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Abstract
For any integers m and n with n > 1, let

R,(n)={a€Z|m+1<a<m+n,ged(a,n)=1}

be a reduced residue system modulo n. Denote by f,,(n) the length of the longest
arithmetic progressions contained in R,,(n). In this paper, we establish an explicit
formula for f_,/97(n), where [z] is the smallest integer larger than or equal to .
Moreover, explicit formulas for max fm(n) and TI}L%% fm(n) are also verified.

1. Introduction
Given integers m,n € Z with n > 1, let
Rn(n):={a€Z]|m+1<a<m+n,ged(a,n)=1}

be a reduced residue system modulo n. Denote by f,,(n) the length of the longest
arithmetic progressions contained in R,,(n). It is noted that Ro(n) is the least
positive reduced residue system modulo n, namely,

Ro(n)={a€Z|1<a<n,ged(a,n)=1}.
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In [2], Recamén asked if fy(n) — co as n — oo, that is, if, for each positive integer
k, there exists a constant ny such that Ro(n) contains an arithmetic progression of
length k for all n > ny. Throughout this article, let gpf(n) be the largest prime
factor of n and rad(n) be the product of all distinct prime factors of n. In 2017,
Stumpf [5] answered this problem affirmatively and also gave the bounds as

max { gpf(’;) -1 ra;(n) } < fo(n) < max {gpf(n) _1, rad”(n)} .

For any real number z, let |x] denote the largest integer less than or equal to z
and [z] denote the smallest integer larger than or equal to . In 2018, Pongsriiam
[4] established an explicit formula for fo(n) as follows.

(i) If n > 1 is squarefree, then

p—1 if n = pis a prime,
foln) = % if n = 2p, p is an odd prime, p = 3 (mod 4),
gpf(n) — L%n”)zJ —1 otherwise.

(ii) If n = p", where p is a prime and r > 1, then fy(n) = p" L.

(iii) If » > 1 is not a prime power and is not squarefree, then

foln) = max{mf(m,gpf(n) - 1}.

In addition, let
F(n) =max{fg(n) | B(n) is a reduced residue system modulo n},

where fp(n) is the length of the longest arithmetic progressions contained in B(n).
Note that fr,(m)(n) = fo(n). He also gave an explicit formula for F'(n) [4] as

F(n) = max{ra;(n),gpf(n) - 1}. 1)

In the same year, Chen and Lei [1] gave an asymptotic formula for > __ fo(n),
thereby solving a problem posed by Pongsriiam in [4]. -

It thus seems natural to study the same problem for another reduced residue
system. In this article, we are interested in the reduced residue system modulo n,
R(n) := R_1,21(n). We note from [3] that

{aezZ| — 22 <a <27l ged(a,n) =1} if nisodd,
R(n) = (2)

{aeZ| - 22 <a< % gedan)=1} if n is even.
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It should be noted that the above choice of R(n), the set of absolute least residues
modulo n that are relatively prime to n, is crucial to our work, for it provides the
most convenient way to choose the representatives closest to 0 within each residue
class. This yields a system containing the smallest possible absolute residues, which
in turn considerably simplifies our calculation. For convenience, we let g(n) :=
f=n/21(n), the length of the longest arithmetic progressions contained in R(n).
This work aims to establish an explicit formula for g(n) for all positive integers
n > 1. We found that the case of squarefree integers is more complicated than the
other. However, we successfully obtain an explicit formula for g(n) for all positive
integers n except for the case n being an even squarefree integer having at least three
prime factors. In such a case, we obtain bounds for g(n) and an explicit formula
for g(n) under a certain condition. In addition, we establish an explicit formula
for max fm(n) for all positive integers n > 1. An explicit formula for glélzl fm(n)

is also verified, where n is a prime power. When n is neither a prime power nor
a squarefree integer, we obtain bounds for mirzl fm(n) and an explicit formula for
me

mi% fm(n) under a certain condition.
me

2. Main Results

In this section, we define f,,(d,n) as the length of the longest arithmetic progres-
sions contained in R,,(n) with common difference d. We begin with the following
auxiliary lemma, which will be used to establish an explicit formula for g(n). Its
proof is similar to the proof of Lemma 2.1 in [4].

Lemma 1. For any integers m,n,d € Z with n > 1 and d > 0, the following
statements hold.

(i) If p is a prime such that p | n and ptd, then fn,(d,n) <p—1.
(i1) If n is squarefree, then fn,(d,n) < gpf(n)—1.

Proof. (i) Let b,b+d,b+2d,...,b+ (s—1)d be an arithmetic progression contained
in the complete residue system modulo n defined by {m + 1,m + 2,...,m + n},
where b is an integer. By the division algorithm, there exist integers ¢ and r such
that s = pg+ r, where 0 < r < p. Let

Ag={b,b+d,...,b+ (p—1)d},
A1 ={b+pd,b+ (p+ 1)d,...,b+ (2p — 1)d},

Ag-1 =1{b+ (¢ —pd, b+ ((¢ = V)p+1)d, ..., b+ (gp — 1)d}.
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Then,

{b,b+d,....b+(s—1)d} = AgUA; U...UA,_1U
{b+qpd,b+ (gp+1)d,...,b+ (gp+r — 1)d}.

One can see that A; is a complete residue system modulo p for alli € {0,1,...,¢g—1}.
Consequently, there exists a unique integer k € {0,1,...,p — 1} such that

b+ (ip+k)de A, and p | (b+ (ip + k)d)

for each ¢ € {0,1,...,q — 1}. This implies f,,(d,n) <p—1.

(ii) Assume that n is squarefree. If d > n, then f,,(d,n) =1 < gpf(n) — 1 because
a+d>m+1+n forall a € R, (n). Assume that d < n. Since n is squarefree,
there must exist a prime factor ¢ of n such that ¢ f d. From (i), it follows that
fm(d,n) < q—1<gpf(n) —1 as desired. O

For the case m = —[n/2], we let g(d,n) := f_[n/21(d,n) and we are now ready
to establish an explicit formula for g(n) as in the following theorem.

Theorem 1. For any positive integer n > 1, let d = n/ gpf(n).
If n is odd, then

712;1 ifn=pis a prime andp = 1 (mod 4),
% if n=pis a prime andp = 3 (mod 4),
g(n) = prt ifn=1p",pis aprime andr > 1,
Lgpf(n) — %J if n is squarefree but is not a prime,
max {%, gpf(n) — 1} if n is not a prime power and is not squarefree.

If n is even, then
2r—1 ifn=2"andr > 1,
gln)=¢p—1 ifn = 2p and p is an odd prime,
max {%, gpf(n) — 1} if n is mot a prime power and is not squarefree.

Moreover, if n is an even squarefree integer having at least three prime factors, then

() — 2B | < ) < pi () — 1. 3

In particular, if d > 2gpf(n), then g(n) = gpf(n) — 1.
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Proof of Theorem 1 for n odd. Let n > 1 be an odd positive integer. By Equation
(2), we have

-1 -1
R(n):{an| —n2§a§n2,gcd(a,n):1}.

We divide the proof into four cases as follows.

Case 1: n = p, where p is a prime. Then,

p—1 p-3 p—3 p—1
R(p)z{—,—,...,—1,1,...,2,2 :

It can be seen that —(p — 1)/2,—(p —3)/2,...,—land 1,...,(p—3)/2,(p — 1)/2
are the longest arithmetic progressions contained in R(p) with common difference
d =1 and have length (p —1)/2. For d > 2, we consider the following two subcases.

Subcase (i) p=1 (mod4). Then, (p —1)/2 is even, and thus

Sk S TR TOUY ek

2 2
is the longest arithmetic progression contained in R(p) with common difference
d = 2 and has length (p — 1)/2. Clearly, any arithmetic progression contained in
R(p) with common difference d > 2 always has length less than (p — 1)/2. This

shows that g(n) = (p — 1)/2.
Subcase (ii) p =3 (mod4). Then, (p — 1)/2 is odd, and thus

p—1 p—1
L T P
2 b b b 9 b

is the longest arithmetic progression contained in R(p) with common difference
d = 2 and has length (p + 1)/2. Clearly, any arithmetic progression contained in
R(p) with common difference d > 2 always has length less than (p + 1)/2. This
means that g(n) = (p+1)/2 as desired.

Case 2: n =p", where p is a prime and r > 1. Then,

o o
p21§a§p 1

R(pT){aem - ,gcd(a,pr)l}.

We first show that the arithmetic progression of length p"~! defined by

pr—1 p'—1 pr—1
5 T g TP

r—1
+2p,...,—p2 —|—(pr_1—1)p

is contained in R(p").
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For any i € {0,1,...,p"~* — 1}, we have

P . LD . 1+Z.p§_p 1+(pr71_1)p:p (zp D_»p . L
Ifp|(—(p" —1)/2+ip), thenp| (p"—1)/2 and thus p | (p” — 1), a contradiction. It
follows that ged (—(p" — 1)/2 +ip,p") = 1. This shows that —(p"—1)/2+ip € R(p")
for all i € {0,1,...,p"~! — 1}, which implies that g(n) > p"~1.

Let aq,as, .. .,as be any arithmetic progression contained in R(p") with common

difference dy. We will show that s < p"~!. Consider the following two subcases.
Subcase (i) p|dp. Then, p < dy. Suppose to the contrary that s > p"~!. Then,
-1 T —1 _ "4+ 1
: 5 2 as=a1+(s—1)do > — 4y 1p:pT’

which is a contradiction.

Subcase (ii) p{dy. By Lemma 1(i), we obtain s < g(dg,n) <p—1<p"~L

From both subcases, we deduce that s < p"~! and hence g(n) < p"~!.

r—1

Since g(n) > p"~! and g(n) < p"~!, we obtain g(n) = p"~! as required.

Case 3: n = pips -+ Pm, Where p;’s are odd primes such that p; < ps < ... < pm
with m > 2. Let d = n/p,, and k = [pm — (pm + 1)/2d]|. We first show that the

arithmetic progression of length k defined by
n—1 pn—1 n—1 pn—1 n—1 pn—1
5 + 5 +d, 5 + 5 +2d,..., 5 + 5

is contained in R(n). Note that k < p,, — 1 and let y = —(n —1)/2 + (pm — 1)/2.
For any i € {1,2,...,k}, we have

+ kd

n—1

2d 2 2

<yt+id<y+kd<y+ (pm_pm+1)d:y+n_pm+1 -1
For each j € {1,2,...,m — 1}, if p; | y, then p; | 2y and hence p; | (p,, —n), which
is impossible. Thus, ged(y, p;) = 1, implying that ged(y + id,d) = ged(y,d) = 1.
One can see that p,, | 2y, and thus p,, | y because p,, is odd. Consequently,
ged(y + id, prm) = ged(id, pm) = 1 and thus ged(y + id,n) = 1. This shows that
y+id € R(n) for all i € {1,2,...,k}, yielding g(n) > k.

Let ay,as,...,as be any arithmetic progression contained in R(n) with common
difference dy. We will show that s < k. If d > (pm + 1)/2, then k = p,, — 1.
By Lemma 1(ii), we obtain s < g(dp,n) < p, —1 = k. Now we assume that

d < (pm +1)/2 and consider the following two subcases.

Subcase (i) d {dp. Then, there exists j € {1,...,m — 1} such that p; { dp. By
Lemma 1(i), we obtain

s < g(dg,n) <p; —1<d—1. (4)
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Note that p,, — | (pm +1)/2d] — 1 < k. Since d < (pmm + 1)/2, we have
2dpy, — pm — 1= (2d = 1)pp, — 1 > (2d — 1)* = 1 = 4d(d — 1) > 2d*

because d = n/p,, > 3. It follows that

2dpm_pm_1 pm+1 pm+1
s e
< 2d p Y 2d

Using Equations (4) and (5), we consequently have

Pm +1
2d

s<pm—{ J—lgk.

Subcase (ii) d | dp. Then, there exists a positive integer ¢ such that dy = dc.
Suppose to the contrary that s > k. If ¢ > 2, then

-1
n >as=a;+ (s—1)dy
-1
>0 4 okd
n—1 pm"'l
- - —1)2d
7T +<p’” 2d )
-1
:7712 +2n = pp —1—2d
-1
>*n +277'71)m717pm*1
~ n+2n—4p, —3
B 2
>n+1
2

because 2n—4p,, —3 > 2-3py, —4pm —3 = 2p,, —3 > 1. However, this is impossible,
so ¢ = 1 and thus dy = d. Now we have

Pm +1 Pm +1
m — —1 k < m T m 1.
p 2 <k=P 2q <P
It follows that )
kd <n— p’"; < (k+1)d (6)
and thus 41
pm2 —d < kd. (7)

Since s — 1 > k and dy = d, the sequence ay,a1 + d,a1 + 2d, . ..,a; + kd belongs
to R(n). One can see that {a1,a1 +d,a1 +2d,...,a1 + (pm — 1)d} is a complete
residue system modulo p,,. Since k < p,,, — 1, there exists l € {k +1,...,py — 1}
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such that p,, | (a1 + 1d), so a; + ld = p,r for some integer r. By Equation (6), we
obtain

_pm"’_l_n_pm
2 2

-1 -1
pmr:a1+ld2—nT+(k+1)d>—nT+n > 0,

sor > 1and (2r + 1)p,, > n. We have a; + kd < (n — 1)/2, and using Equation
(7), we obtain

a; <

-1 —1 m 1 - m 2d
n-1 . mn _(n_p2+ _d>:”+g+7

yielding p,,r — ld < (—=n + ppm + 2d) /2. Tt follows that
2r —Dpm +n<2ld+2d < 2(ppm — 1)d+2d =2n

and thus (2r — 1)p,,, < n. Hence, (2r — 1)p,, < n < (27 + 1)p,y,, which implies that
d = n/p,, = 2r, a contradiction because d is odd. This shows that s < k and thus
g(n) < k. Therefore, g(n) = k as desired.

Case 4: n = pi'py?---pim, where r;’s are positive integers, p;’s are odd primes
such that p; < py < ... < p,, with m > 2, and n is not squarefree. We first show
that g(n) > n/rad(n) by showing that the arithmetic progression of length n/d
defined by

n—1 n-—1 n—1 n—1 n
_ — d,— 2, ... — (771)d
2 2 + 2 + 2 +

is contained in R(n), where d = rad(n).

For any i € {0,1,2,...,n/d — 1}, we have

L

d

< — id < —
5 = +1a <

n—1 n—1 n—1 n—2d+1 n-1
+ ( ) d= < .
2 2
For each j € {1,2,...,m}, if p; | —(n —1)/2, then p; | (n — 1), which is impossible.
Thus, ged (—(n —1)/2,p;) = 1. It follows that ged (—(n—1)/2+1id,d) = 1 and
hence ged (—(n — 1)/2 +id,n) = 1. This shows that —(n —1)/2+id € R(n) for all
i€{0,1,2,...,n/d—1}.
Next, we show that g(n) > p,, — 1 by showing that the arithmetic progression of
length p,,, — 1 defined by

—Pm + d7 —Pm + Qd, —DPm + (pm - 1)d

is contained in R(n), where d = rad(n)/pm,.
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For any i € {1,2,...,pm — 1}, we have

n—1 T172 g Tm—1 1
<M)pm+

2 2 2
1
<*pm+§
< —Pm +id
rad(n
< —Pm + (Pm — 1) ()
Pm
=pip2- - Pm — (P1P2 "+ Pm—1 + Pm)
1
<p1P2"'pm*§
_ 2pip2--pm — 1
2
N
2
77171
)

since n is not squarefree. Moreover, ged(—pm, + id, pm) = ged(id, pn) = 1 and
ged(—pm, + id,d) = ged(—pm,d) = 1. It follows that ged(—pp, + id,rad(n)) = 1
and thus ged(—pp, + id,n) = 1. This shows that —p,, + id € R(n) for all i €
{1,2,...,pm — 1}. Now, we have g(n) > n/rad(n) and g(n) > p,, — 1, yielding

9(”)Zmax{radn(m’pml}' (®)

Let ay,as,...,as be any arithmetic progression contained in R(n) with common
difference dy. We treat the following two subcases.

Subcase (i) rad(n)f{dy. Then, there exists j € {1,2,...,m} such that p; { do. By
Lemma 1(i), we obtain

n
Sﬁg(do,n)Spj—lﬁpm—lﬁmax{md(n),pm—l}.

Subcase (ii) rad(n) |do. Then, dy > rad(n). If s > n/rad(n), then

n—1 n—1 n n+1
> s — 71d D —_— _— d = —,
>as=a1+ (s—1)dy > 5 + rad(n) rad(n) 5

which is a contradiction. Thus, s < n/rad(n) < max{n/rad(n),p, —1}. From
both subcases, we deduce that

g(n)Smax{md"(m,pm—l}. (9)
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The desired result then follows from Equations (8) and (9). O

Proof of Theorem 1 for n even. Let n be an even positive integer. By Equation (2),
we have

-2
R(n) = {aGZ | fnT <a< g,gcd(a,n) 1}.
We divide the proof of Theorem 1 into three cases as follows.

Case 1: n=2", where r > 1. If r = 1, then R(2) = {1} and thus g(2) =1 = 2171
Assuming that r > 2, we have

R(QT):{—27”71_|_1,...,—171’_”72r71_1}'

It is clear that —2"~' +1,...,—1,1,...,2""! — 1 is an arithmetic progression of
length 271 so g(2") =271

Case 2: n > 2 is an even squarefree integer. If n = 2p, where p is an odd prime
number, then

Rn)=4{-(p—-2),-(p—4),...,-1,1,....,p—4,p—2}.

It is clear that —(p—2), —(p—4),...,—1,1,...,p—4, p—2 is an arithmetic progression
of length p — 1, which implies that g(n) =p — 1.

Assume now that n = 2pips - - pm, where p;’s are odd primes such that p; <
P2 < ... < pm with m > 2. Let d = n/p,, and k = |py, — 2pm/d]. We first show
that the arithmetic progression of length k defined by

-2 -2 -2
LS @ = ) = 4 (2pn = 1)+ 24, — T+ (2p — 1)+ kd

is contained in R(n). Note that k < p,, — 1 and let y = —(n — 2)/2 + (2p;m — 1).
For any i € {1,2,...,k}, we have

2pm

-2
—n2<y+z'd§y+kd§y+(pm—d

)d=y+n—2pm:n.

2
It is clear that y is odd. For each j € {1,2,...,m—1},if p; | y, then p; | 2y and hence
pj | (4pm —n), which is impossible. Thus, ged(y, p;) = 1, so ged(y+1id,d) = 1. One
can see that p,, | 2y, so py, | y because p,, is odd. Consequently, ged(y+id, py,) =1
and thus ged(y + id,n) = 1. This shows that y +id € R(n) for all i € {1,2,...,k},
yielding g(n) > k. By Lemma 1(ii), we obtain g(n) < p,, — 1. This proves Equation
(3).

In particular, if d > 2p,,, then k = p,,, — 1 and hence g(n) = p,, — 1 as desired.

Case 3: n =2"0p}'-..pl™ where r;’s are positive integers, p;’s are odd primes such
that p1 < ... < pm, and n is not squarefree. We first show that g(n) > n/rad(n)
by considering the following two subcases.
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Subcase (i) rg = 1. Then, (n —4)/2 is odd. We show that the arithmetic pro-
gression of length n/d defined by

2 7 2

4 n—4 4 4
n L R +2d7...,—”2 +(” )d

is contained in R(n), where d = rad(n).
For any ¢ € {0,1,2,...,n/d — 1}, we have

n—2 n—4 n—4 n n—2d+4
< id < — D _q)g=Ttr

<y A<=t (G -1)d 2
If 2 | (n—4)/2, then 2 | n/2, which is impossible. Thus, ged(—(n—4)/2+1id,2) = 1.
For each j € {1,2,...,m}, if p; | (n —4)/2, then p, | (n —4), which is impossible.
Thus, ged (—(n —4)/2 +1id,p;) = 1. It follows that ged (—(n —4)/2 +id,n) = 1.
This shows that —(n —4)/2 +id € R(n) for all i € {0,1,2,...,n/d — 1}.

<n
5

Subcase (ii) 19 > 1. Then, (n — 2)/2 is odd. We show that the arithmetic
progression of length n/d defined by

2 7 2

2 p—2 _9 _9
n n +d,—”2 +2d,...,—”2 +(” )d

is contained in R(n), where d = rad(n).
For any i € {0,1,2,...,n/d — 1}, we have

n—2 n—22 n—2 n n—2d+2 n
Sy St bids rm (g 1)d="5 e < g
If 2| (n —2)/2, then 2 | 1, which is impossible. Thus, ged(—(n — 2)/2 + id,2) = 1.
For each j € {1,2,...,m}, if p; | (n — 2)/2, then p; | (n — 2), which is impos-
sible. Thus, ged (—(n —2)/2+id,p;) = ged (—(n —2)/2,p;) = 1. It follows that
ged (—(n—2)/2+14d,2p;1 - - - pm) = 1 and hence ged (—(n — 2)/2 4 id,n) = 1. This
shows that —(n —2)/2 +id € R(n) for all i € {0,1,2,...,n/d — 1}.

From both subcases, we obtain g(n) > n/d = n/rad(n). Next, we show that
g(n) > pm — 1 by showing that the arithmetic progression of length p,, — 1 defined
by

—Pm + da —DPm + Qd, —DPm + (pm - 1)d

is contained in R(n), where d = rad(n)/pp,.
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For any i € {1,2,...,pm — 1}, we have

n—2 Qroprt ... prm—1
- :_<1 5 m Pm + 1

< —pm +1
< —pm +id
rad(n)
Pm
=2p1- Pm — (21" Pm—1 + Pm)

S —Pm + (pm - 1)

-1 m
<27"0 p"{lpzl R

27”0p71n1 .p:ﬁn —1
2

n—1<n
2 2

since n is not squarefree. Moreover, ged(—pm, + id, pm) = ged(id, pn) = 1 and
ged(—pm + id,d) = ged(—pm,d) = 1. Tt follows that ged(—p, + id,rad(n)) = 1
and thus ged(—pp, + id,n) = 1. This shows that —p,, + id € R(n) for all i €
{1,2,...,pm — 1}

Now, we obtain g(n) > n/rad(n) and g(n) > p,, — 1, yielding

g(n) > max {rad”(m,pm - 1} . (10)

Let ay,as,...,as be any arithmetic progression contained in R(n) with common
difference dy. If rad(n) { do, then there exists a prime ¢ such that ¢ | n but ¢ 1 dp.
By Lemma 1(i), we obtain

n
<qgldg.n)<qg—1<p, —1< — p -1
s < g(do,n) <q—1<pp —wa{rmﬂnypm }

Assume that rad(n) | do. Then, dy > rad(n). If s > n/rad(n), then

-2 2
Zaszm—l—(s—l)doz—L—&-L-rad(n):%,

n
2 2 rad(n)

which is a contradiction. Thus, s < n/rad(n) < max{n/rad(n),p, — 1} . Hence,
we deduce that

n
< SIS 11
olo) < max{ s 1} (1)
The desired result then follows from Equations (10) and (11). O

The following examples provide the longest arithmetic progressions contained in
R(n) along with their lengths for odd and even positive integers n.



INTEGERS: 26 (2026) 13

Example 1. (i) Since —2, —1; 1,2; and —1, 1 are the longest arithmetic progressions
contained in
R(5) = {_27 _1a 1; 2}7

we have g(5) =2 = (5—1)/2. One can see that —3, —1, 1, 3 is the longest arithmetic
progression contained in

R(7) = {_3’ _27 _la 17 27 3}7

we obtain g(7) =4 =(7+1)/2.
(ii) Since —12,—7,—2, 3,8 is the longest arithmetic progression contained in

R(25) = {—12,-11,-9, -8, —7, —6,—4,—3,-2,—1,1,2,3,4,6,7,8,9, 11, 12},

we have g(25) = 5 = 5271,
(iii) Since —8,—5,—2,1,4 and —4, —1,2, 5,8 are the longest arithmetic progressions
contained in

R(21) = {~10,-8,—5,—4,-2,—1,1,2,4,5,8,10},

we obtain g(21) =5=|7— (7+1)/2- 3], where gpf(21) =7 and d = 3.
(iv) Since —22,—19, —16,—13 and —2, 1,4, 7 are the longest arithmetic progressions
contained in

R(45) = {—22,-19,-17,—16, —14,...,—1,1,...,14, 16,17, 19, 22},
we have g(45) = 4 = max{45/15,5 — 1}, where rad(45) = 15 and gpf(45) = 5.

Example 2. (i) Since —7,—5,—-3,—1,1,3,5,7 is the longest arithmetic progression
contained in
R(16) = {-7,-5,-3,-1,1,3,5,7},

we have ¢g(16) = 8 = 2471,
(ii) Since —3,—1,1, 3 is the longest arithmetic progression contained in

R(10) = {-3,-1,1,3},

it follows that g(10) =4 =5 — 1. One can see that —13, -7, —1 and 1,7, 13 are the
longest arithmetic progressions contained in

R(30) = {-13,—-11,-7,—1,1,7,11,13},

we have ¢g(30) =3 =[5—2-5/6], where gpf(30) = 5 and d = 6.
(iii) Since —1,5,11,17,23,29 is the longest arithmetic progression contained in

R(84) = {—41,-37,-31,-29,-25,...,—1,1,...,25,29, 31,37, 41},

we obtain g(84) = 6 = max{84/42,7 — 1}, where rad(84) = 42 and gpf(84) = 7.
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Note that Equations (9) and (11) can be proved in another way by using Equation
(1) because

g(n) < F(n) = max{mdn(n),pm - 1}.

From the case of n being an even squarefree integer and having at least three
prime factors (Case 2), we conjecture that if d < 2gpf(n), then g(n) = |gpf(n) —
2 gpf(n)/d], which is supported by Example 2(ii). Although we are currently unable
to prove this, the reader is welcome to solve this problem.

3. Further Results
Given integers m,n € Z with n > 1, recall that
Ry(n):={a€Z]|m+1<a<m-+n,ged(a,n)=1}

is a reduced residue system modulo n and f,,(n) denotes the length of the longest

arithmetic progressions contained in R,,(n). One can show that if aj,as,...,as is
an arithmetic progression contained in R,,(n), then a; + n,as +n,...,as +n is an
arithmetic progression contained in R+, (n). On the other hand, if by,bs, ..., bs is
an arithmetic progression contained in Ry,4n(n), then by —n,bs —n,...,bs —n is

an arithmetic progression contained in R,,(n). This implies that f,,(n) = fmin(n)
for all m,n. Therefore,

{fm(n) [ m e Z} = {fo(n), fi(n),..., fu1(n)}. (12)

The following theorem gives an explicit formula for max fm(n).
me

Theorem 2. For any integer n > 1, we have

max fyn (1) = max { rag(n) ,gpf(n) — 1} .

mEZ

Proof. 1t is clear from Equation (1) that

max fm(n) < F(n) = max {ra(;l(n),gpf(n) — 1} . (13)

meEZ

On the other hand, consider three possible cases.
Case 1: n issquarefree. We first show that fype(n)4a—1(n) > gpf(n) —1 by showing
that the arithmetic progression of length gpf(n) — 1 defined by

gpf(n) +d,gpf(n) + 2d,...,gpf(n) + (gpf(n) — 1)d

is contained in Rgp¢(n)+a—1(n), where d = n/ gpf(n).
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For any i € {1,2,...,gpf(n) — 1}, we have
gpf(n)+d < gpf(n)+id < gpf(n)+(gpf(n)—1)d = gpf(n)+n—d < gpf(n)+d+n—1.

Moreover, ged(gpf(n)+id, gpf(n)) = 1 and ged(gpf(n)+id, d) = ged(gpf(n),d) =1,
which implies ged(gpf(n) +id,n) = 1. This shows that gpf(n)+id € Rgpi(n)ta—1(n)
for all i € {1,2,...,gpf(n) — 1}. Since n/rad(n) = 1, we have

rad(n)
Case 2: m = p”, where p is a prime and r > 1. Then, rad(n) = p = gpf(n). By

,gpf(n)—l}-

0 () > Fooa-a () = g (n) — 1 = ma |

Theorem 1 and since n/rad(n) = p"~1, we have
max fin(n) > f-m/21(n) = g(n) = p"~" = max { rag(n) »gpf(n) — 1} :

Case 3: m is not squarefree and is not a prime power. By Theorem 1, we obtain

s fn () £y () = 9() = moxc { s ento) 1.

From every case, we deduce that

max fn(n) = maX{mgm),gpf(n) - 1}- (14)
The desired result then follows from Equations (13) and (14). O

We note from Theorem 2 that

gpf(n) — 1 if n is squarefree,
m;g)Z(fm(n) ={p! ifn=p",pis a prime and r > 1,
m
max { ra(fw, gpf(n) — 1} otherwise.

Next, we verify an explicit formula for min f,,(n), where n is a prime power.
meZ

Furthermore, if n is not squarefree and is not a prime power, then we obtain bounds
for mirzl fm(n). We note that f,,,(2) =1 for all m € Z.
me

Theorem 3. For any integer n > 2, we have

p2;1 ifn=pis a prime andp = 1 (mod 4),
mé% fm(n) = p%l ifn=pis a prime andp = 3 (mod 4),
m

p"~l ifn =p", pis a prime, andr > 1.

In addition, if n is not squarefree and is not a prime power, then

n . n
M < g}érzlfm(n) < max {rad(n)’gpf(n) - 1} :

In particular, if n/rad(n) > gpf(n) — 1, then mé% fm(n) =n/rad(n).
m
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Proof. We divide the proof into three cases as follows.

Case 1: m = p, where p is an odd prime. We have that

RO(p) = {172a P — 1}
Rl(p) = {2737 D 17p+ 1}
p—1 p+1 3p—3
P— = T v o ¢ ) 17 1) )
Rps(p) 5 g p—Lp+ 5
[p+1 p+3 3p—1
RPT_l( )_{ 2 9 2 9y 7p 17p+17 9 2
p+3 p+5 3p+1
ptl =Y "5 T 5 ’ 1, 1; )
Rz (p) { 5 p—Lp+ 5

R,_1(p)={p+1,p+2,...,2p—1}.

For each i € {0,1,...,(p—3)/2}, we can see that i+1,i+2,...,p—1 is the longest
arithmetic progression contained in R;(p) and p+1,p+2,...,2p—i—1 is the longest
arithmetic progression contained in R(,_1)—;(p). Thus,

fi(p) = fo—py—ilp) =p—i—1>~——

for all i € {0,1,...,(p — 3)/2}. Moreover, if p =1 (mod4), then (p + 1)/2 is odd.
Thus,

p+1 p+3
—_ Y, ...,p—1
2 2
and +3 p+7 3 3
p p D —
—_— . ...,p—1 1,...
2 ) 2 ) 7p 7p+ ) ) 2

are the longest arithmetic progressions contained in R,_1)/2(p). It follows that
fw-1y/2(p) = (p —1)/2. If p =3 (mod 4), then (p +1)/2 is even, so

p+1 p+5 3p—1
s P p—1p+1,...
2 b 2 b 7p 7p+ b b 2

is the longest arithmetic progression contained in R(,_1)/2(p). Thus, fo,—1)/2(p) =
(p+1)/2 and the desired result follows by Equation (12).

Case 2: n = p", where p is a prime and r > 1. For any ¢ € {0,1,...,p" — 1}, we
have
Ri(p")={a€Z|i+1<a<i+p ,pta}.
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Ifpt(i+1), then
i+ li+14p,...i+14+(p " =1)p
is an arithmetic progression contained in R;(p") because
i+ 1<i+14+p<i+l+@ ' —Lp=i+p +1—-p<i+p

and ged(i+1+jp,p) = ged(i+1,p) = 1forall j € {0,1,...,p" L —1}. If p| (i+1),
then pt (¢ +2) so that

P42, 4+24p,...i+2+(p " —1)p
is an arithmetic progression contained in R;(p") because
itl<it24p<i+2+@ ' —p=i+p +2-p<i+p"

and ged(i+ 2+ jp,p) = ged(i +2,p) = 1 for all j € {0,1,...,p" ! —1}. This shows
that f;(p") > p ! foralli € {0,1,...,p" —1}.

Let aq,asg, ..., as be any arithmetic progression contained in R;(p") with common
difference dy. We will show that s < p"~!. Consider the following two subcases.

Subcase (i) p | dp. Then, p < dy. Suppose, in contrast, that s > p"~1. Then,
i+p >as=a1+(s—Ddy>i+1+p p=i+1+p",

which is a contradiction.

Subcase (ii) p{dy. By Lemma 1(i), we obtain s < f;(do,p") <p—1<p'~L

From both subcases, we deduce that s < p™—!, implying fi(p") < p"~* for all
i € {0,1,...,p" — 1}. This shows that f;(p") = p"~! for all i € {0,1,...,p" — 1}
and the desired result follows by Equation (12).

Case 3: m is not squarefree and is not a prime power. For any i € {0,1,...,n—1},
we have
Ri(n)={a€Z]|i+1<a<i+n,ged(a,n)=1}.

We first prove the following claim: for any divisor d of n, there exists { € {1,2,...,d}
such that ged(i +1,d) = 1.

If ¢ = 0, then ged(i + 1,d) = ged(1,d) = 1, so I = 1. Assume that ¢ > 1 then
(j —1d < i < jd for some j € {1,2,...,n/d}. Letl = jd —i+ 1 > 1. Then,
I=(-1d+1+d—i<i+d—i=dand ged(i+1,d) =ged(jd+ 1,d) = 1.

We now show that f;(n) > n/rad(n) by showing that the arithmetic progression
of length n/d defined by

i+l,i+l+d,i+l+2d,...,i+l+<%fl)d
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is contained in R;(n), where d = rad(n) and 1 <[ < d such that ged(i +1,d) =1
by the earlier claim.
For any j € {0,1,...,n/d — 1}, we have

z'—|—1§i+l+jd§i+l+<%—1>d:i+n+l—d§i+n.

Moreover, ged(i +1+ jd,d) = ged(i+1,d) =1, so ged(i + 1+ jd,n) = 1. This shows
that i + 1+ jd € R;(n) for all j € {0,1,...,n/d — 1}. Consequently, we have

min f,,(n) > n/rad(n).
meZ
From Equation (1), we obtain

min fr(n) < F(n) = max {n/rad(n), gpf(n) — 1},

which completes the proof. O

We end this article with an explicit formula for the average length of f,,(n) for
a broad class of non-squarefree integers n.
Let n be a non-squarefree integer. For convenience, we define

n—1
A(n) = % Z fm(n), L(n) := gé% fm(n), and U(n) := max fm(n).
m=0

Corollary 1. For any non-squarefree integer n with n/rad(n) > gpf(n) — 1, we
have

1= n

n 'mZ::O fm(n) = rad(n)’
Proof. For any m € {0,1,...,n — 1}, we have L(n) < f,,(n) < U(n). Summing
from m = 0 to n — 1 and dividing by n yields

L(n) < A(n) < U(n).

We consider two possible cases.

Case 1: n=2p", pis a prime and r > 1. By Theorem 2 and Theorem 3, we have
L(n) =p"~1 =U(n) and so A(n) = p"~! = n/rad(n), where rad(n) = p.

Case 2: n is not a prime power. By Theorem 2, Theorem 3, and the condition
n/rad(n) > gpf(n) — 1, we obtain L(n) = n/rad(n) = U(n) so that A(n) =
n/rad(n). O
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Note that the condition n/rad(n) > gpf(n) —1 in Corollary 1 holds for infinitely
many integers n. For any odd prime n = p, we can only verify bounds for A(n) as
follows:

Dol <Am) <po 1.
The case where n is a squarefree integer but not a prime seems more complicated
than the others. One reason is that an explicit formula for f_r,/21(n) cannot be
established in general. In this case, we currently do not have an explicit formula or
a bound for L(n) and A(n). This will hopefully be the subject of future work.
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