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Abstract

In this paper, we consider an mr-th order linear recurring sequence s, over R,
which is a generalization of the general conditional sequences defined by Panario
et al. The sequence s, contains infinitely many sequences that are not included
in the conditional sequences, for example, inverses of cyclotomic polynomials, the
Kronecker symbol, etc. We calculate the Binet form of the sequence s, by using
r-decimation sequences, that is, the sequence obtained by taking every r-th term of
sn. The paper also provides the Binet form of the general conditional sequences for
given m and r by using the successor operator method. Finally, some open problems
and conjectures are given. One of the conjectures presents the relationship among
the successor operator, the coefficients of the linear recurrence relations satisfied by
the conditional sequences, and the integer partitions.

1. Introduction

In [10], Edson and Yayenie introduced a generalization of the Fibonacci sequence
defined for alln > 2 by ¢, = a;Gn—_1+qn—2, n =4 (mod 2), where a; € Rfori =0,1,
and proposed an open problem of finding a closed form of the generating function
and the Binet form for a sequence satisfying the relation ¢, = a;qn—1+gn_2, n =1
(mod r) for ¢ = 0,1,...,7 — 1, where n > 2. Sahin [12, 13] solved this problem
by using continuants. Also, Edson et al. [11] solved this problem independently.
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In addition to these, Panario et al. defined a sequence satisfying the relation ¢, =
@i 1qn—1 + @i 2Gn—2, n =i (mod r) with real coefficients for i = 0,1,...,r — 1,
where n > 2, and found the Binet form of this sequence (Theorem 8 in [3]). Then,
Panario et al. [5] introduced a new generalization, namely the general conditional
recurrence sequences ¢,, defined by

Gn =0 1qn-1+ -+ GmGn-m, n=7j (modr), (n>m) (1)

with real coefficients and arbitrary initial values qg,q1,...,¢m—_1 € R, where 0 <
j < r—1. Panario et al. obtained the generating function of (1) (Theorem 3 in
[5]) and the Binet form of (1) for a special case, namely for given m and r = 2
(Theorem 9 in [5]). As a result of [3] and [5], the problem of finding the Binet
form of (1) remains unsolved for given m and r such that m > 2 and r > 2. The
main objective of this paper is to obtain the Binet form of the general conditional
sequences satisfying recurrence (1). To achieve this purpose, we will define a linear
recurring sequence s, including the general conditional sequences and obtain the
Binet form of s,,. Then, we will solve the problem of finding the Binet form of (1)
for arbitrary m and r. The reason for defining the sequence s, can be given as
follows. Panario et al. showed that the sequence ¢, satisfying the recurrence (1)
satisfies a linear recurrence relation (Theorem 2, [5]) of the form

An+kr2 = A09n+(kr—1)r + A1qn+(kr—2)r + -+ Akr—19n, (Tl > kTQ) (2)

with special coefficients ag, a1, . .., ax-—1 and special initial values qq, q1, - - -, qrr2—_1,
where k is the least positive integer such that m < kr. We will generalize the
sequence ¢, by considering Relation (2) with arbitrary coefficients and arbitrary
initial values. Thus, finding the Binet form of a generalization of Relation (2) solves
the problem of calculating the Binet form of the general conditional recurrences for
arbitrary r and m. Moreover, relation (2) means that the characteristic polynomial
corresponding to the general conditional sequence g, has degree kr2. In this work,
we will find a characteristic polynomial of degree less than kr?, if possible. For
further details on conditional recurrences, see [10], [11], [5], [4], [3], [13], [12], [14].
Let us explain what we mean by the special coefficients in Relation (2). In the
linear recurrence relation (2), the coefficients a; are dependent on the coefficients
a;; of (1); the initial values qo, g1, ..., ¢m—1 are arbitrary, but the remaining
initial values ¢, ¢m+1, ---, Qrr2—1 are dependent on the first m initial values.
That is, the coefficients a; and initial values ¢, ¢m+1, - - -, qrr2—1 are not arbitrary.
By choosing arbitrary coefficients and arbitrary initial values, one can find infinitely
many sequences that are not conditional sequences. Example 1 is one such sequence.
This point naturally suggests the following question: What is the Binet form and
generating function of recurrence (2) for arbitrary coefficients and arbitrary initial
values? The paper focuses on this problem, since solving it enables the calculation
of the Binet form of (1).



INTEGERS: 26 (2026) 3

Now, we define the sequences which are a generalization of the general conditional
sequences. Let Ag, A1,...,A,—1 € R be arbitrary, m and r be integers such that
m > 2 and r > 2, and let s,, denote the sequence satisfying the mr-th order linear
recurrence relation

Snt+mr = Am715n+(mfl)r + Am723n+(m72)r +F AOSna (n > O) (3>

with arbitrary initial values sg, $1,...,Smr—1 € R. Example 1 shows that the se-
quence s, satisfying the linear recurrence relation (3) is a generalization of the
conditional recurrence sequence ¢, , but the converse is not true.

Example 1. Consider the conditional recurrence sequence {q,} satisfying the re-
lation

agn-1 + bgn—2, n =0 (mod 2)

q,q1 €ER, g, = { (4)

Cqn-1+ dgn—2, n =1 (mod 2)
for all n > 2. We know from [3] that this sequence satisfies the linear recurrence
relation

Gnta = (ac + b+ d)gni2 + (—bd)qn
with the initial values qq, q1, g2 = aq1+bqo, g3 = cqga+dg,. Obviously, form =r = 2
in Relation (3), if the coefficients are taken as

Ay =ac+b+d, Ayg=—-bd

and the initial values are taken as so = qo, S1 = q1, S2 = aq1 + bqo, s3 = cqs + dqq,
the sequence {q,} satisfies the 4-th order linear recurrence

Spta = A18ny2 + Aosy.

However, the converse is not true. To show this, we construct a counterexample by
considering the sequence

Sn+d4 = Spn42 — Sn
with the initial conditions s = 1, s1 = 0, s = 1, s3 = 0. This sequence corresponds
to coefficients of the inverse of the 12th cyclotomic polynomial (A014021). To
prove that this sequence does not satisfy the conditional recurrence (4), assume the
contrary. Then the following system of equations must have a solution

ac+b+d=1,
bd =1,
b=1,
cb=0.

However, the above system of equations has no solution, contradicting our assump-
tion that the sequence satisfies a conditional recurrence, and thus proving that the
sequence satisfies no conditional recurrence. Moreover, one can construct infinitely
many such counterexamples.
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In addition to the above example, not only does the sequence {s,} include many
well-known sequences that are part of the conditional sequences, but it also con-
tains some special sequences, such as the inverse of cyclotomic polynomials and
the Kronecker symbol, which appear in Sloane’s On-Line Encyclopedia of Integer
Sequences [15] and are not included in the general conditional sequences. For in-
verses of cyclotomic polynomials, see [18]. In Table 1, some known sequences of the
form (3) for given coefficients and initial values are listed. Some of these sequences
correspond to a conditional sequence, while others do not.

Coeflicients Initial values Sequence Type
(-1,k%+2) (0,1,k, k% + 1) k-Fibonacci [20] conditional

(— k2 2k+4)  (0,1,2,4k) k-Pell [16] conditional
(-1, k2 +2) (2,k, k% + 2,k + 3k) k-Lucas [19] conditional

(— 4t2 k2 +4t)  (0,1,k, k% 4+ 2t) (k,t)-Jacobsthal [21] conditional
(—k2, 2k +4) (2, 2, 2k + 4,6k + 8) k-Pell-Lucas [17] conditional

(— 4t2 k2 +4t)  (2,k,k? + 4t, k3 + 6kt) (K, t)-Jacobsthal-Lucas [21] conditional
(—1,34) (0,1,6,35) Balancing number [1] conditional
(—1,34) (1,3,17,99) Lucas-Balancing number [6] conditional
(-1,-1) (1,1,0,-1) inverse of 6th cyclotomic polynomial ~ non-conditional
(1,-1) (1,0,1,0) inverse of 12th cyclotomic polynomial non-conditional
(-1,-1,-1) (1,0,0,0,—1,0) inverse of 8th cyclotomic polynomial — non-conditional
(-1, ) (1,0,0,-1,0,0) inverse of 9th cyclotomic polynomial ~ non-conditional
(1,-1) (0,1,0,0) Kronecker symbol (—6/n) non-conditional

Table 1: Some Known Sequences

2. Generating Function of the Sequence {s,}

This section is devoted to finding the generating function of the sequence {s,}
defined in (3). The following theorem is obtained as a special case of the gener-
ating function in [2]. For completeness and to introduce some notation for use in
subsequent sections, we will prove the theorem.

Theorem 1. Let {s,} be the sequence satisfying the Relation (1). Then {s,} has
the generating function

r—1
Z U(()z)xz gz)mrJri + vél)x2r+i NI vgllx(mfl)r+i)
G(z) = = ()

1-— Am,lxr — Am72$27‘ A — Alxmr _ AO
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where

(4)

’UO = S,
(4)

v = Srti — Am—184,
(@) _ A A .

Ug = S2r+44 m—1Sr+4i m—25i,

i)

Upp—1 = S(m—1)r+i — Am—ls(m72)r+i — o= Ass;.

oo

Proof. Let G(z) = Z spx™ be the formal expansion of the sequence, and note that

n=0
_er an.’b —mr _ Z Snerrxn;
- 00
—Ap_1x” (m-— I)TG Z —Ap_18p2" (m=1r — Z _Am—15n+(mfl)r$
n=—(m—1)r
_Am 2x—(m 2)TG Z Am—23n n=(m=2)r Z _Am—25n+(m72)rx
n=—(m-—2)r

—A127"G(x Z —Aisx T = i —Aispirx™,

7A0 Z AoSnI
Then, we obtain that
r—1 ] ]
(v( ) i + v( i), i véz)xwﬂ I ,Ug)ilx(mfl)ﬂrz)
G _1=0
(J?) 1-— Am,1$r — Am,QZL'QT — s = Alme — Ao ’
where
U(()Z) = i,

(i
V1" = Sr4i — Am_18i,

)
V3 = Sorqi — Am—15r+i — Am—25;,

,Ur(rll) 1= S(m Dr+4i — Am—ls(m—2)r+i - A15i~

n

)
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O

Remark 1. In [5], the generating function of the general conditional recurrences
is presented. Theorem 1 is a generalization of the result, since the coefficients A;,
0 <i <m —1, and the initial values s;, 0 < 7 < mr — 1, are arbitrary.

We present the following illustrative example to illustrate the above remark for
a special case, that is, for m = 2.

Example 2. The general conditional sequence {g,} with arbitrary initial values

qo, and ¢; is defined for all n > 2 by

00,19n—1 + G0,2qn—2, n=0 (modr)
n=1

G1,1qn—1 + a1,2Gn—2, (mod )
oo = | (©)

Gr—1,19n-1 + Ar-1,2qn—-2, M=T— 1 (mOd ’I“)

where a; ; are arbitrary real numbers for 0 <7 <r—1and 1 < j <2 (see [3]). This
sequence satisfies the linear recurrence relation

Sp2r = A03n+7‘ + Alsnv (TL > 0)

if the initial values are chosen as sy = qo, s1 = q1, S2 = a2,1q1 + a22q0, 53 =
a31q2 + a3 2q1,. .., S2r—1 = Gr_1,1qG2r—2 + Gr_1,2q2,—3, and the coefficients Ay and
A;p are taken as

Ao = (1) ag a1 a2 ... ar—12, and

A1 = Kéril) + GO’QKYiQ),
where K" and K{"™® are the generalized continuant defined in [3]. When m = 2

in (5), Theorem 1 gives Theorem 6 of [3], that is, the generating function of the
sequence (6)

r—1 . A . X
Z v(()l)xl + v%z)xrﬂ
G(z) = =0

1-— AlIT — A()QSQT
(4) ()

can be obtained, where vy’ = s;, v;’ = sp4; — A15;.
3. The Binet Form of the Sequence {s,}

Let g(z) be the characteristic polynomial of the sequence {s,}. That is,

g(fﬂ) — Am_lx(mfl)r . Am_gl‘(m72)r L AO-
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Let f be a polynomial defined by
f(l‘) =z™ - Am_ll‘m_l — Am_2gjm_2 — e — A0~

In this section, the Binet form of the sequence {s,} is calculated via the m-th degree
polynomial f which is the characteristic polynomial of the r-decimation sequences
of {sn}. Suppose that the polynomial f has m distinct roots. The Binet form is
independent of whether g(x) has multiple roots or not. Before finding the Binet
form of {s,}, we need the following definition.

Definition 1. Let r and 7 be two positive integers. The r-decimation and the trans-
lation (or shift) of a sequence {s,} are defined by {s,,} and {s,+.}, respectively

[9]-

Example 3. Let {s,} be a sequence. Then, 2-decimation of {s,} is the sequence
{s2n}, that is the sequence sg, s2, S4, .... Also, one translation (or one shift) of
the sequence {s2,} is the sequence {sg,+1}, that is the sequence s, s3, S5, . ...

The following theorem solves the problem of finding the Binet form of a general
conditional sequence for arbitrary » and m. This fact will be shown in the next
section.

Theorem 2. Let f(z) = 2™ — Ay 12™ 1 — A, _02™ ™2 — -+ — Ag be the charac-
teristic polynomial of an m-th order linear recurrence relation and have m distinct
roots aq, Qa, ..., am. The Binet form of the sequence {s,} is
o=t ey ooy T () o 0f
Sp=vg 4" T e e a RCANE ——— n>0
U P [ R PP L e
where
o™ = sew),
U%E(n)) = Sr4é(n) — Am—lsﬁ(n)v
Uéf(n)) = S2r4¢(n) — Am—15r+£(n) - Am—255(n)a
o) = S(m—1)r+é(n) — Am-18(m-2)rte(m) = — A1S¢(n)s
and
0, n=0 (modr),
1, n=1 (modr),
€(n) = .

r—1, n=r—1 (modr).



INTEGERS: 26 (2026) 8

Proof. Consider the r-decimation sequences {5, }, {Srk+1}, - -» {Srkt(r—1)} Of {8n},
and denote the terms of these sequences by dgco), d,il), ey dg_l), respectively. That
is,

d](CO) = Srk, d](cl) = Srk+ly -y d](:_l) = Srk4(r—1)» k>0.
Note that

Srk+mr — Am—lsrk+(m—l)r + Am—25rk+(m—2)7‘ + -+ AOST‘k7

Srk4+mr+1 = Am—lsrk+(7rz—1)r+1 + Am—2srk+(m—2)r+1 +- A05rk+17

Srk+mr4(r—1) = Amflsrk—&-(m—l)r—&-(r—l) +eeet Aosrk+(r—1)~

Some manipulations of the indices of the above linear recurrence relations yield

Sr(ker) = Amflsr(qumfl) + Am728r(k+m72) + -+ Aosrk;

Sr(k:er)Jrl = Amflsr(k+m71)+1 + Am723r(k+m72)+1 + -+ AOSrk+1;

Sp(ktm)+(r—1) = Am—18r(ktm—1)+(r—1) T + A0Srkt(r—1)-
Then, we obtain that

o)

k+m = Am—ldch)m—l + Am—ZdEcOsz—z toe Tt Aod;0)7

+
d) = Apadl) 4 Apadl) 4 Aody,

U0 = Ay 4 Aadg 4 Aoy,

It follows from these facts that the r-decimation sequences of {s,} satisfy the m-th
order linear recurrence relations

A = Ay ad) A A od) e Agd? 0<i<r—1. (7)

On the other hand, it is known from [2] that the Binet form of the m*" order linear
recurring sequences {dﬁf )} satisfying Relation (7) whose characteristic polynomial
f has m distinct roots aq, asg, ..., Gy, is

where
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and
of)
o)

= Si,
= Sr44 — Am—15i7

(1)
Vg ' = Sop4i — Am—lsr—i-i - Am—zsi,

r(n) 1= S(m—=1)r+i — Am—ls(m—2)r+i — = Ays;.

Then, we can write the Binet forms of the r-decimation sequences of {s,} as follows:

m k
(0) (0) Oy
= e + Umf ,
0 Z f/ Z f/ at 1 z:: f’(at)
m m 1+k m m 2+k m Otf

Srk+1 —Uo Z Z o) ’ '+U7’1)—1;f’(at)’

m m—1+ —2+k

_ ,,(r=1) @y
Srk+(r—1) = Vg Z f/(T Z

t=1 -1 ) t=1

for all £ > 0.
Now, define the function

0 ifn=0 (mod r),
1 ifn=1 (modr),

r—1 ifn=r—-1 (modr).

Therefore, the Binet form of the sequence {s,} is found as

ey emar ) of " S WD 3 2 -
Sp = g ; f(a) T Z: "ay) a ;f/(at
where
o6t = sen,
U%E(n)) = Spte(n) — Amflsf(n)’
Uéi(”)) = Sorie(n) — Am715r+§(n) — Am7285(n)a
7(5(_1)) = S(m—1)r+£&(n) — Am—ls(m*2)r+5(n) - A15§(n)~
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As a particular case of Theorem 2, for m = 2 and arbitrary r, we give the
following result which provides the Binet form of conditional recurrence {g,} given
in (6). This formula is different from the Binet form of [3], since the polynomials
used in here and [3] are different.

Corollary 1. In Theorem 2, if the coefficients and the initial values are chosen as

_ r+1
Ap = (=1)"ap 2012022 ... ar_1,2,

Al = Kéril) + a0,2K§r72)’

S0 = qo; S1 = q1, S2 = a2,1q1+0a22qo, S3 = a3,192+0a32q1,- - -, S2r—1 = Gr—1,1G2r—2+
ar_12q2r—3, we obtain the Binet form

1 n n
e e (O Grrem)a 4 (@rye(n) = dorem@) 8}

of the general conditional sequence {q,} for m = 2, where a and § are distinct roots
of the polynomial x> — Az — Ay.

3.1. Conditional Recurrences for r = 3

The successor operator is a useful tool in order to obtain the linear recurrence
relation satisfied by the general conditional sequences. Let {t,,} denote any sequence
defined by a linear recurrence relation. The successor operator, denoted by F, is
the operator defined by Et,, = t,,+1 and Eit, = tnts-

In this subsection, the Binet form of the conditional sequence {g¢,} for r = 3
and m = 4 is calculated as an example by using the successor method (see [5]) and
Theorem 2. Panario et al. (Theorem 6 in [5]) found the linear recurrence relation
satisfied by the general conditional sequences for given m and r = 2. This result
(Theorem 6 in [5]) has an importance, since the coefficients of the linear recurrence
is a formulization of the successor method. In this subsection, we extend the result
from r = 2 to r = 3. In Theorem 3, a linear recurrence relation whose order less
than the order of Relation (2) satisfied by the sequence {g,} for » = 3 and arbitrary
m is determined up to sign of its coefficients. The aim of Theorem 3 is to present a
formula which can be used rather than the successor operator method. At the end
of this section, we give some open problems and a conjecture to further researches.
Because, solving these problems and proving the conjecture provide a formula which
can be used rather than the successor operator method.

Example 4. Let r = 3 and m = 4. The sequence {g,} with initial values
4o, 91,42, qs is defined for n > 4 by:

a0,1qn—1 + @0,2qn—2 + 0,3¢n—3 + G0 aqn—-4, n =0 (mod 3),
Gn = { 01,1Gn—1 + 1,2¢n—2 + @1 3¢n—3 + @1,4¢n—4, n=1 (mod 3), (8)
a2,1¢n—1 + @2,20n—2 + @23¢n—3 + A2 4¢n—a, n =2 (mod 3).
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Let a;4 # 0 for 0 < ¢ < 2. Define k as the smallest positive integer such that
4 < 3k; that is, k = 2. For convenience, define a;9 =1 for 0 <4 <2 and a; ; = 0 if
4 < j < 6. Equation (8) can be rewritten as

—0,0qn + 40,1Gn-1 + @0,2¢n-2 + - - + a0.6¢n-6, n=0 (mod 3),
0=1¢—a1,00n+a1,1¢n-1+ a1 2¢n—2+ -+ a16gn—6, n=1 (mod3), (9)
—a2,0qn + 42,1Gn—1 + @22¢n—-2+ -+ a26Gn-6, n=2 (mod 3).

If n in the ith equation of system (9) is replaced by (n 4 2)3 + 4 for all 0 < i < 2,
we obtain the following equations:

—a0,04(n+2)3 T @0,1q(n+2)3—1 + - - + @0,64(n+2)3—6> n=0 (mod 3),
0= 4 —01,09(n+2)3+1 + 01,1q(n+2)341-1 + - + A1,6G(n+2)3+1-6; N =1 (mod 3),

—Q2,04(nt2)3+2 + 02,1q(n+2)342-1 T + 02,6q(n+2)342-6;, N =2 (mod 3).
(10)

Let QS) = 3n+t, for each 0 <t < 2. Then, Equation (10) becomes

—ag 0Qn+2 + ap, 1Qn+1 + ao, QQ +1tao 3Qn+1 + ap 4@512) + ao,ng) + aO,GQE«LO)
=0

—a1 0Qn+2 +ax 1Q£L+2 +a; 2Qn+1 +a; 3Qn+1 +a; 4Qn+1 +a15QP +a1,6Q%
=0

—as 0Qn+2 + as 1Qn+2 + as 2@ nio T a2 3Q i1 T a2 4Q ni1 T a2 5Qn+1 + a,6QP
=0

Then, by using the successor operator, the following equations

( — a0,0E2 + 0073E + CL076)Q$L0) + (a072E + CL075)Q$L1) + ((1071E + a074)Q%2)
~0

(a11FE* 4+ a1 4E)QY + (a1 0E% + a1 3E + a1,6)QWY + (a12F + a15)QP
=0

(a22F% + ag s E)QY + (a9 1 E? + a2 4 E)QWY + (—a2,0E? + as3E + a2,6)Q?
—0

are obtained. Let P be a 3 x 3 matrix defined by

(—ap,0E? + ag3E + ape) (ap2F + aos5) (a1 E + ap.4)
(a171E2 + (1174E) (—a1,0E2 + 0173E + CL176) (CLLQE + a175)
(a22E% + az 5 E) (a1 E? + az 4 E) (—a2,0E? + as3E + aze)

and let D(E) = detP. It is known from [5], the sequence {g,} given in (8) satisfies
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the linear recurrence relation whose characteristic polynomial is D(z?®). Then

D(E) = — ap0a1,0a2,0E°
+ (ap,0a1,0a2,3 + a0,001,302,0 + 0,001,202,1 + G0 301,002,0 + Go,2a1,102,0
+ap1a11a21 + ag1a1,002.2)E°
+ (ap,0a1,0a2,6 — (0,001,302,3 + G0,001,602,0 + G0,001,202,4 + G001 5021
— 0,301,002,3 — G0,301,3042,0 — Q0,3041,2G2,1 + 00,601,002,0 — G0,201,102,3
+ ap,2a1,4a2,0 + 0,201,202 2 + A0 501,102,0 + Ap,1A1,102,4 + G0,101,4021
+ ap,1a1,002,5 — @p,101,3a2,2 + A0 4G1,102,1 + ao,4a1,oa2,2)E4
+ (—ap,001,3a2,6 — G0,001,602,3 + G0,001,502,4 — 00,301,0G2,6 + 00,301,302,3
— ap,301,642,0 — 40,301,202,4 — G0,301,502,1 — A0,601,0042,3 — G0,641,302,0
— ap,01,202,1 — 0,201,102,6 — 00,201,402 3 + A 201,202 5 + 0,201 502 2
— ap,501,102,3 + A0,501,402,0 + G0,501,202,2 + 00,101,402 4 — 00,101,302 5
—@0,101,602,2 + 00,401,102,4 + G0 401 4021 + G0 401,002,5 — a0,4a1,3a2,2)E3
+ (—a0,0a1,6a2,6 + 40,301,302,6 + 00,301,602,3 — Q0,301,502,4 — Q0,601,002,6
+ ap,601,302,3 — 00,601,602,0 — @0,601,2042.4 — A0,601,502,1 — 40,201,402 6
+ ap,2a1,502,5 — G0,501,102,6 — G0,501,402,3 + Ap,501,202.5 + G0 501,502 2
— @0,101,642,5 + 10,401,402 4 — G0, 401 3025 — Cl0,4(11,6f12,2)E2
+ (@0,301,602,6 + Q0,601,302,6 + Q0,601,602,3 — 00,641,502,4 — (0,501,402 6
+ ag5a1,502,5 — G 4a1,602,5)F

+ (a0,601,602,6)
and thus,
D(LL'3> = Aol‘ls + A3£L'15 + A6$12 + Ag.’L‘g + Algl‘ﬁ + A15.’L‘3 + Aig

where
Aa= > 004,014,024, for d=0,3,...,18

d=d1+d>+d3
0<d;,d2,d3<6

such that da # i + 1 (mod 3) and ds # i + 2 (mod 3) if d; = i (mod 3) for each
0<i<2.

On the other hand, from the fact that a;5 = a;,6 =0 and a;4 # 0 for 0 <7 < 2,
one can obtain a linear recurrence relation whose order is less than 18 by omitting
the zero terms:

D(2®) =Apx'® + Asz' + Agx'? + Aga® + Ajpaf
=25 (Ao.]?lz + A31‘9 + AGQSG + AQJEB + Alg).
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Therefore, the sequence {g,} for m = 4 and r = 3 satisfies a 12! order linear
recurrence relation which has the characteristic polynomial

f(fﬂ) = AAOZ12 + ABI'Q + A6£L'6 + Agx?’ + A12.

(¢(n))

2N = de(n)»
V) = 4y — Aode(nys
o5 = Goreny — AoGse(n) — A3de(n)

v:(f(n)) = QQ+§(n) — A0q6+§(n) - A3q3+€(n) - Aqu(n)’

and
0, n=0 (mod 3),

&Mn)=41, n=1 (mod 3),
2, n=2 (mod 3).

Theorem 3. Let m > 3 be a positive integer and let {a; ;} be real numbers such
that a; m # 0 for 0 <i <2 and1 <j <m. The sequence {¢,} given in (1) becomes

@0,1qn—1 + @0,2¢n—2 + -+ @mdn—m, n=0 (mod 3),
qn = a1,1q9n—1 + a1,24n—2 +---+ a1 mqn—m, n=1 (mOd 3)7 (11)
a21Gn—1+ @22qn—2+ -+ @2 mGn—m, n=2 (mod 3).

The sequence {q,} given in (11) satisfies the linear recurrence relation
qn = A3qn73(m71) + Aan73(m72) +o 4+ A3(m71)qn73 + Azmqn (12)

where

Ag = Z +ag,4,01,d,02,45 for d=0,3,...,3m

d=di+dz+d3
0<dj,d2,d3<m

such that do #Z i+ 1 (mod 3) and ds # i+ 2 (mod 3) if d; = i (mod 3) for each
0<e<2.

Proof. Let m = 3t + 1 for some integer t. The proof is similar when m = 3t and
m = 3t + 2. By using the successor operator method, the following equations are
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obtained:

(—aooE" +ao3E* ' + -+ ag 1) QY + (ag 2 EF 1 + -+ ag 3-1) QY
+ (a0 B 4 agar—2)QP =0

(11 E* + -+ a1302E)QW + (—a1 0E* + a1 sE* L + - + a1 5) QWY
(a1 2B o ar3-1)QP) =0

(a2E" + -+ a23, 1 E)QY + (a2 E* 4 - + a2 zx 2 E)QY
+ (—ag0E" + a2 3E* 1 o 4 ag3)QP =0

Then, the corresponding matrix P for the sequence {g,} is given by

Poo(E)  Po2(E)  Poi(E)
P = |Pu(E) Pi(E) Pi(E)
Py (E) Pa(E) Py(E)

where
Poo(E) = — ag0E* + agsE* ' + -+ + ao 3k
Ppa(E) =ao2B* ' + -+ + ag k-1
Po1(E) =ao 1 E* '+ + ag gp—2
P11 (E) =a1 1 E* + -+ a1 35 o F
Pio(E) = —a1 0B + a1 3E" -+ ar
Piy(E) =a1 2E* 1 + -+ ag 311
Pyo(E) =as2E* + -+ ag 3,1 E
Py (E) =as 1 E* + -+ + ag 3o F
Pyy(E) = — agoE* + Clz,?,Ekf1 + -+ az 3k

and k is the least positive integer such that m < 3k, that is, k£ = mT“‘Q Thus,



INTEGERS: 26 (2026) 15

D = D(FE) = detP is obtained as:

3k
D(E) = — ap0a1,0a2,0F
+ (@0,001,002,3 + @0,001,302,0 + @0,001,2G2,1 + A0,301,0G2,0 + G0,201,102,0

3k—1
+ap,1a1,102,1 + ap,1a1,0022)E

+ (@0,35—601,3%k 02,3k + G0,3k—301,3k—302 3% + Q0,3k—301 3602 3k—3

— 00,3k—301,3k—102,3k—2 + Q0,3k01,3k—602,3k + @0,3k01,3k02,3k—6

+ a0,3k@1,3k—302,3k—3 — Q0,3kA1,3k—102,3k—5 — (0,3k01,3k—402 3k—2

— 40,3k—401,3k—202,3k T 00,3k—401,3k—102,3k—1 — 0,3k—101,3k—502, 3k

+ @0,3k—-101,3k—102,3k—4 — G0,3k—101,3k—202 3k—3 + Q0 3k—101,3k—402 3k—1
— Q0 3k—501,3k02,3k—1 T Q0,3k—201,3k—202,3k—2 — G0,3k—201,3k—302 3k—1

— @0 3k—201 3502 3% —4) E*

+ ((1073k—3a1,3ka273k + a0,3k01,3k—302,3k + Q0,3k01,3k02,3k—3

— Q0,3k01,3k—102,3k—2 — Q0,3k—101,3k—202 3k + @0,3k—101,3k—102 3k—1

— G0,3k—201,3k02,3k—1)F

+ ap,3x01,302,3k-
Note that a; 3 = a;3r—1 = 0 for ¢ = 0, 1,2 by the successor method. Then,

D(E) = — E*(AgE3F2 — A3E?F =3 — ... — Agr_¢)

= - FE*(E™ - A3E™ ' — .. — A3g,,,).

Therefore, the sequence {g,} satisfies the linear recurrence relation

In+3m = A3qn_3(m—1) + A6qn—3(m—2) T+ + A3(m-1)Gn—3 + Azman

where
Ag = Z +ag,q,01,d,02,45 for d=10,3,...,3m

d=di+dz+d3
0<di,d2,ds<m

such that da # i+ 1 (mod 3) and d3 # ¢ + 2 (mod 3) if d; = ¢ (mod 3) for each
0 < ¢ < 2. The above restriction about dq,ds, and d3 comes from the definition of
the determinant. O]

Open Problem 1. Determine the sign of the coefficients of Relation (12).

Note that the order of Relation (12) is 3m which is less than 9k where k is the
smallest positive integer such that m < 3k. Therefore, a linear recurrence relation
is obtained whose order is less than the order of Relation (2) when m # 3k.
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Open Problem 2. Let r > 3. Find a linear recurrence relation satisfied by the
general conditional sequences whose order is less than the order of Relation (2) for
m < rand m > r.

Moreover, several numerical examples motivate this work to give the following
conjecture.

Conjecture 1. Let m and r be two positive integers such that m > r. The general
conditional sequence {g¢,} defined in (1) satisfies the linear recurrence

qn = ArQn—T + A2rQn—2r +---+ AmrQn—mr

where
Ag = E +ao,d, ---ar_1,4, for d=0,r,...,mr

d=di+--+d,
0<dy,...,dp<m

such that do Zi+1 (mod r),d3s Zi+2 (mod r), ..., and d, Zr — 1 +4 (mod r)
if d; =4 (mod r) for each 0 <47 <r — 1.

3.2. A Link with the Integer Partitions

As we will see in Example 5, a relationship exists between the restricted integer
partitions and the coefficients of the linear recurrence relations satisfied by the
general conditional sequences. Finally, based on the observation and some numerical
examples, we give a conjecture.

For 1 < N <n, m >0, let wym(n) be the number of ordered partitions of
the integer n into N parts each of size at least 0 but no larger than m (see [8]).
Let wy,,(n) and Wx, m(n) denote the number of ordered distinct and ordered non-
distinct partitions of n into N parts each of size at least 0 but no larger than m,
respectively.

Example 5. Recall from Example 4 that a conditional sequence {g¢,} for r = 3
and m = 4 satisfying the conditional recurrence relation

a0,1Gn—1 + @0, 2qn—2 + 0,3¢n—3 + G0 aqn—-4, n =0 (mod 3),
Gn = 01,1Gn—1 + Q1,2¢n—2 + @1 3¢n—3 + @1.4Gn—a, n=1 (mod 3),
a2,1qn—1 + G2,20n—2 + @23¢n—3 + A2 4¢n—a, n =2 (mod 3).

for all n > 4 satisfies the linear recurrence relation
qn = ABqn—3(m—1) + Aﬁqn—3(m—2) +ee AS(m—l)qn—?) + ASan

where
Ag= Z +ag,q,01,d,02,45 for d=10,3,...,3m

d=dy+dz+d3
0<d1,d2,ds<m
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and dq, do, d3 satisfy the condition
dy#Zi+1 (mod3)andds#i+2 (mod3)ifd;=¢ (mod3), 0<q<2. (13)

Note that Ag = 1 which is the coefficient of the term ¢, in the above relation.

Now, let A4 denote the number of the terms ag 4, @1,4,02,4, composing the coef-
ficients Ay. Consider the number of ordered partitions of the integer d into 3 parts
each of size at least 0 but no larger than 4.

e For d =0: w3 4(0) = [{(0,0,0)}],
e For d=3:
ws,4(3) = [{(0,0,3),(0,3,0),(3,0,0), (0,1,2),(0,2,1),(1,0,2),(1,2,0), (2,0, 1),

,1,0), (1,1, 1)},
e For d =6:
ws3,4(6) = [{(0,4,2),(0,2,4),(2,0,4),(2,4,0), (4,0,2), (4,2,0), (1,1,4), (1,4, 1),
;1,1),(0,3,3),(3,0,3),(3,3,0),(2,2,2)},
e Ford=09:

ws,(9) = [{(1,4,4), (4,1,4), (4,4,1),(2,3,4),(2,4,3), (3,2,4), (3,4, 2), (4,2, 3),
(4,3,2),(3,3,3)}1,

e For d =12:
w3,4(12) = |{(47474)}|

If the partitions that satisfy condition (13) are listed, it is concluded that
e For d=0: Ay =[{(0,0,0)},
e For d =3:

As =1{(0,0,3),(0,3,0),(3,0,0),(0,2,1),(1,0,2),(2,1,0), (1,1,1)}

w3 4(3)
— W3.4(3) + %,

e For d = 6:

As =1{(0,2,4),(2,4,0), (4,0,2),(1,1,4),(1,4,1), (4,1,1), (0,3, 3), (3,0, 3),
(3,3,0),(2,2,2)}

= w3,4(6) + 2 )
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e Ford=09:

A9 =1{(1,4,4), (4,1,4), (4,4,1), (2,4, 3),(3,2,4), (4,3,2), (3,3,3)}|

w3 4(9
=ws4(9) + %()7
e For d =12:
A12 = |{(47474)}‘
That is, it can be seen that the value of Ay for d = 0,3,...,12 is written in terms
of the restricted integer partition functions ws 4(d), w3 4(d), and W3 4(d) as follows:
w3 4(d)
Aa = wsa(d) = =5
or, equivalently,
wj 4(d
Ad = E374(d) —+ 3;( )

ford=0,3,...,12.
Thus, we propose the following conjecture.

Conjecture 2. Let D be the set defined by

D= {(dl,d27d3) : d=d; +dy + ds, dj+1 Zi+j (mod 3) ifdi =1 (mod 3)7
1<j<2 0<i<2),

and let
Ag = {{ao,a,01,d,02,4, : 0<di,da,d3 <m, (di,ds,d3) € D}|.
Then, for d =0,3,...,3m,

w3, (d)
2

Ad = w3,m(d) —

or, equivalently,
w3

n(d)

-Ad - w?),m(d) +
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