int. J. Number Theory* **10** (2014), no. 6, 1583–1594.

- [4] R. da Silva and J. A. Sellers, Infinitely many congruences for k -regular partitions with designated summands, *Bull. Braz. Math. Soc. (N.S.)* **51** (2020), no. 2, 357–370.
- [5] R. da Silva and J. A. Sellers, Arithmetic properties of 3-regular partitions in three colours, *Bull. Aust. Math. Soc.* **104** (2021), no. 3, 415–423.
- [6] D. Furcy and D. Penniston, Congruences for ℓ -regular partition functions modulo 3, *Ramanujan J.* **27** (2012), no. 1, 101–108.
- [7] D. S. Gireesh and M. S. Mahadeva Naika, On 3-regular partitions in 3-colors, *Indian J. Pure Appl. Math.* **50** (2019), no. 1, 137–148.
- [8] B. Gordon and K. Ono, Divisibility of certain partition functions by powers of primes, *Ramanujan J.* **1** (1997), no. 1, 25–34.
- [9] M. D. Hirschhorn, *The Power of q* , Developments in Mathematics, Vol. 49, Springer, Cham, 2017.
- [10] M. D. Hirschhorn and J. A. Sellers, Elementary proofs of parity results for 5-regular partitions, *Bull. Aust. Math. Soc.* **81** (2010), no. 1, 58–63.
- [11] P. Murugan and S. N. Fathima, Arithmetic properties of 3-regular 6-tuple partitions, *Indian J. Pure Appl. Math.* **54** (2023), no. 4, 1249–1261.
- [12] M. L. Nadji and M. Ahmia, Congruences for ℓ -regular tripartitions for $\ell \in \{2, 3\}$, *Integers* **24** (2024), Paper No. A86, 12 pp.
- [13] H. Nath, M. P. Saikia, and A. Sarma, Arithmetic properties of k -tuple ℓ -regular partitions, *J. Math. Anal. Appl.* **551** (2025), no. 2, part 1, Paper No. 129688, 25 pp.
- [14] R. Rahman and N. Saikia, Arithmetic properties of 5-regular partition in three and five colours, *J. Anal.* **30** (2022), no. 4, 1427–1438.
- [15] S. Ramanujan, Congruence properties of partitions, *Math. Z.* **9** (1921), no. 1-2, 147–153.
- [16] K. N. Vidya, On m -regular partitions in k -colors, *Indian J. Pure Appl. Math.* **54** (2023), no. 2, 389–397.