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Abstract
The aim of this paper is to derive explicit formulas for two statistics. The first one is
the total number of symmetric peaks in a set partition of [1,n] with exactly k blocks,
and the second one is the total number of non-symmetric peaks in a set partition of
[1,n] with exactly k& blocks. We represent these results in two ways: first, by using
the theory of generating functions, and second, by using combinatorial tools.

1. Introduction

A partition I of the set [1,n] = {1,2,...,n} of size k (a partition of [1,n] with
exactly k blocks) is a collection { By, Bs, ..., By} that satisfies: § # B; C [1,n] for
all i, B;(\B;j = () for i # j, and Ule B; = [1,n]. The elements B; are called blocks.
We use the assumption that blocks are listed in an increasing order of their minimal
elements, that is, min By < min By < -+ < min By. We let P, ; denote the set
of all partitions of [1,n] with exactly k blocks (see [19]). Note that |P, x| = Sy,
which are known as the Stirling numbers of the second kind (see A008277 in [18]).
A partition IT can be written as mmg - - - m,, where ¢ € B, for all . This form is
called the canonical sequential form. For example, IT = {{12},{3}} is a partition
of [1,3] and the canonical sequential form is 7 = 112. Then we can see that any
partition IT of the set [1,n] with exactly k blocks can be represented as a word of
length n over the alphabet [1,k]. A word w of length n over the alphabet [1,k] is
an element of [1, k]™ (see [7]) of the form 1(1)*2(2)* - -- k(k)*, where (m)* is a word
over the alphabet [1,m]. These words are called restricted growth functions. For
other properties of set partitions, see [16].
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The study of patterns in combinatorial structures is very popular. For example,
Kitaev [8] researched patterns in permutations and words. For more examples of
patterns in various combinatorial structures, refer to [9, 10, 12], and [17]. Given
m = mmy- T, € [1,k]", a pattern m;m; 1742 is called a peak at i if it satisfies
m < Wiy1 > miye for 1 <4 < m — 2. For instance, let 7 = 1322141251 be a word
in [1,5]1°. Tt has 3 peaks, which are 132, 141, and 251. Mansour and Shattuck [14]
determined the number of peaks in all words of length n over the alphabet [1, k],
and derived the number of peaks over P, j.

We say that 7 = myma -7, € [1,k]" contains a symmetric peak, if there exists
1 < i < n—2such that m;m; 1712 is a peak and m; = m;4o. Similarly, we say
that 7 contains a non-symmetric peak, if there exists 1 < ¢ < n — 2 such that
TiTi+1Ti+2 1S a peak and m; # m;49. In the case of the example m = 1322141251,
there is one symmetric peak 141, and two non-symmetric peaks, namely 132, and
251. Asakly [1] determined the number of symmetric and non-symmetric peaks in all
words of length n over the alphabet [1, k]. Since then, researchers have investigated
these statistics in various combinatorial structures, and over the past decade they
have been extended to multiple contexts. In 2021, Elizalde, Flérez, and Ramirez [4]
studied symmetric peaks in non-decreasing Dyck paths. In 2022, Mansour, Moreno,
and Ramirez [13] examined symmetric and asymmetric peaks in compositions. More
recently, Baril, Flérez, and Ramirez [2, 3] have considered Motzkin and Dyck paths
with air pockets. For further related results, see also [6, 20]. Beyond symmetric
and non-symmetric peaks, other approaches to symmetry have been considered. For
instance, Elizalde [5] studied the degree of symmetry of lattice paths.

In this paper, we aim to determine the total number of symmetric and non-
symmetric peaks over P, ;. Mansour, Shattuck, and Yan [15] found the total
number of occurrences of the subword pattern 121 (a symmetric peak) in all the
partitions of [1,n] with exactly k blocks. Additionally, they found the number of
occurrences of the subword patterns 231 and 321 (non-symmetric peaks) in all the
partitions of [1,n] with exactly k blocks. We present two alternative proofs that
yield the same results: the first one by using the theory of generating functions and
the results that Asakly [1] obtained, and the second one by using combinatorial
tools.

2. Counting Symmetric Peaks

2.1. The Ordinary Generating Function for the Number of Partitions
with Exactly k Blocks According to the Number of Symmetric Peaks

Let sp(m) denote the number of symmetric peaks in partition 7. Let SPg(x,q) be
the ordinary generating function for the number of partitions of [1,n] with exactly
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k blocks according to the number of symmetric peaks, that is

SPi(z,q) = Z " Z ¢P).

n>k TEP, k

Theorem 1. The generating function for the number of partitions of [1,n] with
exactly k blocks according to the number of symmetric peaks is given by

k
SPk(w,q) = 2" (xq + 1 — 2)* ' [ W;(2. ),
j=1

where

r(g—1)+ (1 —=2(qg—1)W;_1(z,q)
1-2(1-q)(1—(j —Dz) —aWj_1(z,q)(z(j — 1) +q(1 —2(j — 1))’

with initial condition Wy(x,q) = 1.

Wj(I7Q) =

Proof. In this context we want to use the canonical sequential form of a partition
7 of [1,n] with exactly k blocks, where k > 2. Any partition 7 of [1, n] with exactly
k blocks, can be decomposed as m = n'kw, where 7’ is a partition of [1,n;] with
exactly k — 1 blocks and w is a word of length ng over the alphabet [1, k], satisfying
ni1 + 1 + ne = n. There are three possibilities: w is empty, w starts with a letter
equal to the last letter in 7/, or w starts with a letter different from the last letter
of 7’. Let Wg(z,q) be the generating function for the number of words w of length
n over the alphabet [1, k], according to the statistic of symmetric peaks. According
to Lemma 2 in [1], we have

(g —1)+ (1 —2(q—1))Wi_1(z,q)

Wl 0) = T T = g0 =k~ D) — aWos (@ @)k — 1) + a1 — 2(k — 1))

The corresponding generating functions for the aforementioned cases are
x SPk—l(gjv Q)7

zZq SPk—l(‘ra q)Wk(‘Ta q)7
xSPy_1(z,q) Wi(z,q) — sWi(z,q) — 1).

This leads to
SPk(xa Q) = xSPk—l(x7Q)WkJ(l‘7 q)(xq + 1- Jf),

with initial conditions SPq(z,q) = 1 and SPy(z,q) = t£-. By induction, we obtain
the required result. O
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Note that, by substituting ¢ = 1 in Theorem 1, we obtain

k k

SPy(z,1) = 2" H Wj(z,1) = 2* H

j=1 j=1

1
1—jx’

which is the generating function for the number of partitions of [1,n] with k blocks.
We aim to find the total number of symmetric peaks over all partitions of [1, n] with
exactly k blocks. We proceed as follows:

e First, differentiate the generating function SPy(x, q) with respect to the vari-
able q.

e Second, substitute ¢ = 1 in % SPi(z,q).

e Finally, find the coefficients of z" in 3% SPi(z,q) |gq=1 to obtain the total
number of symmetric peaks over all P, ;.

Lemma 1. The partial derivative a% SPi(z, q) |q=1 is given by

0 k 23 (m)
— SPy(,q) [g=1= (k — D)2 SPx(x,1) + SPx(z,1) > ——2= (1)

dq L= (1—ma)

Proof. We need to differentiate the generating function SPy(z,q) with respect to
the variable ¢ and then evaluate the result at ¢ = 1:

a k
5 SR 0) lg=1 = k=) (2g+1—2) 2 [[ Wi, 9) 4=
j=1
k P k
+af(eg+1—a) [ D 50 Wl 4) II Wiza) ] le=
m=1 %4 j=1,j#m
k
=2 (k- 1) [[ Wiz, 1)
Jj=1
S Wn(, q)
8 m K
et 2 W (20) [ wea) o

This leads to

9

k 9
3 SPi(z,q) |ge1= 2" (k—1) H Wiz, 1)+ | Y anm(xl)]l:[ W;(z,1)
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Using the facts that

k k

SPy(z,1) = z* H Wj(z,1) = 2* H

j=1 j=1

and Theorem 3 in [1],

0 2(5)
a*qu(l’,CI) lg=1= A= ka2

Together with Equation (2), we obtain the required result. O

Corollary 1. The total number of symmetric peaks in all partitions of [1,n] with
exactly k blocks is

k N n—k
J i—3
(k= 1)Sn-14 + ;2 (2> ;y Sni -

Proof. In order to enumerate the total number of partitions of [1,n] with exactly k
blocks according to the symmetric peaks, we need to find the coefficients of ™ in
Equation (1). Due to the fact that

k
x
SPi(2,1) = = =3 Sppa”
?:1(1 —jz) r>k

we get the required result. O

2.2. Combinatorial Proof

In this subsection, we present a combinatorial proof for Corollary 1. For that, we
need the following definitions. Consider any set partition m# = w7y - - - m,, repre-
sented by its canonical sequence. We say that = contains a rise (descent) at i if
i < Tip1 (m; > w1, respectively). For instance, for m = 1121324323 € P 4, we
have four rises at i = 2,4,6,9 and four descents at ¢ = 3,5,7,8. Furthermore, we
say that m; is a record if m; > m; for all j =1,2,...,4—1, and ¢ is called the index
of the record ; (see [11]).

Proof. Let us divide the proof into two parts. In the first part, our focus is on sym-
metric peaks mymy 172 Where 7wy is a record. In the second part, our attention
will turn to a symmetric peak where 741 is not a record.

Let m = mymp - - - mp—1 be a canonical sequential form for IT € P,,_; ;. Choose any
record myq1 in Il € P,,_q , where 1 < /¢ <n—1, and let a = 7. It is obvious that we
have a rise at £. Add £+ 2 to block a and increase by one any member in their block
that is greater than or equal to £+2. As a result, we obtain the canonical sequential
form 77’ = mymg - WeTpr1aTeyo + - Tp—1, Where Tpq1ampso forms a symmetric peak.
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With k—1 options for choosing a record, we have a total of (k—1)S,,_1  symmetric
peaks.

Considering ¢ and j, where 3 < i <n —k and 2 < j < k, the total number of
symmetric peaks at ¢ where 7wy is not a record can be determined by summing the
possible partitions in P, j that can be decomposed as m = 7" jaf3 for each ¢ and j.
Here, 7 is a partition with 5 — 1 blocks, « is a word of length 7 over the alphabet
[1, j] whose last three letters form a symmetric peak, and 5 may be an empty word.
There are (g)ji*?’Sn,i’k members of P, ; with this form. This is because there
are ji=3 choices for the first i — 3 letters of a, (J) for the final three letters in
o (representing a symmetric peak), and S,_;; choices for the remaining letters
m = 7" jB, ensuring that they form a partition of an (n — i)-set into k blocks. [

3. Counting Non-Symmetric Peaks

3.1. The Ordinary Generating Function for the Number of Partitions
with Exactly k Blocks According to the Number of Non-Symmetric
Peaks

Let nsp(7) denote the number of non-symmetric peaks in partition 7. Let NSPg(z, q)
be the ordinary generating function for the number of partitions of [1,n] with ex-
actly k blocks according to the number of non-symmetric peaks. That is,

NSPg(z, q) Zm Z anp(”).

n>k TEP, 1

Theorem 2. The generating function for the number of partitions of [1,n] with
exactly k blocks according to the number of non-symmetric peaks is given by,

k
) [T (G —22q+1- (G —2)a),
Jj=3

NSPx(z, q)

HE?:-

where

) = Ta= D+ —alg= D)W (n0
T 1—917(1—(])(1—2%“)—JL‘Wj_l(aL‘,q)(Qac—i—q(l—23:))7

with initial condition Wo(x, q) =1.

Proof. Let w be any partition of [1,n] with exactly k blocks, where k > 3. It can be
decomposed as m = 7'kw, where 7’ is a partition of [1, n;] with exactly k— 1 blocks,
and w is a word of length ny over the alphabet [1, k] satisfying n; + 1+ ny = n.
There are three possibilities: w is empty, w starts with a letter different from the
last letter in 7, and w starts with a letter equal to the last letter of 7’. Let /V[7k(x, q)
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be the generating function for the number of words w of length n over the alphabet
[1, k] according to the statistic of non-symmetric peaks. According to a result of
Asakly [1], we have

(g —1) + (1 —2(g = 1) Wi (2,9) _
1—2(1=¢q)(1—2x) — aWi_1(z,q)(2z + q(1 — 22))

Wk(:ﬁ,q) =

Then the corresponding generating functions for the above cases respectively are
x NSPk—l (Z‘, q)a

22(j — 2)gNSP_1 (, ) Wi(z, q),
2 NSPy_1 (2, q)(Wi(z, q) — 2(j — 2)Wi(z, q) — 1).
This leads to

NSPy(z,q) =  NSPy_1 (2, )W (z, q)(zq(j — 2) + 1 — 2(j — 2)),

with initial conditions, NSPy(x,q) = 1, NSPi(z,q) = %, and NSPy(z,q) =
m. By induction we obtain the required result. O

By substituting ¢ = 1 in Theorem 2, we obtain NSPy(z, 1) = z* H§:1 W;(z,1) =
zk H?Zl lfjx, which is the generating function for the number of partitions of [1, n]

with k& blocks.
Our goal is to find the total number of the non-symmetric peaks over all partitions

of [1, n] with exactly k blocks. To achieve this, we repeat the same steps as presented
in Lemma 1.

Lemma 2. The partial derivative a% NSPy(z,q) |q=1 s given by

k <
237”

d k—1
a711\1813,6(397@;) lg=1= ( ) )mspk(x 1) + NSP(z,1) T;

Proof. By differentiating the generating function NSPy(x,q) with respect to the
variable ¢ and then evaluating the result at ¢ = 1 we obtain

0
g VP, 0) lo=1

k k
= Zg H Wiz, q) [J(G = 22q+1— (= 2)2) | lg=1

i=1,i#m 7=3

k

k
Wiz, q) > (m—=2z [ ((G—2zq+1—(—2)2) | lg=1 -

i= m=3 j=3,j#m

H?T‘
== -
=
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Evaluating at ¢ = 1 gives

0
o NSPk(JC, Q) |q=1

dq

LN k ko k
Za— m(Z,q) lg=1 H Wi(z,1) kaWi(x,l)Z(m—@x
m=1 i=1,i#Fm =1 m=3
kO k

o W (0) Lo =Dk o

=z Z ( D HW 5 x HWi(x,l).
m=1 i=1

According to Theorem 5 in [1], we have

0 2%(4)
%Wk(% ‘J) |q:1* ma

and the equalities

Wi(2,q) |g=1=

and NSPg(z,1)

I\Ew

1
1—kx
lead to the required result. O

Corollary 2. The total number of non-symmetric peaks in all partitions of [1,n]
with exactly k blocks is

Ek 1 k j n—k
- § : § : . —3 .
( 2 )Sn_l,k 2 =3 <3) i=3 TS

Proof. By finding the coefficients of x in 8% NSPi(z,q) |q=1 we get the result. O

3.2. Combinatorial Proof
In this subsection, we present a combinatorial proof for Corollary 2.

Combinatorial Proof of Corollary 2. Let us focus on non-symmetric peaks
T¢Te4+1Te4+2 Where mppq is a record. Consider m = mymy---m,—1 as a canonical
sequential form for II € P,_; . Choose any record myy; in II € P,_1 ), where
1 <¢<n-—1. It is obvious that we have a rise at £. Add ¢+ 2 to any block a,
where a < w41 and a # 7y, by increasing any member in their block that is greater
than or equal to £+ 2 by one. As a result, we obtain the canonical sequential form
' = Mo - W12 - Tn_1, Where mpi1ameyo forms a non-symmetric peak.
For each chosen record 741, there are w41 — 2 possible choices for the block a.
The sum of these choices, considering all possible records from 3 to k (excluding 1
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B=DH=2) bossibilities.

and 2 since they do not form non-symmetric peaks), gives
This leads to (kgl)Sn_Lk non-symmetric peaks.

Let us focus on non-symmetric peaks mymy 1742, where mp4; is not a record.
Considering i and j, where 3 <i <n —k and 2 < j < k, the total number of non-
symmetric peaks at £ where 7,11 is not a record can be determined by summing
the possible partitions in P, ; that can be decomposed as m = n”jaf for each i
and j. Here, 7" is a partition with j — 1 blocks, « is a word of length i over the
alphabet [1, j] whose last three letters forming a non-symmetric peak, and 5 may
be an empty word. There are 2(§)ji_3Sn,i,k members of P, j, with this form. This
is because there are j°~3 choices for the first i — 3 letters of «, 2(:]3) for the final
three letters in « (representing a non-symmetric peak), and S,,_; 5 choices for the
remaining letters m = 7'/j 3, ensuring that they form a partition of an (n — 7)-set
into k blocks. O
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