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Abstract

In this paper, we consider an mr-th order linear recurring sequence sn over R,
which is a generalization of the general conditional sequences defined by Panario
et al. The sequence sn contains infinitely many sequences that are not included
in the conditional sequences, for example, inverses of cyclotomic polynomials, the
Kronecker symbol, etc. We calculate the Binet form of the sequence sn by using
r-decimation sequences, that is, the sequence obtained by taking every r-th term of
sn. The paper also provides the Binet form of the general conditional sequences for
given m and r by using the successor operator method. Finally, some open problems
and conjectures are given. One of the conjectures presents the relationship among
the successor operator, the coefficients of the linear recurrence relations satisfied by
the conditional sequences, and the integer partitions.

1. Introduction

In [10], Edson and Yayenie introduced a generalization of the Fibonacci sequence

defined for all n ≥ 2 by qn = aiqn−1+qn−2, n ≡ i (mod 2), where ai ∈ R for i = 0, 1,

and proposed an open problem of finding a closed form of the generating function

and the Binet form for a sequence satisfying the relation qn = aiqn−1+qn−2, n ≡ i

(mod r) for i = 0, 1, . . . , r − 1, where n ≥ 2. Sahin [12, 13] solved this problem

by using continuants. Also, Edson et al. [11] solved this problem independently.
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In addition to these, Panario et al. defined a sequence satisfying the relation qn =

ai,1qn−1 + ai,2qn−2, n ≡ i (mod r) with real coefficients for i = 0, 1, . . . , r − 1,

where n ≥ 2, and found the Binet form of this sequence (Theorem 8 in [3]). Then,

Panario et al. [5] introduced a new generalization, namely the general conditional

recurrence sequences qn, defined by

qn = aj,1qn−1 + · · ·+ aj,mqn−m, n ≡ j (mod r), (n ≥ m) (1)

with real coefficients and arbitrary initial values q0, q1, . . . , qm−1 ∈ R, where 0 ≤
j ≤ r − 1. Panario et al. obtained the generating function of (1) (Theorem 3 in

[5]) and the Binet form of (1) for a special case, namely for given m and r = 2

(Theorem 9 in [5]). As a result of [3] and [5], the problem of finding the Binet

form of (1) remains unsolved for given m and r such that m > 2 and r > 2. The

main objective of this paper is to obtain the Binet form of the general conditional

sequences satisfying recurrence (1). To achieve this purpose, we will define a linear

recurring sequence sn including the general conditional sequences and obtain the

Binet form of sn. Then, we will solve the problem of finding the Binet form of (1)

for arbitrary m and r. The reason for defining the sequence sn can be given as

follows. Panario et al. showed that the sequence qn satisfying the recurrence (1)

satisfies a linear recurrence relation (Theorem 2, [5]) of the form

qn+kr2 = a0qn+(kr−1)r + a1qn+(kr−2)r + · · ·+ akr−1qn, (n ≥ kr2) (2)

with special coefficients a0, a1, . . . , akr−1 and special initial values q0, q1, . . . , qkr2−1,

where k is the least positive integer such that m ≤ kr. We will generalize the

sequence qn by considering Relation (2) with arbitrary coefficients and arbitrary

initial values. Thus, finding the Binet form of a generalization of Relation (2) solves

the problem of calculating the Binet form of the general conditional recurrences for

arbitrary r and m. Moreover, relation (2) means that the characteristic polynomial

corresponding to the general conditional sequence qn has degree kr2. In this work,

we will find a characteristic polynomial of degree less than kr2, if possible. For

further details on conditional recurrences, see [10], [11], [5], [4], [3], [13], [12], [14].

Let us explain what we mean by the special coefficients in Relation (2). In the

linear recurrence relation (2), the coefficients ai are dependent on the coefficients

ai,j of (1); the initial values q0, q1, . . . , qm−1 are arbitrary, but the remaining

initial values qm, qm+1, . . . , qkr2−1 are dependent on the first m initial values.

That is, the coefficients ai and initial values qm, qm+1, . . . , qkr2−1 are not arbitrary.

By choosing arbitrary coefficients and arbitrary initial values, one can find infinitely

many sequences that are not conditional sequences. Example 1 is one such sequence.

This point naturally suggests the following question: What is the Binet form and

generating function of recurrence (2) for arbitrary coefficients and arbitrary initial

values? The paper focuses on this problem, since solving it enables the calculation

of the Binet form of (1).
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Now, we define the sequences which are a generalization of the general conditional

sequences. Let A0, A1, . . . , Am−1 ∈ R be arbitrary, m and r be integers such that

m ≥ 2 and r ≥ 2, and let sn denote the sequence satisfying the mr-th order linear

recurrence relation

sn+mr = Am−1sn+(m−1)r +Am−2sn+(m−2)r + · · ·+A0sn, (n ≥ 0) (3)

with arbitrary initial values s0, s1, . . . , smr−1 ∈ R. Example 1 shows that the se-

quence sn satisfying the linear recurrence relation (3) is a generalization of the

conditional recurrence sequence qn, but the converse is not true.

Example 1. Consider the conditional recurrence sequence {qn} satisfying the re-

lation

q0, q1 ∈ R, qn =

{
aqn−1 + bqn−2, n ≡ 0 (mod 2)

cqn−1 + dqn−2, n ≡ 1 (mod 2)
(4)

for all n ≥ 2. We know from [3] that this sequence satisfies the linear recurrence

relation

qn+4 = (ac+ b+ d)qn+2 + (−bd)qn

with the initial values q0, q1, q2 = aq1+bq0, q3 = cq2+dq1. Obviously, form = r = 2

in Relation (3), if the coefficients are taken as

A1 = ac+ b+ d, A0 = −bd

and the initial values are taken as s0 = q0, s1 = q1, s2 = aq1 + bq0, s3 = cq2 + dq1,

the sequence {qn} satisfies the 4-th order linear recurrence

sn+4 = A1sn+2 +A0sn.

However, the converse is not true. To show this, we construct a counterexample by

considering the sequence

sn+4 = sn+2 − sn

with the initial conditions s0 = 1, s1 = 0, s2 = 1, s3 = 0. This sequence corresponds

to coefficients of the inverse of the 12th cyclotomic polynomial (A014021). To

prove that this sequence does not satisfy the conditional recurrence (4), assume the

contrary. Then the following system of equations must have a solution

ac+ b+ d = 1,

bd = 1,

b = 1,

cb = 0.

However, the above system of equations has no solution, contradicting our assump-

tion that the sequence satisfies a conditional recurrence, and thus proving that the

sequence satisfies no conditional recurrence. Moreover, one can construct infinitely

many such counterexamples.
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In addition to the above example, not only does the sequence {sn} include many

well-known sequences that are part of the conditional sequences, but it also con-

tains some special sequences, such as the inverse of cyclotomic polynomials and

the Kronecker symbol, which appear in Sloane’s On-Line Encyclopedia of Integer

Sequences [15] and are not included in the general conditional sequences. For in-

verses of cyclotomic polynomials, see [18]. In Table 1, some known sequences of the

form (3) for given coefficients and initial values are listed. Some of these sequences

correspond to a conditional sequence, while others do not.

Coefficients Initial values Sequence Type

(−1, k2 + 2) (0, 1, k, k2 + 1) k-Fibonacci [20] conditional
(−k2, 2k + 4) (0, 1, 2, 4k) k-Pell [16] conditional
(−1, k2 + 2) (2, k, k2 + 2, k3 + 3k) k-Lucas [19] conditional
(−4t2, k2 + 4t) (0, 1, k, k2 + 2t) (k, t)-Jacobsthal [21] conditional
(−k2, 2k + 4) (2, 2, 2k + 4, 6k + 8) k-Pell-Lucas [17] conditional
(−4t2, k2 + 4t) (2, k, k2 + 4t, k3 + 6kt) (k, t)-Jacobsthal-Lucas [21] conditional
(−1, 34) (0, 1, 6, 35) Balancing number [1] conditional
(−1, 34) (1, 3, 17, 99) Lucas-Balancing number [6] conditional
(−1,−1) (1, 1, 0,−1) inverse of 6th cyclotomic polynomial non-conditional
(1,−1) (1, 0, 1, 0) inverse of 12th cyclotomic polynomial non-conditional
(−1,−1,−1) (1, 0, 0, 0,−1, 0) inverse of 8th cyclotomic polynomial non-conditional
(−1,−1) (1, 0, 0,−1, 0, 0) inverse of 9th cyclotomic polynomial non-conditional
(1,−1) (0, 1, 0, 0) Kronecker symbol (−6/n) non-conditional

Table 1: Some Known Sequences

2. Generating Function of the Sequence {sn}

This section is devoted to finding the generating function of the sequence {sn}
defined in (3). The following theorem is obtained as a special case of the gener-

ating function in [2]. For completeness and to introduce some notation for use in

subsequent sections, we will prove the theorem.

Theorem 1. Let {sn} be the sequence satisfying the Relation (1). Then {sn} has

the generating function

G(x) =

r−1∑
i=0

(
v
(i)
0 xi + v

(i)
1 xr+i + v

(i)
2 x2r+i + · · ·+ v

(i)
m−1x

(m−1)r+i
)

1−Am−1xr −Am−2x2r − · · · −A1xmr −A0
(5)
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where

v
(i)
0 = si,

v
(i)
1 = sr+i −Am−1si,

v
(i)
2 = s2r+i −Am−1sr+i −Am−2si,

...

v
(i)
m−1 = s(m−1)r+i −Am−1s(m−2)r+i − · · · −A1si.

Proof. Let G(x) =

∞∑
n=0

snx
n be the formal expansion of the sequence, and note that

x−mrG(x) =

∞∑
n=0

snx
n−mr =

∞∑
n=−mr

sn+mrx
n,

−Am−1x
−(m−1)rG(x) =

∞∑
n=0

−Am−1snx
n−(m−1)r =

∞∑
n=−(m−1)r

−Am−1sn+(m−1)rx
n,

−Am−2x
−(m−2)rG(x) =

∞∑
n=0

−Am−2snx
n−(m−2)r =

∞∑
n=−(m−2)r

−Am−2sn+(m−2)rx
n,

...

−A1x
−rG(x) =

∞∑
n=0

−A1snx
n−r =

∞∑
n=−r

−A1sn+rx
n,

−A0G(x) =

∞∑
n=0

−A0snx
n.

Then, we obtain that

G(x) =

r−1∑
i=0

(
v
(i)
0 xi + v

(i)
1 xr+i + v

(i)
2 x2r+i + · · ·+ v

(i)
m−1x

(m−1)r+i
)

1−Am−1xr −Am−2x2r − · · · −A1xmr −A0
,

where

v
(i)
0 = si,

v
(i)
1 = sr+i −Am−1si,

v
(i)
2 = s2r+i −Am−1sr+i −Am−2si,

...

v
(i)
m−1 = s(m−1)r+i −Am−1s(m−2)r+i − · · · −A1si.
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Remark 1. In [5], the generating function of the general conditional recurrences

is presented. Theorem 1 is a generalization of the result, since the coefficients Ai,

0 ≤ i ≤ m− 1, and the initial values sj , 0 ≤ j ≤ mr − 1, are arbitrary.

We present the following illustrative example to illustrate the above remark for

a special case, that is, for m = 2.

Example 2. The general conditional sequence {qn} with arbitrary initial values

q0, and q1 is defined for all n ≥ 2 by

qn =


a0,1qn−1 + a0,2qn−2, n ≡ 0 (mod r)

a1,1qn−1 + a1,2qn−2, n ≡ 1 (mod r)
...

ar−1,1qn−1 + ar−1,2qn−2, n ≡ r − 1 (mod r)

(6)

where ai,j are arbitrary real numbers for 0 ≤ i ≤ r−1 and 1 ≤ j ≤ 2 (see [3]). This

sequence satisfies the linear recurrence relation

sn+2r = A0sn+r +A1sn, (n ≥ 0)

if the initial values are chosen as s0 = q0, s1 = q1, s2 = a2,1q1 + a2,2q0, s3 =

a3,1q2 + a3,2q1,. . . , s2r−1 = ar−1,1q2r−2 + ar−1,2q2r−3, and the coefficients A0 and

A1 are taken as

A0 = (−1)r+1a0,2a1,2a2,2 . . . ar−1,2, and

A1 = K
(r−1)
0 + a0,2K

(r−2)
1 ,

whereK
(r−1)
0 andK

(r−2)
1 are the generalized continuant defined in [3]. Whenm = 2

in (5), Theorem 1 gives Theorem 6 of [3], that is, the generating function of the

sequence (6)

G(x) =

r−1∑
i=0

v
(i)
0 xi + v

(i)
1 xr+i

1−A1xr −A0x2r

can be obtained, where v
(i)
0 = si, v

(i)
1 = sr+i −A1si.

3. The Binet Form of the Sequence {sn}

Let g(x) be the characteristic polynomial of the sequence {sn}. That is,

g(x) = xmr −Am−1x
(m−1)r −Am−2x

(m−2)r − · · · −A0.
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Let f be a polynomial defined by

f(x) = xm −Am−1x
m−1 −Am−2x

m−2 − · · · −A0.

In this section, the Binet form of the sequence {sn} is calculated via the m-th degree

polynomial f which is the characteristic polynomial of the r-decimation sequences

of {sn}. Suppose that the polynomial f has m distinct roots. The Binet form is

independent of whether g(x) has multiple roots or not. Before finding the Binet

form of {sn}, we need the following definition.

Definition 1. Let r and τ be two positive integers. The r-decimation and the trans-

lation (or shift) of a sequence {sn} are defined by {srn} and {sn+τ}, respectively
[9].

Example 3. Let {sn} be a sequence. Then, 2-decimation of {sn} is the sequence

{s2n}, that is the sequence s0, s2, s4, . . . . Also, one translation (or one shift) of

the sequence {s2n} is the sequence {s2n+1}, that is the sequence s1, s3, s5, . . . .

The following theorem solves the problem of finding the Binet form of a general

conditional sequence for arbitrary r and m. This fact will be shown in the next

section.

Theorem 2. Let f(x) = xm −Am−1x
m−1 −Am−2x

m−2 − · · · −A0 be the charac-

teristic polynomial of an m-th order linear recurrence relation and have m distinct

roots α1, α2, . . . , αm. The Binet form of the sequence {sn} is

sn = v
(ξ(n))
0

m∑
t=1

α
m−1+⌊n

r ⌋
t

f ′(αt)
+ v

(ξ(n))
1

m∑
t=1

α
m−2+⌊n

r ⌋
t

f ′(αt)
+ · · ·+ v

(ξ(n))
m−1

m∑
t=1

α
⌊n

r ⌋
t

f ′(αt)
, n ≥ 0

where

v
(ξ(n))
0 = sξ(n),

v
(ξ(n))
1 = sr+ξ(n) −Am−1sξ(n),

v
(ξ(n))
2 = s2r+ξ(n) −Am−1sr+ξ(n) −Am−2sξ(n),

...

v
(ξ(n))
m−1 = s(m−1)r+ξ(n) −Am−1s(m−2)r+ξ(n) − · · · −A1sξ(n),

and

ξ(n) =


0, n ≡ 0 (mod r),

1, n ≡ 1 (mod r),
...

r − 1, n ≡ r − 1 (mod r).
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Proof. Consider the r-decimation sequences {srk}, {srk+1},. . . , {srk+(r−1)} of {sn},
and denote the terms of these sequences by d

(0)
k , d

(1)
k , . . . , d

(r−1)
k , respectively. That

is,

d
(0)
k := srk, d

(1)
k := srk+1, . . . , d

(r−1)
k := srk+(r−1), k ≥ 0.

Note that

srk+mr = Am−1srk+(m−1)r +Am−2srk+(m−2)r + · · ·+A0srk,

srk+mr+1 = Am−1srk+(m−1)r+1 +Am−2srk+(m−2)r+1 + · · ·+A0srk+1,

...

srk+mr+(r−1) = Am−1srk+(m−1)r+(r−1) + · · ·+A0srk+(r−1).

Some manipulations of the indices of the above linear recurrence relations yield

sr(k+m) = Am−1sr(k+m−1) +Am−2sr(k+m−2) + · · ·+A0srk,

sr(k+m)+1 = Am−1sr(k+m−1)+1 +Am−2sr(k+m−2)+1 + · · ·+A0srk+1,

...

sr(k+m)+(r−1) = Am−1sr(k+m−1)+(r−1) + · · ·+A0srk+(r−1).

Then, we obtain that

d
(0)
k+m = Am−1d

(0)
k+m−1 +Am−2d

(0)
k+m−2 + · · ·+A0d

(0)
k ,

d
(1)
k+m = Am−1d

(1)
k+m−1 +Am−2d

(1)
k+m−2 + · · ·+A0d

(1)
k ,

...

d
(r−1)
k+m = Am−1d

(r−1)
k+m−1 +Am−2d

(r−1)
k+m−2 + · · ·+A0d

(r−1)
k .

It follows from these facts that the r-decimation sequences of {sn} satisfy the m-th

order linear recurrence relations

d
(i)
k+m = Am−1d

(i)
k+m−1 +Am−2d

(i)
k+m−2 + · · ·+A0d

(i)
k , 0 ≤ i ≤ r − 1. (7)

On the other hand, it is known from [2] that the Binet form of themth order linear

recurring sequences {d(i)n } satisfying Relation (7) whose characteristic polynomial

f has m distinct roots α1, α2, . . . , αm, is

d
(i)
k =

m−1∑
j=0

v
(i)
j pk−j

where

pl =

m∑
t=1

αm−1−l
t

f ′(αt)
, p0 = 0,
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and

v
(i)
0 = si,

v
(i)
1 = sr+i −Am−1si,

v
(i)
2 = s2r+i −Am−1sr+i −Am−2si,

...

v
(i)
m−1 = s(m−1)r+i −Am−1s(m−2)r+i − · · · −A1si.

Then, we can write the Binet forms of the r-decimation sequences of {sn} as follows:

srk = v
(0)
0

m∑
t=1

αm−1+k
t

f ′(αt)
+ v

(0)
1

m∑
t=1

αm−2+k
t

f ′(αt)
+ · · ·+ v

(0)
m−1

m∑
t=1

αk
t

f ′(αt)
,

srk+1 = v
(1)
0

m∑
t=1

αm−1+k
t

f ′(αt)
+ v

(1)
1

m∑
t=1

αm−2+k
t

f ′(αt)
+ · · ·+ v

(1)
m−1

m∑
t=1

αk
t

f ′(αt)
,

...

srk+(r−1) = v
(r−1)
0

m∑
t=1

αm−1+k
t

f ′(αt)
+ v

(r−1)
1

m∑
t=1

αm−2+k
t

f ′(αt)
+ · · ·+ v

(r−1)
m−1

m∑
t=1

αk
t

f ′(αt)
,

for all k ≥ 0.

Now, define the function

ξ(n) =


0 if n ≡ 0 (mod r),

1 if n ≡ 1 (mod r),
...

r − 1 if n ≡ r − 1 (mod r).

Therefore, the Binet form of the sequence {sn} is found as

sn = v
(ξ(n))
0

m∑
t=1

α
m−1+⌊n

r ⌋
t

f ′(αt)
+ v

(ξ(n))
1

m∑
t=1

α
m−2+⌊n

r ⌋
t

f ′(αt)
+ · · ·+ v

(ξ(n))
m−1

m∑
t=1

α
⌊n

r ⌋
t

f ′(αt)
, n ≥ 0,

where

v
(ξ(n))
0 = sξ(n),

v
(ξ(n))
1 = sr+ξ(n) −Am−1sξ(n),

v
(ξ(n))
2 = s2r+ξ(n) −Am−1sr+ξ(n) −Am−2sξ(n),

...

v
(ξ(n))
m−1 = s(m−1)r+ξ(n) −Am−1s(m−2)r+ξ(n) − · · · −A1sξ(n).
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As a particular case of Theorem 2, for m = 2 and arbitrary r, we give the

following result which provides the Binet form of conditional recurrence {qn} given

in (6). This formula is different from the Binet form of [3], since the polynomials

used in here and [3] are different.

Corollary 1. In Theorem 2, if the coefficients and the initial values are chosen as

A0 = (−1)r+1a0,2a1,2a2,2 . . . ar−1,2,

A1 = K
(r−1)
0 + a0,2K

(r−2)
1 ,

s0 = q0, s1 = q1, s2 = a2,1q1+a2,2q0, s3 = a3,1q2+a3,2q1,. . . , s2r−1 = ar−1,1q2r−2+

ar−1,2q2r−3, we obtain the Binet form

qn =
1

β − α
{(q0+ξ(n)β − qr+ξ(n))α

⌊n
r ⌋ + (qr+ξ(n) − q0+ξ(n)α)β

⌊n
r ⌋}

of the general conditional sequence {qn} for m = 2, where α and β are distinct roots

of the polynomial x2 −A1x−A0.

3.1. Conditional Recurrences for r = 3

The successor operator is a useful tool in order to obtain the linear recurrence

relation satisfied by the general conditional sequences. Let {tn} denote any sequence

defined by a linear recurrence relation. The successor operator, denoted by E, is

the operator defined by Etn = tn+1 and Ejtn = tn+j .

In this subsection, the Binet form of the conditional sequence {qn} for r = 3

and m = 4 is calculated as an example by using the successor method (see [5]) and

Theorem 2. Panario et al. (Theorem 6 in [5]) found the linear recurrence relation

satisfied by the general conditional sequences for given m and r = 2. This result

(Theorem 6 in [5]) has an importance, since the coefficients of the linear recurrence

is a formulization of the successor method. In this subsection, we extend the result

from r = 2 to r = 3. In Theorem 3, a linear recurrence relation whose order less

than the order of Relation (2) satisfied by the sequence {qn} for r = 3 and arbitrary

m is determined up to sign of its coefficients. The aim of Theorem 3 is to present a

formula which can be used rather than the successor operator method. At the end

of this section, we give some open problems and a conjecture to further researches.

Because, solving these problems and proving the conjecture provide a formula which

can be used rather than the successor operator method.

Example 4. Let r = 3 and m = 4. The sequence {qn} with initial values

q0, q1, q2, q3 is defined for n ≥ 4 by:

qn =


a0,1qn−1 + a0,2qn−2 + a0,3qn−3 + a0,4qn−4, n ≡ 0 (mod 3),

a1,1qn−1 + a1,2qn−2 + a1,3qn−3 + a1,4qn−4, n ≡ 1 (mod 3),

a2,1qn−1 + a2,2qn−2 + a2,3qn−3 + a2,4qn−4, n ≡ 2 (mod 3).

(8)
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Let ai,4 ̸= 0 for 0 ≤ i ≤ 2. Define k as the smallest positive integer such that

4 ≤ 3k; that is, k = 2. For convenience, define ai,0 = 1 for 0 ≤ i ≤ 2 and ai,j = 0 if

4 < j ≤ 6. Equation (8) can be rewritten as

0 =


−a0,0qn + a0,1qn−1 + a0,2qn−2 + · · ·+ a0,6qn−6, n ≡ 0 (mod 3),

−a1,0qn + a1,1qn−1 + a1,2qn−2 + · · ·+ a1,6qn−6, n ≡ 1 (mod 3),

−a2,0qn + a2,1qn−1 + a2,2qn−2 + · · ·+ a2,6qn−6, n ≡ 2 (mod 3).

(9)

If n in the ith equation of system (9) is replaced by (n + 2)3 + i for all 0 ≤ i ≤ 2,

we obtain the following equations:

0 =


−a0,0q(n+2)3 + a0,1q(n+2)3−1 + · · ·+ a0,6q(n+2)3−6, n ≡ 0 (mod 3),

−a1,0q(n+2)3+1 + a1,1q(n+2)3+1−1 + · · ·+ a1,6q(n+2)3+1−6, n ≡ 1 (mod 3),

−a2,0q(n+2)3+2 + a2,1q(n+2)3+2−1 + · · ·+ a2,6q(n+2)3+2−6, n ≡ 2 (mod 3).

(10)

Let Q
(t)
n = q3n+t, for each 0 ≤ t ≤ 2. Then, Equation (10) becomes

−a0,0Q
(0)
n+2 + a0,1Q

(2)
n+1 + a0,2Q

(1)
n+1 + a0,3Q

(0)
n+1 + a0,4Q

(2)
n + a0,5Q

(1)
n + a0,6Q

(0)
n

= 0

−a1,0Q
(1)
n+2 + a1,1Q

(0)
n+2 + a1,2Q

(2)
n+1 + a1,3Q

(1)
n+1 + a1,4Q

(0)
n+1 + a1,5Q

(2)
n + a1,6Q

(1)
n

= 0

−a2,0Q
(2)
n+2 + a2,1Q

(1)
n+2 + a2,2Q

(0)
n+2 + a2,3Q

(2)
n+1 + a2,4Q

(1)
n+1 + a2,5Q

(0)
n+1 + a2,6Q

(2)
n

= 0

Then, by using the successor operator, the following equations

(− a0,0E
2 + a0,3E + a0,6)Q

(0)
n + (a0,2E + a0,5)Q

(1)
n + (a0,1E + a0,4)Q

(2)
n

= 0

(a1,1E
2 + a1,4E)Q(0)

n + (−a1,0E
2 + a1,3E + a1,6)Q

(1)
n + (a1,2E + a1,5)Q

(2)
n

= 0

(a2,2E
2 + a2,5E)Q(0)

n + (a2,1E
2 + a2,4E)Q(1)

n + (−a2,0E
2 + a2,3E + a2,6)Q

(2)
n

= 0

are obtained. Let P be a 3× 3 matrix defined by(−a0,0E
2 + a0,3E + a0,6) (a0,2E + a0,5) (a0,1E + a0,4)

(a1,1E
2 + a1,4E) (−a1,0E

2 + a1,3E + a1,6) (a1,2E + a1,5)
(a2,2E

2 + a2,5E) (a2,1E
2 + a2,4E) (−a2,0E

2 + a2,3E + a2,6)


and let D(E) = detP . It is known from [5], the sequence {qn} given in (8) satisfies
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the linear recurrence relation whose characteristic polynomial is D(x3). Then

D(E) =− a0,0a1,0a2,0E
6

+ (a0,0a1,0a2,3 + a0,0a1,3a2,0 + a0,0a1,2a2,1 + a0,3a1,0a2,0 + a0,2a1,1a2,0

+ a0,1a1,1a2,1 + a0,1a1,0a2,2)E
5

+ (a0,0a1,0a2,6 − a0,0a1,3a2,3 + a0,0a1,6a2,0 + a0,0a1,2a2,4 + a0,0a1,5a2,1

− a0,3a1,0a2,3 − a0,3a1,3a2,0 − a0,3a1,2a2,1 + a0,6a1,0a2,0 − a0,2a1,1a2,3

+ a0,2a1,4a2,0 + a0,2a1,2a2,2 + a0,5a1,1a2,0 + a0,1a1,1a2,4 + a0,1a1,4a2,1

+ a0,1a1,0a2,5 − a0,1a1,3a2,2 + a0,4a1,1a2,1 + a0,4a1,0a2,2)E
4

+ (−a0,0a1,3a2,6 − a0,0a1,6a2,3 + a0,0a1,5a2,4 − a0,3a1,0a2,6 + a0,3a1,3a2,3

− a0,3a1,6a2,0 − a0,3a1,2a2,4 − a0,3a1,5a2,1 − a0,6a1,0a2,3 − a0,6a1,3a2,0

− a0,6a1,2a2,1 − a0,2a1,1a2,6 − a0,2a1,4a2,3 + a0,2a1,2a2,5 + a0,2a1,5a2,2

− a0,5a1,1a2,3 + a0,5a1,4a2,0 + a0,5a1,2a2,2 + a0,1a1,4a2,4 − a0,1a1,3a2,5

− a0,1a1,6a2,2 + a0,4a1,1a2,4 + a0,4a1,4a2,1 + a0,4a1,0a2,5 − a0,4a1,3a2,2)E
3

+ (−a0,0a1,6a2,6 + a0,3a1,3a2,6 + a0,3a1,6a2,3 − a0,3a1,5a2,4 − a0,6a1,0a2,6

+ a0,6a1,3a2,3 − a0,6a1,6a2,0 − a0,6a1,2a2,4 − a0,6a1,5a2,1 − a0,2a1,4a2,6

+ a0,2a1,5a2,5 − a0,5a1,1a2,6 − a0,5a1,4a2,3 + a0,5a1,2a2,5 + a0,5a1,5a2,2

− a0,1a1,6a2,5 + a0,4a1,4a2,4 − a0,4a1,3a2,5 − a0,4a1,6a2,2)E
2

+ (a0,3a1,6a2,6 + a0,6a1,3a2,6 + a0,6a1,6a2,3 − a0,6a1,5a2,4 − a0,5a1,4a2,6

+ a0,5a1,5a2,5 − a0,4a1,6a2,5)E

+ (a0,6a1,6a2,6)

and thus,

D(x3) = A0x
18 +A3x

15 +A6x
12 +A9x

9 +A12x
6 +A15x

3 +A18

where

Ad =
∑

d=d1+d2+d3
0≤d1,d2,d3≤6

±a0,d1a1,d2a2,d3 for d = 0, 3, . . . , 18

such that d2 ̸≡ i + 1 (mod 3) and d3 ̸≡ i + 2 (mod 3) if d1 ≡ i (mod 3) for each

0 ≤ i ≤ 2.

On the other hand, from the fact that ai,5 = ai,6 = 0 and ai,4 ̸= 0 for 0 ≤ i ≤ 2,

one can obtain a linear recurrence relation whose order is less than 18 by omitting

the zero terms:

D(x3) =A0x
18 +A3x

15 +A6x
12 +A9x

9 +A12x
6

=x6(A0x
12 +A3x

9 +A6x
6 +A9x

3 +A12).
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Therefore, the sequence {qn} for m = 4 and r = 3 satisfies a 12th order linear

recurrence relation which has the characteristic polynomial

f(x) = A0x
12 +A3x

9 +A6x
6 +A9x

3 +A12.

qn = v
(ξ(n))
0

4∑
t=1

α
3+⌊n

3 ⌋
t

f ′(αt)
+v

(ξ(n))
1

4∑
t=1

α
2+⌊n

3 ⌋
t

f ′(αt)
+v

(ξ(n))
2

4∑
t=1

α
1+⌊n

3 ⌋
t

f ′(αt)
+v

(ξ(n))
3

4∑
t=1

α
⌊n

3 ⌋
t

f ′(αt)

where

v
(ξ(n))
0 = qξ(n),

v
(ξ(n))
1 = q3+ξ(n) −A0qξ(n),

v
(ξ(n))
2 = q6+ξ(n) −A0q3+ξ(n) −A3qξ(n),

v
(ξ(n))
3 = q9+ξ(n) −A0q6+ξ(n) −A3q3+ξ(n) −A6qξ(n),

and

ξ(n) =


0, n ≡ 0 (mod 3),

1, n ≡ 1 (mod 3),

2, n ≡ 2 (mod 3).

Theorem 3. Let m > 3 be a positive integer and let {ai,j} be real numbers such

that ai,m ̸= 0 for 0 ≤ i ≤ 2 and 1 ≤ j ≤ m. The sequence {qn} given in (1) becomes

qn =


a0,1qn−1 + a0,2qn−2 + · · ·+ a0,mqn−m, n ≡ 0 (mod 3),

a1,1qn−1 + a1,2qn−2 + · · ·+ a1,mqn−m, n ≡ 1 (mod 3),

a2,1qn−1 + a2,2qn−2 + · · ·+ a2,mqn−m, n ≡ 2 (mod 3).

(11)

The sequence {qn} given in (11) satisfies the linear recurrence relation

qn = A3qn−3(m−1) +A6qn−3(m−2) + · · ·+A3(m−1)qn−3 +A3mqn (12)

where

Ad =
∑

d=d1+d2+d3
0≤d1,d2,d3≤m

±a0,d1
a1,d2

a2,d3
for d = 0, 3, . . . , 3m

such that d2 ̸≡ i + 1 (mod 3) and d3 ̸≡ i + 2 (mod 3) if d1 ≡ i (mod 3) for each

0 ≤ i ≤ 2.

Proof. Let m = 3t + 1 for some integer t. The proof is similar when m = 3t and

m = 3t + 2. By using the successor operator method, the following equations are
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obtained:

(− a0,0E
k + a0,3E

k−1 + · · ·+ a0,3k)Q
(0)
n + (a0,2E

k−1 + · · ·+ a0,3k−1)Q
(1)
n

+ (a0,1E
k−1 + · · ·+ a0,3k−2)Q

(2)
n = 0

(a1,1E
k + · · ·+ a1,3k−2E)Q(0)

n + (−a1,0E
k + a1,3E

k−1 + · · ·+ a1,3k)Q
(1)
n

+ (a1,2E
k−1 + · · ·+ a1,3k−1)Q

(2)
n = 0

(a2,2E
k + · · ·+ a2,3k−1E)Q(0)

n + (a2,1E
k + · · ·+ a2,3k−2E)Q(1)

n

+ (−a2,0E
k + a2,3E

k−1 + · · ·+ a2,3k)Q
(2)
n = 0

Then, the corresponding matrix P for the sequence {qn} is given by

P =

P00(E) P02(E) P01(E)
P11(E) P10(E) P12(E)
P22(E) P21(E) P20(E)


where

P00(E) =− a0,0E
k + a0,3E

k−1 + · · ·+ a0,3k

P02(E) =a0,2E
k−1 + · · ·+ a0,3k−1

P01(E) =a0,1E
k−1 + · · ·+ a0,3k−2

P11(E) =a1,1E
k + · · ·+ a1,3k−2E

P10(E) =− a1,0E
k + a1,3E

k−1 + · · ·+ a1,3k

P12(E) =a1,2E
k−1 + · · ·+ a1,3k−1

P22(E) =a2,2E
k + · · ·+ a2,3k−1E

P21(E) =a2,1E
k + · · ·+ a2,3k−2E

P20(E) =− a2,0E
k + a2,3E

k−1 + · · ·+ a2,3k

and k is the least positive integer such that m ≤ 3k, that is, k = m+2
3 . Thus,
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D = D(E) = detP is obtained as:

D(E) =− a0,0a1,0a2,0E
3k

+ (a0,0a1,0a2,3 + a0,0a1,3a2,0 + a0,0a1,2a2,1 + a0,3a1,0a2,0 + a0,2a1,1a2,0

+ a0,1a1,1a2,1 + a0,1a1,0a2,2)E
3k−1

...

+ (a0,3k−6a1,3ka2,3k + a0,3k−3a1,3k−3a2,3k + a0,3k−3a1,3ka2,3k−3

− a0,3k−3a1,3k−1a2,3k−2 + a0,3ka1,3k−6a2,3k + a0,3ka1,3ka2,3k−6

+ a0,3ka1,3k−3a2,3k−3 − a0,3ka1,3k−1a2,3k−5 − a0,3ka1,3k−4a2,3k−2

− a0,3k−4a1,3k−2a2,3k + a0,3k−4a1,3k−1a2,3k−1 − a0,3k−1a1,3k−5a2,3k

+ a0,3k−1a1,3k−1a2,3k−4 − a0,3k−1a1,3k−2a2,3k−3 + a0,3k−1a1,3k−4a2,3k−1

− a0,3k−5a1,3ka2,3k−1 + a0,3k−2a1,3k−2a2,3k−2 − a0,3k−2a1,3k−3a2,3k−1

− a0,3k−2a1,3ka2,3k−4)E
2

+ (a0,3k−3a1,3ka2,3k + a0,3ka1,3k−3a2,3k + a0,3ka1,3ka2,3k−3

− a0,3ka1,3k−1a2,3k−2 − a0,3k−1a1,3k−2a2,3k + a0,3k−1a1,3k−1a2,3k−1

− a0,3k−2a1,3ka2,3k−1)E

+ a0,3ka1,3ka2,3k.

Note that ai,3k = ai,3k−1 = 0 for i = 0, 1, 2 by the successor method. Then,

D(E) =− E2(A0E
3k−2 −A3E

3k−3 − · · · −A9k−6)

=− E2(Em −A3E
m−1 − · · · −A3m).

Therefore, the sequence {qn} satisfies the linear recurrence relation

qn+3m = A3qn−3(m−1) +A6qn−3(m−2) + · · ·+A3(m−1)qn−3 +A3mqn

where

Ad =
∑

d=d1+d2+d3
0≤d1,d2,d3≤m

±a0,d1
a1,d2

a2,d3
for d = 0, 3, . . . , 3m

such that d2 ̸≡ i + 1 (mod 3) and d3 ̸≡ i + 2 (mod 3) if d1 ≡ i (mod 3) for each

0 ≤ i ≤ 2. The above restriction about d1, d2, and d3 comes from the definition of

the determinant.

Open Problem 1. Determine the sign of the coefficients of Relation (12).

Note that the order of Relation (12) is 3m which is less than 9k where k is the

smallest positive integer such that m ≤ 3k. Therefore, a linear recurrence relation

is obtained whose order is less than the order of Relation (2) when m ̸= 3k.
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Open Problem 2. Let r > 3. Find a linear recurrence relation satisfied by the

general conditional sequences whose order is less than the order of Relation (2) for

m < r and m > r.

Moreover, several numerical examples motivate this work to give the following

conjecture.

Conjecture 1. Let m and r be two positive integers such that m > r. The general

conditional sequence {qn} defined in (1) satisfies the linear recurrence

qn = Arqn−r +A2rqn−2r + · · ·+Amrqn−mr

where

Ad =
∑

d=d1+···+dr
0≤d1,...,dr≤m

±a0,d1 . . . ar−1,dr for d = 0, r, . . . ,mr

such that d2 ̸≡ i+ 1 (mod r), d3 ̸≡ i+ 2 (mod r), . . . , and dr ̸≡ r − 1 + i (mod r)

if d1 ≡ i (mod r) for each 0 ≤ i ≤ r − 1.

3.2. A Link with the Integer Partitions

As we will see in Example 5, a relationship exists between the restricted integer

partitions and the coefficients of the linear recurrence relations satisfied by the

general conditional sequences. Finally, based on the observation and some numerical

examples, we give a conjecture.

For 1 ≤ N ≤ n, m ≥ 0, let wN,m(n) be the number of ordered partitions of

the integer n into N parts each of size at least 0 but no larger than m (see [8]).

Let w∗
N,m(n) and wN,m(n) denote the number of ordered distinct and ordered non-

distinct partitions of n into N parts each of size at least 0 but no larger than m,

respectively.

Example 5. Recall from Example 4 that a conditional sequence {qn} for r = 3

and m = 4 satisfying the conditional recurrence relation

qn =


a0,1qn−1 + a0,2qn−2 + a0,3qn−3 + a0,4qn−4, n ≡ 0 (mod 3),

a1,1qn−1 + a1,2qn−2 + a1,3qn−3 + a1,4qn−4, n ≡ 1 (mod 3),

a2,1qn−1 + a2,2qn−2 + a2,3qn−3 + a2,4qn−4, n ≡ 2 (mod 3).

for all n ≥ 4 satisfies the linear recurrence relation

qn = A3qn−3(m−1) +A6qn−3(m−2) + · · ·+A3(m−1)qn−3 +A3mqn

where

Ad =
∑

d=d1+d2+d3
0≤d1,d2,d3≤m

±a0,d1
a1,d2

a2,d3
for d = 0, 3, . . . , 3m
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and d1, d2, d3 satisfy the condition

d2 ̸≡ i+1 (mod 3) and d3 ̸≡ i+2 (mod 3) if d1 ≡ i (mod 3), 0 ≤ i ≤ 2. (13)

Note that A0 = 1 which is the coefficient of the term qn in the above relation.

Now, let Ad denote the number of the terms a0,d1
a1,d2

a2,d3
composing the coef-

ficients Ad. Consider the number of ordered partitions of the integer d into 3 parts

each of size at least 0 but no larger than 4.

• For d = 0: w3,4(0) = |{(0, 0, 0)}|,

• For d = 3:

w3,4(3) = |{(0, 0, 3), (0, 3, 0), (3, 0, 0), (0, 1, 2), (0, 2, 1), (1, 0, 2), (1, 2, 0), (2, 0, 1),
(2, 1, 0), (1, 1, 1)}|,

• For d = 6:

w3,4(6) = |{(0, 4, 2), (0, 2, 4), (2, 0, 4), (2, 4, 0), (4, 0, 2), (4, 2, 0), (1, 1, 4), (1, 4, 1),
(4, 1, 1), (0, 3, 3), (3, 0, 3), (3, 3, 0), (2, 2, 2)}|,

• For d = 9:

w3,4(9) = |{(1, 4, 4), (4, 1, 4), (4, 4, 1), (2, 3, 4), (2, 4, 3), (3, 2, 4), (3, 4, 2), (4, 2, 3),
(4, 3, 2), (3, 3, 3)}|,

• For d = 12:

w3,4(12) = |{(4, 4, 4)}|.

If the partitions that satisfy condition (13) are listed, it is concluded that

• For d = 0: A0 = |{(0, 0, 0)}|,

• For d = 3:

A3 = |{(0, 0, 3), (0, 3, 0), (3, 0, 0), (0, 2, 1), (1, 0, 2), (2, 1, 0), (1, 1, 1)}|

= w3,4(3) +
w∗

3,4(3)

2
,

• For d = 6:

A6 = |{(0, 2, 4), (2, 4, 0), (4, 0, 2), (1, 1, 4), (1, 4, 1), (4, 1, 1), (0, 3, 3), (3, 0, 3),
(3, 3, 0), (2, 2, 2)}|

= w3,4(6) +
w∗

3,4(6)

2
,
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• For d = 9:

A9 = |{(1, 4, 4), (4, 1, 4), (4, 4, 1), (2, 4, 3), (3, 2, 4), (4, 3, 2), (3, 3, 3)}|

= w3,4(9) +
w∗

3,4(9)

2
,

• For d = 12:

A12 = |{(4, 4, 4)}|.

That is, it can be seen that the value of Ad for d = 0, 3, . . . , 12 is written in terms

of the restricted integer partition functions w3,4(d), w
∗
3,4(d), and w3,4(d) as follows:

Ad = w3,4(d)−
w∗

3,4(d)

2

or, equivalently,

Ad = w3,4(d) +
w∗

3,4(d)

2

for d = 0, 3, . . . , 12.

Thus, we propose the following conjecture.

Conjecture 2. Let D be the set defined by

D = {(d1, d2, d3) : d = d1 + d2 + d3, dj+1 ̸≡ i+ j (mod 3) if d1 ≡ i (mod 3),

1 ≤ j ≤ 2, 0 ≤ i ≤ 2},

and let

Ad =
∣∣∣{a0,d1

a1,d2
a2,d3

: 0 ≤ d1, d2, d3 ≤ m, (d1, d2, d3) ∈ D}
∣∣∣.

Then, for d = 0, 3, . . . , 3m,

Ad = w3,m(d)−
w∗

3,m(d)

2

or, equivalently,

Ad = w3,m(d) +
w∗

3,m(d)

2
.
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