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Abstract

For any integers m and n with n > 1, let

Rm(n) := {a ∈ Z | m+ 1 ≤ a ≤ m+ n, gcd(a, n) = 1}

be a reduced residue system modulo n. Denote by fm(n) the length of the longest
arithmetic progressions contained in Rm(n). In this paper, we establish an explicit
formula for f−⌈n/2⌉(n), where ⌈x⌉ is the smallest integer larger than or equal to x.
Moreover, explicit formulas for max

m∈Z
fm(n) and min

m∈Z
fm(n) are also verified.

1. Introduction

Given integers m,n ∈ Z with n > 1, let

Rm(n) := {a ∈ Z | m+ 1 ≤ a ≤ m+ n, gcd(a, n) = 1}

be a reduced residue system modulo n. Denote by fm(n) the length of the longest

arithmetic progressions contained in Rm(n). It is noted that R0(n) is the least

positive reduced residue system modulo n, namely,

R0(n) = {a ∈ Z | 1 ≤ a ≤ n, gcd(a, n) = 1} .

DOI: 10.5281/zenodo.18154061
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In [2], Recamán asked if f0(n) → ∞ as n → ∞, that is, if, for each positive integer

k, there exists a constant nk such that R0(n) contains an arithmetic progression of

length k for all n ≥ nk. Throughout this article, let gpf(n) be the largest prime

factor of n and rad(n) be the product of all distinct prime factors of n. In 2017,

Stumpf [5] answered this problem affirmatively and also gave the bounds as

max

{
gpf(n)− 1

2
,

n

rad(n)

}
≤ f0(n) ≤ max

{
gpf(n)− 1,

n

rad(n)

}
.

For any real number x, let ⌊x⌋ denote the largest integer less than or equal to x

and ⌈x⌉ denote the smallest integer larger than or equal to x. In 2018, Pongsriiam

[4] established an explicit formula for f0(n) as follows.

(i) If n > 1 is squarefree, then

f0(n) =


p− 1 if n = p is a prime,
p+1
2 if n = 2p, p is an odd prime, p ≡ 3 (mod 4),

gpf(n)−
⌊ gpf(n)2

n

⌋
− 1 otherwise.

(ii) If n = pr, where p is a prime and r > 1, then f0(n) = pr−1.

(iii) If n > 1 is not a prime power and is not squarefree, then

f0(n) = max

{
n

rad(n)
, gpf(n)− 1

}
.

In addition, let

F (n) = max{fB(n) | B(n) is a reduced residue system modulo n},

where fB(n) is the length of the longest arithmetic progressions contained in B(n).

Note that fR0(n)(n) = f0(n). He also gave an explicit formula for F (n) [4] as

F (n) = max

{
n

rad(n)
, gpf(n)− 1

}
. (1)

In the same year, Chen and Lei [1] gave an asymptotic formula for
∑

n≤x f0(n),

thereby solving a problem posed by Pongsriiam in [4].

It thus seems natural to study the same problem for another reduced residue

system. In this article, we are interested in the reduced residue system modulo n,

R(n) := R−⌈n/2⌉(n). We note from [3] that

R(n) =


{
a ∈ Z | − n−1

2 ≤ a ≤ n−1
2 , gcd(a, n) = 1

}
if n is odd,{

a ∈ Z | − n−2
2 ≤ a ≤ n

2 , gcd(a, n) = 1
}

if n is even.
(2)
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It should be noted that the above choice of R(n), the set of absolute least residues

modulo n that are relatively prime to n, is crucial to our work, for it provides the

most convenient way to choose the representatives closest to 0 within each residue

class. This yields a system containing the smallest possible absolute residues, which

in turn considerably simplifies our calculation. For convenience, we let g(n) :=

f−⌈n/2⌉(n), the length of the longest arithmetic progressions contained in R(n).

This work aims to establish an explicit formula for g(n) for all positive integers

n > 1. We found that the case of squarefree integers is more complicated than the

other. However, we successfully obtain an explicit formula for g(n) for all positive

integers n except for the case n being an even squarefree integer having at least three

prime factors. In such a case, we obtain bounds for g(n) and an explicit formula

for g(n) under a certain condition. In addition, we establish an explicit formula

for max
m∈Z

fm(n) for all positive integers n > 1. An explicit formula for min
m∈Z

fm(n)

is also verified, where n is a prime power. When n is neither a prime power nor

a squarefree integer, we obtain bounds for min
m∈Z

fm(n) and an explicit formula for

min
m∈Z

fm(n) under a certain condition.

2. Main Results

In this section, we define fm(d, n) as the length of the longest arithmetic progres-

sions contained in Rm(n) with common difference d. We begin with the following

auxiliary lemma, which will be used to establish an explicit formula for g(n). Its

proof is similar to the proof of Lemma 2.1 in [4].

Lemma 1. For any integers m,n, d ∈ Z with n > 1 and d > 0, the following

statements hold.

(i) If p is a prime such that p | n and p ∤ d, then fm(d, n) ≤ p− 1.

(ii) If n is squarefree, then fm(d, n) ≤ gpf(n)− 1.

Proof. (i) Let b, b+d, b+2d, . . . , b+(s−1)d be an arithmetic progression contained

in the complete residue system modulo n defined by {m + 1,m + 2, . . . ,m + n},
where b is an integer. By the division algorithm, there exist integers q and r such

that s = pq + r, where 0 ≤ r < p. Let

A0 = {b, b+ d, . . . , b+ (p− 1)d},
A1 = {b+ pd, b+ (p+ 1)d, . . . , b+ (2p− 1)d},

...

Aq−1 = {b+ (q − 1)pd, b+ ((q − 1)p+ 1)d, . . . , b+ (qp− 1)d}.
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Then,

{b, b+ d, . . . , b+ (s− 1)d} = A0 ∪A1 ∪ . . . ∪Aq−1∪
{b+ qpd, b+ (qp+ 1)d, . . . , b+ (qp+ r − 1)d}.

One can see that Ai is a complete residue system modulo p for all i ∈ {0, 1, . . . , q−1}.
Consequently, there exists a unique integer k ∈ {0, 1, . . . , p− 1} such that

b+ (ip+ k)d ∈ Ai and p | (b+ (ip+ k)d)

for each i ∈ {0, 1, . . . , q − 1}. This implies fm(d, n) ≤ p− 1.

(ii) Assume that n is squarefree. If d ≥ n, then fm(d, n) = 1 ≤ gpf(n)− 1 because

a + d ≥ m + 1 + n for all a ∈ Rm(n). Assume that d < n. Since n is squarefree,

there must exist a prime factor q of n such that q ∤ d. From (i), it follows that

fm(d, n) ≤ q − 1 ≤ gpf(n)− 1 as desired.

For the case m = −⌈n/2⌉, we let g(d, n) := f−⌈n/2⌉(d, n) and we are now ready

to establish an explicit formula for g(n) as in the following theorem.

Theorem 1. For any positive integer n > 1, let d = n/ gpf(n).

If n is odd, then

g(n) =



p−1
2 if n = p is a prime and p ≡ 1 (mod 4),

p+1
2 if n = p is a prime and p ≡ 3 (mod 4),

pr−1 if n = pr, p is a prime and r > 1,⌊
gpf(n)− gpf(n)+1

2d

⌋
if n is squarefree but is not a prime,

max
{

n
rad(n) , gpf(n)− 1

}
if n is not a prime power and is not squarefree.

If n is even, then

g(n) =


2r−1 if n = 2r and r ≥ 1,

p− 1 if n = 2p and p is an odd prime,

max
{

n
rad(n) , gpf(n)− 1

}
if n is not a prime power and is not squarefree.

Moreover, if n is an even squarefree integer having at least three prime factors, then⌊
gpf(n)− 2 gpf(n)

d

⌋
≤ g(n) ≤ gpf(n)− 1. (3)

In particular, if d ≥ 2 gpf(n), then g(n) = gpf(n)− 1.
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Proof of Theorem 1 for n odd. Let n > 1 be an odd positive integer. By Equation

(2), we have

R(n) =

{
a ∈ Z | − n− 1

2
≤ a ≤ n− 1

2
, gcd(a, n) = 1

}
.

We divide the proof into four cases as follows.

Case 1: n = p, where p is a prime. Then,

R(p) =

{
−p− 1

2
,−p− 3

2
, . . . ,−1, 1, . . . ,

p− 3

2
,
p− 1

2

}
.

It can be seen that −(p − 1)/2,−(p − 3)/2, . . . ,−1 and 1, . . . , (p − 3)/2, (p − 1)/2

are the longest arithmetic progressions contained in R(p) with common difference

d = 1 and have length (p− 1)/2. For d ≥ 2, we consider the following two subcases.

Subcase (i) p ≡ 1 (mod 4). Then, (p− 1)/2 is even, and thus

−p− 3

2
, . . . ,−1, 1, . . . ,

p− 3

2

is the longest arithmetic progression contained in R(p) with common difference

d = 2 and has length (p − 1)/2. Clearly, any arithmetic progression contained in

R(p) with common difference d > 2 always has length less than (p − 1)/2. This

shows that g(n) = (p− 1)/2.

Subcase (ii) p ≡ 3 (mod 4). Then, (p− 1)/2 is odd, and thus

−p− 1

2
, . . . ,−1, 1, . . . ,

p− 1

2

is the longest arithmetic progression contained in R(p) with common difference

d = 2 and has length (p + 1)/2. Clearly, any arithmetic progression contained in

R(p) with common difference d > 2 always has length less than (p + 1)/2. This

means that g(n) = (p+ 1)/2 as desired.

Case 2: n = pr, where p is a prime and r > 1. Then,

R(pr) =

{
a ∈ Z | − pr − 1

2
≤ a ≤ pr − 1

2
, gcd(a, pr) = 1

}
.

We first show that the arithmetic progression of length pr−1 defined by

−pr − 1

2
,−pr − 1

2
+ p,−pr − 1

2
+ 2p, . . . ,−pr − 1

2
+

(
pr−1 − 1

)
p

is contained in R(pr).
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For any i ∈ {0, 1, . . . , pr−1 − 1}, we have

−pr − 1

2
≤ −pr − 1

2
+ ip ≤ −pr − 1

2
+
(
pr−1 − 1

)
p =

pr − (2p− 1)

2
<

pr − 1

2
.

If p | (−(pr − 1)/2 + ip), then p | (pr−1)/2 and thus p | (pr−1), a contradiction. It

follows that gcd (−(pr − 1)/2 + ip, pr) = 1. This shows that−(pr−1)/2+ip ∈ R(pr)

for all i ∈ {0, 1, . . . , pr−1 − 1}, which implies that g(n) ≥ pr−1.

Let a1, a2, . . . , as be any arithmetic progression contained in R(pr) with common

difference d0. We will show that s ≤ pr−1. Consider the following two subcases.

Subcase (i) p | d0. Then, p ≤ d0. Suppose to the contrary that s > pr−1. Then,

pr − 1

2
≥ as = a1 + (s− 1)d0 ≥ −pr − 1

2
+ pr−1p =

pr + 1

2
,

which is a contradiction.

Subcase (ii) p ∤ d0. By Lemma 1(i), we obtain s ≤ g(d0, n) ≤ p− 1 < pr−1.

From both subcases, we deduce that s ≤ pr−1 and hence g(n) ≤ pr−1.

Since g(n) ≥ pr−1 and g(n) ≤ pr−1, we obtain g(n) = pr−1 as required.

Case 3: n = p1p2 · · · pm, where pi’s are odd primes such that p1 < p2 < . . . < pm
with m ≥ 2. Let d = n/pm and k = ⌊pm − (pm + 1)/2d⌋. We first show that the

arithmetic progression of length k defined by

−n− 1

2
+

pm − 1

2
+ d,−n− 1

2
+

pm − 1

2
+ 2d, . . . ,−n− 1

2
+

pm − 1

2
+ kd

is contained in R(n). Note that k ≤ pm − 1 and let y = −(n− 1)/2 + (pm − 1)/2.

For any i ∈ {1, 2, . . . , k}, we have

−n− 1

2
< y + id ≤ y + kd ≤ y +

(
pm − pm + 1

2d

)
d = y + n− pm + 1

2
=

n− 1

2
.

For each j ∈ {1, 2, . . . ,m− 1}, if pj | y, then pj | 2y and hence pj | (pm − n), which

is impossible. Thus, gcd(y, pj) = 1, implying that gcd(y + id, d) = gcd(y, d) = 1.

One can see that pm | 2y, and thus pm | y because pm is odd. Consequently,

gcd(y + id, pm) = gcd(id, pm) = 1 and thus gcd(y + id, n) = 1. This shows that

y + id ∈ R(n) for all i ∈ {1, 2, . . . , k}, yielding g(n) ≥ k.

Let a1, a2, . . . , as be any arithmetic progression contained in R(n) with common

difference d0. We will show that s ≤ k. If d ≥ (pm + 1)/2, then k = pm − 1.

By Lemma 1(ii), we obtain s ≤ g(d0, n) ≤ pm − 1 = k. Now we assume that

d < (pm + 1)/2 and consider the following two subcases.

Subcase (i) d ∤ d0. Then, there exists j ∈ {1, . . . ,m − 1} such that pj ∤ d0. By

Lemma 1(i), we obtain

s ≤ g(d0, n) ≤ pj − 1 ≤ d− 1. (4)
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Note that pm − ⌊(pm + 1)/2d⌋ − 1 ≤ k. Since d < (pm + 1)/2, we have

2dpm − pm − 1 = (2d− 1)pm − 1 > (2d− 1)2 − 1 = 4d(d− 1) > 2d2

because d = n/pm ≥ 3. It follows that

d <
2dpm − pm − 1

2d
= pm − pm + 1

2d
≤ pm −

⌊pm + 1

2d

⌋
. (5)

Using Equations (4) and (5), we consequently have

s < pm −
⌊pm + 1

2d

⌋
− 1 ≤ k.

Subcase (ii) d | d0. Then, there exists a positive integer c such that d0 = dc.

Suppose to the contrary that s > k. If c ≥ 2, then

n− 1

2
≥ as = a1 + (s− 1)d0

≥ −n− 1

2
+ 2kd

> −n− 1

2
+

(
pm − pm + 1

2d
− 1

)
2d

= −n− 1

2
+ 2n− pm − 1− 2d

> −n− 1

2
+ 2n− pm − 1− pm − 1

=
n+ 2n− 4pm − 3

2

>
n+ 1

2

because 2n−4pm−3 ≥ 2 ·3pm−4pm−3 = 2pm−3 > 1. However, this is impossible,

so c = 1 and thus d0 = d. Now we have

pm − pm + 1

2d
− 1 < k ≤ pm − pm + 1

2d
< pm − 1.

It follows that

kd ≤ n− pm + 1

2
< (k + 1)d (6)

and thus

n− pm + 1

2
− d < kd. (7)

Since s − 1 ≥ k and d0 = d, the sequence a1, a1 + d, a1 + 2d, . . . , a1 + kd belongs

to R(n). One can see that {a1, a1 + d, a1 + 2d, . . . , a1 + (pm − 1)d} is a complete

residue system modulo pm. Since k < pm − 1, there exists l ∈ {k + 1, . . . , pm − 1}
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such that pm | (a1 + ld), so a1 + ld = pmr for some integer r. By Equation (6), we

obtain

pmr = a1 + ld ≥ −n− 1

2
+ (k + 1)d > −n− 1

2
+ n− pm + 1

2
=

n− pm
2

> 0,

so r ≥ 1 and (2r + 1)pm > n. We have a1 + kd ≤ (n − 1)/2, and using Equation

(7), we obtain

a1 ≤ n− 1

2
− kd <

n− 1

2
−
(
n− pm + 1

2
− d

)
=

−n+ pm + 2d

2
,

yielding pmr − ld < (−n+ pm + 2d)/2. It follows that

(2r − 1)pm + n < 2ld+ 2d ≤ 2(pm − 1)d+ 2d = 2n

and thus (2r − 1)pm < n. Hence, (2r − 1)pm < n < (2r + 1)pm, which implies that

d = n/pm = 2r, a contradiction because d is odd. This shows that s ≤ k and thus

g(n) ≤ k. Therefore, g(n) = k as desired.

Case 4: n = pr11 pr22 · · · prmm , where ri’s are positive integers, pi’s are odd primes

such that p1 < p2 < . . . < pm with m ≥ 2, and n is not squarefree. We first show

that g(n) ≥ n/ rad(n) by showing that the arithmetic progression of length n/d

defined by

−n− 1

2
,−n− 1

2
+ d,−n− 1

2
+ 2d, . . . ,−n− 1

2
+
(n
d
− 1

)
d

is contained in R(n), where d = rad(n).

For any i ∈ {0, 1, 2, . . . , n/d− 1}, we have

−n− 1

2
≤ −n− 1

2
+ id ≤ −n− 1

2
+

(n
d
− 1

)
d =

n− 2d+ 1

2
<

n− 1

2
.

For each j ∈ {1, 2, . . . ,m}, if pj | −(n− 1)/2, then pj | (n− 1), which is impossible.

Thus, gcd (−(n− 1)/2, pj) = 1. It follows that gcd (−(n− 1)/2 + id, d) = 1 and

hence gcd (−(n− 1)/2 + id, n) = 1. This shows that −(n− 1)/2+ id ∈ R(n) for all

i ∈ {0, 1, 2, . . . , n/d− 1}.
Next, we show that g(n) ≥ pm − 1 by showing that the arithmetic progression of

length pm − 1 defined by

−pm + d,−pm + 2d,−pm + (pm − 1)d

is contained in R(n), where d = rad(n)/pm.
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For any i ∈ {1, 2, . . . , pm − 1}, we have

−n− 1

2
= −

(
pr11 pr22 · · · prm−1

m

2

)
pm +

1

2

< −pm +
1

2
< −pm + id

≤ −pm + (pm − 1)
rad(n)

pm

= p1p2 · · · pm − (p1p2 · · · pm−1 + pm)

< p1p2 · · · pm − 1

2

=
2p1p2 · · · pm − 1

2

<
pr11 pr22 · · · prmm − 1

2

=
n− 1

2

since n is not squarefree. Moreover, gcd(−pm + id, pm) = gcd(id, pm) = 1 and

gcd(−pm + id, d) = gcd(−pm, d) = 1. It follows that gcd(−pm + id, rad(n)) = 1

and thus gcd(−pm + id, n) = 1. This shows that −pm + id ∈ R(n) for all i ∈
{1, 2, . . . , pm − 1}. Now, we have g(n) ≥ n/ rad(n) and g(n) ≥ pm − 1, yielding

g(n) ≥ max

{
n

rad(n)
, pm − 1

}
. (8)

Let a1, a2, . . . , as be any arithmetic progression contained in R(n) with common

difference d0. We treat the following two subcases.

Subcase (i) rad(n) ∤ d0. Then, there exists j ∈ {1, 2, . . . ,m} such that pj ∤ d0. By
Lemma 1(i), we obtain

s ≤ g(d0, n) ≤ pj − 1 ≤ pm − 1 ≤ max

{
n

rad(n)
, pm − 1

}
.

Subcase (ii) rad(n) | d0. Then, d0 ≥ rad(n). If s > n/ rad(n), then

n− 1

2
≥ as = a1 + (s− 1)d0 ≥ −n− 1

2
+

n

rad(n)
· rad(n) = n+ 1

2
,

which is a contradiction. Thus, s ≤ n/ rad(n) ≤ max {n/ rad(n), pm − 1} . From
both subcases, we deduce that

g(n) ≤ max

{
n

rad(n)
, pm − 1

}
. (9)
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The desired result then follows from Equations (8) and (9).

Proof of Theorem 1 for n even. Let n be an even positive integer. By Equation (2),

we have

R(n) =

{
a ∈ Z | − n− 2

2
≤ a ≤ n

2
, gcd(a, n) = 1

}
.

We divide the proof of Theorem 1 into three cases as follows.

Case 1: n = 2r, where r ≥ 1. If r = 1, then R(2) = {1} and thus g(2) = 1 = 21−1.

Assuming that r ≥ 2, we have

R(2r) =
{
−2r−1 + 1, . . . ,−1, 1, . . . , 2r−1 − 1

}
.

It is clear that −2r−1 + 1, . . . ,−1, 1, . . . , 2r−1 − 1 is an arithmetic progression of

length 2r−1, so g(2r) = 2r−1.

Case 2: n > 2 is an even squarefree integer. If n = 2p, where p is an odd prime

number, then

R(n) = {−(p− 2),−(p− 4), . . . ,−1, 1, . . . , p− 4, p− 2}.

It is clear that−(p−2),−(p−4), . . . ,−1, 1, . . . , p−4, p−2 is an arithmetic progression

of length p− 1, which implies that g(n) = p− 1.

Assume now that n = 2p1p2 · · · pm, where pi’s are odd primes such that p1 <

p2 < . . . < pm with m ≥ 2. Let d = n/pm and k = ⌊pm − 2pm/d⌋. We first show

that the arithmetic progression of length k defined by

−n− 2

2
+ (2pm − 1) + d,−n− 2

2
+ (2pm − 1) + 2d, . . . ,−n− 2

2
+ (2pm − 1) + kd

is contained in R(n). Note that k ≤ pm − 1 and let y = −(n− 2)/2 + (2pm − 1).

For any i ∈ {1, 2, . . . , k}, we have

−n− 2

2
< y + id ≤ y + kd ≤ y +

(
pm − 2pm

d

)
d = y + n− 2pm =

n

2
.

It is clear that y is odd. For each j ∈ {1, 2, . . . ,m−1}, if pj | y, then pj | 2y and hence

pj | (4pm−n), which is impossible. Thus, gcd(y, pj) = 1, so gcd(y+ id, d) = 1. One

can see that pm | 2y, so pm | y because pm is odd. Consequently, gcd(y+id, pm) = 1

and thus gcd(y + id, n) = 1. This shows that y + id ∈ R(n) for all i ∈ {1, 2, . . . , k},
yielding g(n) ≥ k. By Lemma 1(ii), we obtain g(n) ≤ pm− 1. This proves Equation

(3).

In particular, if d ≥ 2pm, then k = pm − 1 and hence g(n) = pm − 1 as desired.

Case 3: n = 2r0pr11 · · · prmm , where ri’s are positive integers, pi’s are odd primes such

that p1 < . . . < pm, and n is not squarefree. We first show that g(n) ≥ n/ rad(n)

by considering the following two subcases.
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Subcase (i) r0 = 1. Then, (n − 4)/2 is odd. We show that the arithmetic pro-

gression of length n/d defined by

−n− 4

2
,−n− 4

2
+ d,−n− 4

2
+ 2d, . . . ,−n− 4

2
+
(n
d
− 1

)
d

is contained in R(n), where d = rad(n).

For any i ∈ {0, 1, 2, . . . , n/d− 1}, we have

−n− 2

2
≤ −n− 4

2
+ id ≤ −n− 4

2
+

(n
d
− 1

)
d =

n− 2d+ 4

2
<

n

2
.

If 2 | (n−4)/2, then 2 | n/2, which is impossible. Thus, gcd(−(n−4)/2+ id, 2) = 1.

For each j ∈ {1, 2, . . . ,m}, if pj | (n − 4)/2, then pj | (n − 4), which is impossible.

Thus, gcd (−(n− 4)/2 + id, pj) = 1. It follows that gcd (−(n− 4)/2 + id, n) = 1.

This shows that −(n− 4)/2 + id ∈ R(n) for all i ∈ {0, 1, 2, . . . , n/d− 1}.

Subcase (ii) r0 > 1. Then, (n − 2)/2 is odd. We show that the arithmetic

progression of length n/d defined by

−n− 2

2
,−n− 2

2
+ d,−n− 2

2
+ 2d, . . . ,−n− 2

2
+
(n
d
− 1

)
d

is contained in R(n), where d = rad(n).

For any i ∈ {0, 1, 2, . . . , n/d− 1}, we have

−n− 2

2
≤ −n− 2

2
+ id ≤ −n− 2

2
+

(n
d
− 1

)
d =

n− 2d+ 2

2
<

n

2
.

If 2 | (n− 2)/2, then 2 | 1, which is impossible. Thus, gcd(−(n− 2)/2 + id, 2) = 1.

For each j ∈ {1, 2, . . . ,m}, if pj | (n − 2)/2, then pj | (n − 2), which is impos-

sible. Thus, gcd (−(n− 2)/2 + id, pj) = gcd (−(n− 2)/2, pj) = 1. It follows that

gcd (−(n− 2)/2 + id, 2p1 · · · pm) = 1 and hence gcd (−(n− 2)/2 + id, n) = 1. This

shows that −(n− 2)/2 + id ∈ R(n) for all i ∈ {0, 1, 2, . . . , n/d− 1}.
From both subcases, we obtain g(n) ≥ n/d = n/ rad(n). Next, we show that

g(n) ≥ pm − 1 by showing that the arithmetic progression of length pm − 1 defined

by

−pm + d,−pm + 2d,−pm + (pm − 1)d

is contained in R(n), where d = rad(n)/pm.
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For any i ∈ {1, 2, . . . , pm − 1}, we have

−n− 2

2
= −

(
2r0pr11 · · · prm−1

m

2

)
pm + 1

< −pm + 1

< −pm + id

≤ −pm + (pm − 1)
rad(n)

pm

= 2p1 · · · pm − (2p1 · · · pm−1 + pm)

< 2r0−1pr11 · · · prmm − 1

2

=
2r0pr11 · · · prmm − 1

2

=
n− 1

2
<

n

2

since n is not squarefree. Moreover, gcd(−pm + id, pm) = gcd(id, pm) = 1 and

gcd(−pm + id, d) = gcd(−pm, d) = 1. It follows that gcd(−pm + id, rad(n)) = 1

and thus gcd(−pm + id, n) = 1. This shows that −pm + id ∈ R(n) for all i ∈
{1, 2, . . . , pm − 1}.

Now, we obtain g(n) ≥ n/ rad(n) and g(n) ≥ pm − 1, yielding

g(n) ≥ max

{
n

rad(n)
, pm − 1

}
. (10)

Let a1, a2, . . . , as be any arithmetic progression contained in R(n) with common

difference d0. If rad(n) ∤ d0, then there exists a prime q such that q | n but q ∤ d0.
By Lemma 1(i), we obtain

s ≤ g(d0, n) ≤ q − 1 ≤ pm − 1 ≤ max

{
n

rad(n)
, pm − 1

}
.

Assume that rad(n) | d0. Then, d0 ≥ rad(n). If s > n/ rad(n), then

n

2
≥ as = a1 + (s− 1)d0 ≥ −n− 2

2
+

n

rad(n)
· rad(n) = n+ 2

2
,

which is a contradiction. Thus, s ≤ n/ rad(n) ≤ max {n/ rad(n), pm − 1} . Hence,

we deduce that

g(n) ≤ max

{
n

rad(n)
, pm − 1

}
. (11)

The desired result then follows from Equations (10) and (11).

The following examples provide the longest arithmetic progressions contained in

R(n) along with their lengths for odd and even positive integers n.
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Example 1. (i) Since −2,−1; 1, 2; and −1, 1 are the longest arithmetic progressions

contained in

R(5) = {−2,−1, 1, 2},

we have g(5) = 2 = (5−1)/2. One can see that −3,−1, 1, 3 is the longest arithmetic

progression contained in

R(7) = {−3,−2,−1, 1, 2, 3},

we obtain g(7) = 4 = (7 + 1)/2.

(ii) Since −12,−7,−2, 3, 8 is the longest arithmetic progression contained in

R(25) = {−12,−11,−9,−8,−7,−6,−4,−3,−2,−1, 1, 2, 3, 4, 6, 7, 8, 9, 11, 12},

we have g(25) = 5 = 52−1.

(iii) Since −8,−5,−2, 1, 4 and −4,−1, 2, 5, 8 are the longest arithmetic progressions

contained in

R(21) = {−10,−8,−5,−4,−2,−1, 1, 2, 4, 5, 8, 10},

we obtain g(21) = 5 = ⌊7− (7 + 1)/2 · 3⌋, where gpf(21) = 7 and d = 3.

(iv) Since −22,−19,−16,−13 and −2, 1, 4, 7 are the longest arithmetic progressions

contained in

R(45) = {−22,−19,−17,−16,−14, . . . ,−1, 1, . . . , 14, 16, 17, 19, 22},

we have g(45) = 4 = max{45/15, 5− 1}, where rad(45) = 15 and gpf(45) = 5.

Example 2. (i) Since −7,−5,−3,−1, 1, 3, 5, 7 is the longest arithmetic progression

contained in

R(16) = {−7,−5,−3,−1, 1, 3, 5, 7},

we have g(16) = 8 = 24−1.

(ii) Since −3,−1, 1, 3 is the longest arithmetic progression contained in

R(10) = {−3,−1, 1, 3},

it follows that g(10) = 4 = 5− 1. One can see that −13,−7,−1 and 1, 7, 13 are the

longest arithmetic progressions contained in

R(30) = {−13,−11,−7,−1, 1, 7, 11, 13},

we have g(30) = 3 = ⌊5− 2 · 5/6⌋, where gpf(30) = 5 and d = 6.

(iii) Since −1, 5, 11, 17, 23, 29 is the longest arithmetic progression contained in

R(84) = {−41,−37,−31,−29,−25, . . . ,−1, 1, . . . , 25, 29, 31, 37, 41},

we obtain g(84) = 6 = max{84/42, 7− 1}, where rad(84) = 42 and gpf(84) = 7.
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Note that Equations (9) and (11) can be proved in another way by using Equation

(1) because

g(n) ≤ F (n) = max

{
n

rad(n)
, pm − 1

}
.

From the case of n being an even squarefree integer and having at least three

prime factors (Case 2), we conjecture that if d < 2 gpf(n), then g(n) = ⌊gpf(n) −
2 gpf(n)/d⌋, which is supported by Example 2(ii). Although we are currently unable

to prove this, the reader is welcome to solve this problem.

3. Further Results

Given integers m,n ∈ Z with n > 1, recall that

Rm(n) := {a ∈ Z | m+ 1 ≤ a ≤ m+ n, gcd(a, n) = 1}

is a reduced residue system modulo n and fm(n) denotes the length of the longest

arithmetic progressions contained in Rm(n). One can show that if a1, a2, . . . , as is

an arithmetic progression contained in Rm(n), then a1 + n, a2 + n, . . . , as + n is an

arithmetic progression contained in Rm+n(n). On the other hand, if b1, b2, . . . , bs is

an arithmetic progression contained in Rm+n(n), then b1 − n, b2 − n, . . . , bs − n is

an arithmetic progression contained in Rm(n). This implies that fm(n) = fm+n(n)

for all m,n. Therefore,

{fm(n) | m ∈ Z} = {f0(n), f1(n), . . . , fn−1(n)} . (12)

The following theorem gives an explicit formula for max
m∈Z

fm(n).

Theorem 2. For any integer n > 1, we have

max
m∈Z

fm(n) = max

{
n

rad(n)
, gpf(n)− 1

}
.

Proof. It is clear from Equation (1) that

max
m∈Z

fm(n) ≤ F (n) = max

{
n

rad(n)
, gpf(n)− 1

}
. (13)

On the other hand, consider three possible cases.

Case 1: n is squarefree. We first show that fgpf(n)+d−1(n) ≥ gpf(n)−1 by showing

that the arithmetic progression of length gpf(n)− 1 defined by

gpf(n) + d, gpf(n) + 2d, . . . , gpf(n) + (gpf(n)− 1)d

is contained in Rgpf(n)+d−1(n), where d = n/ gpf(n).
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For any i ∈ {1, 2, . . . , gpf(n)− 1}, we have

gpf(n)+d ≤ gpf(n)+id ≤ gpf(n)+(gpf(n)−1)d = gpf(n)+n−d < gpf(n)+d+n−1.

Moreover, gcd(gpf(n)+id, gpf(n)) = 1 and gcd(gpf(n)+id, d) = gcd(gpf(n), d) = 1,

which implies gcd(gpf(n)+id, n) = 1. This shows that gpf(n)+id ∈ Rgpf(n)+d−1(n)

for all i ∈ {1, 2, . . . , gpf(n)− 1}. Since n/ rad(n) = 1, we have

max
m∈Z

fm(n) ≥ fgpf(n)+d−1(n) ≥ gpf(n)− 1 = max

{
n

rad(n)
, gpf(n)− 1

}
.

Case 2: n = pr, where p is a prime and r > 1. Then, rad(n) = p = gpf(n). By

Theorem 1 and since n/ rad(n) = pr−1, we have

max
m∈Z

fm(n) ≥ f−⌈n/2⌉(n) = g(n) = pr−1 = max

{
n

rad(n)
, gpf(n)− 1

}
.

Case 3: n is not squarefree and is not a prime power. By Theorem 1, we obtain

max
m∈Z

fm(n) ≥ f−⌈n/2⌉(n) = g(n) = max

{
n

rad(n)
, gpf(n)− 1

}
.

From every case, we deduce that

max
m∈Z

fm(n) ≥ max

{
n

rad(n)
, gpf(n)− 1

}
. (14)

The desired result then follows from Equations (13) and (14).

We note from Theorem 2 that

max
m∈Z

fm(n) =


gpf(n)− 1 if n is squarefree,

pr−1 if n = pr, p is a prime and r > 1,

max
{

n
rad(n) , gpf(n)− 1

}
otherwise.

Next, we verify an explicit formula for min
m∈Z

fm(n), where n is a prime power.

Furthermore, if n is not squarefree and is not a prime power, then we obtain bounds

for min
m∈Z

fm(n). We note that fm(2) = 1 for all m ∈ Z.

Theorem 3. For any integer n > 2, we have

min
m∈Z

fm(n) =


p−1
2 if n = p is a prime and p ≡ 1 (mod 4),

p+1
2 if n = p is a prime and p ≡ 3 (mod 4),

pr−1 if n = pr, p is a prime, and r > 1.

In addition, if n is not squarefree and is not a prime power, then

n

rad(n)
≤ min

m∈Z
fm(n) ≤ max

{
n

rad(n)
, gpf(n)− 1

}
.

In particular, if n/ rad(n) ≥ gpf(n)− 1, then min
m∈Z

fm(n) = n/ rad(n).
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Proof. We divide the proof into three cases as follows.

Case 1: n = p, where p is an odd prime. We have that

R0(p) = {1, 2, . . . , p− 1}
R1(p) = {2, 3, . . . , p− 1, p+ 1}

...

R p−3
2
(p) =

{
p− 1

2
,
p+ 1

2
, . . . , p− 1, p+ 1, . . . ,

3p− 3

2

}
R p−1

2
(p) =

{
p+ 1

2
,
p+ 3

2
, . . . , p− 1, p+ 1, . . . ,

3p− 1

2

}
R p+1

2
(p) =

{
p+ 3

2
,
p+ 5

2
, . . . , p− 1, p+ 1, . . . ,

3p+ 1

2

}
...

Rp−1(p) = {p+ 1, p+ 2, . . . , 2p− 1} .

For each i ∈ {0, 1, . . . , (p−3)/2}, we can see that i+1, i+2, . . . , p−1 is the longest

arithmetic progression contained in Ri(p) and p+1, p+2, . . . , 2p−i−1 is the longest

arithmetic progression contained in R(p−1)−i(p). Thus,

fi(p) = f(p−1)−i(p) = p− i− 1 ≥ p+ 1

2

for all i ∈ {0, 1, . . . , (p − 3)/2}. Moreover, if p ≡ 1 (mod 4), then (p + 1)/2 is odd.

Thus,
p+ 1

2
,
p+ 3

2
, . . . , p− 1

and
p+ 3

2
,
p+ 7

2
, . . . , p− 1, p+ 1, . . . ,

3p− 3

2

are the longest arithmetic progressions contained in R(p−1)/2(p). It follows that

f(p−1)/2(p) = (p− 1)/2. If p ≡ 3 (mod 4), then (p+ 1)/2 is even, so

p+ 1

2
,
p+ 5

2
, . . . , p− 1, p+ 1, . . . ,

3p− 1

2

is the longest arithmetic progression contained in R(p−1)/2(p). Thus, f(p−1)/2(p) =

(p+ 1)/2 and the desired result follows by Equation (12).

Case 2: n = pr, where p is a prime and r > 1. For any i ∈ {0, 1, . . . , pr − 1}, we
have

Ri(p
r) = {a ∈ Z | i+ 1 ≤ a ≤ i+ pr, p ∤ a} .
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If p ∤ (i+ 1), then

i+ 1, i+ 1 + p, . . . , i+ 1 + (pr−1 − 1)p

is an arithmetic progression contained in Ri(p
r) because

i+ 1 ≤ i+ 1 + jp ≤ i+ 1 + (pr−1 − 1)p = i+ pr + 1− p < i+ pr

and gcd(i+1+ jp, p) = gcd(i+1, p) = 1 for all j ∈ {0, 1, . . . , pr−1−1}. If p | (i+1),

then p ∤ (i+ 2) so that

i+ 2, i+ 2 + p, . . . , i+ 2 + (pr−1 − 1)p

is an arithmetic progression contained in Ri(p
r) because

i+ 1 < i+ 2 + jp ≤ i+ 2 + (pr−1 − 1)p = i+ pr + 2− p ≤ i+ pr

and gcd(i+2+ jp, p) = gcd(i+2, p) = 1 for all j ∈ {0, 1, . . . , pr−1 − 1}. This shows
that fi(p

r) ≥ pr−1 for all i ∈ {0, 1, . . . , pr − 1}.
Let a1, a2, . . . , as be any arithmetic progression contained in Ri(p

r) with common

difference d0. We will show that s ≤ pr−1. Consider the following two subcases.

Subcase (i) p | d0. Then, p ≤ d0. Suppose, in contrast, that s > pr−1. Then,

i+ pr ≥ as = a1 + (s− 1)d0 ≥ i+ 1 + pr−1p = i+ 1 + pr,

which is a contradiction.

Subcase (ii) p ∤ d0. By Lemma 1(i), we obtain s ≤ fi(d0, p
r) ≤ p− 1 < pr−1.

From both subcases, we deduce that s ≤ pr−1, implying fi(p
r) ≤ pr−1 for all

i ∈ {0, 1, . . . , pr − 1}. This shows that fi(p
r) = pr−1 for all i ∈ {0, 1, . . . , pr − 1}

and the desired result follows by Equation (12).

Case 3: n is not squarefree and is not a prime power. For any i ∈ {0, 1, . . . , n−1},
we have

Ri(n) = {a ∈ Z | i+ 1 ≤ a ≤ i+ n, gcd(a, n) = 1} .

We first prove the following claim: for any divisor d of n, there exists l ∈ {1, 2, . . . , d}
such that gcd(i+ l, d) = 1.

If i = 0, then gcd(i + 1, d) = gcd(1, d) = 1, so l = 1. Assume that i ≥ 1 then

(j − 1)d < i ≤ jd for some j ∈ {1, 2, . . . , n/d}. Let l = jd − i + 1 ≥ 1. Then,

l = (j − 1)d+ 1 + d− i ≤ i+ d− i = d and gcd(i+ l, d) = gcd(jd+ 1, d) = 1.

We now show that fi(n) ≥ n/ rad(n) by showing that the arithmetic progression

of length n/d defined by

i+ l, i+ l + d, i+ l + 2d, . . . , i+ l +
(n
d
− 1

)
d
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is contained in Ri(n), where d = rad(n) and 1 ≤ l ≤ d such that gcd(i + l, d) = 1

by the earlier claim.

For any j ∈ {0, 1, . . . , n/d− 1}, we have

i+ 1 ≤ i+ l + jd ≤ i+ l +
(n
d
− 1

)
d = i+ n+ l − d ≤ i+ n.

Moreover, gcd(i+ l+ jd, d) = gcd(i+ l, d) = 1, so gcd(i+ l+ jd, n) = 1. This shows

that i+ l + jd ∈ Ri(n) for all j ∈ {0, 1, . . . , n/d− 1}. Consequently, we have

min
m∈Z

fm(n) ≥ n/ rad(n).

From Equation (1), we obtain

min
m∈Z

fm(n) ≤ F (n) = max {n/rad(n), gpf(n)− 1} ,

which completes the proof.

We end this article with an explicit formula for the average length of fm(n) for

a broad class of non-squarefree integers n.

Let n be a non-squarefree integer. For convenience, we define

A(n) :=
1

n

n−1∑
m=0

fm(n), L(n) := min
m∈Z

fm(n), and U(n) := max
m∈Z

fm(n).

Corollary 1. For any non-squarefree integer n with n/ rad(n) ≥ gpf(n) − 1, we

have
1

n

n−1∑
m=0

fm(n) =
n

rad(n)
.

Proof. For any m ∈ {0, 1, . . . , n − 1}, we have L(n) ≤ fm(n) ≤ U(n). Summing

from m = 0 to n− 1 and dividing by n yields

L(n) ≤ A(n) ≤ U(n).

We consider two possible cases.

Case 1: n = pr, p is a prime and r > 1. By Theorem 2 and Theorem 3, we have

L(n) = pr−1 = U(n) and so A(n) = pr−1 = n/ rad(n), where rad(n) = p.

Case 2: n is not a prime power. By Theorem 2, Theorem 3, and the condition

n/ rad(n) ≥ gpf(n) − 1, we obtain L(n) = n/ rad(n) = U(n) so that A(n) =

n/ rad(n).
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Note that the condition n/ rad(n) ≥ gpf(n)− 1 in Corollary 1 holds for infinitely

many integers n. For any odd prime n = p, we can only verify bounds for A(n) as

follows:
p− 1

2
≤ A(n) ≤ p− 1.

The case where n is a squarefree integer but not a prime seems more complicated

than the others. One reason is that an explicit formula for f−⌈n/2⌉(n) cannot be

established in general. In this case, we currently do not have an explicit formula or

a bound for L(n) and A(n). This will hopefully be the subject of future work.
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