

COUNTING SYMMETRIC AND NON-SYMMETRIC PEAKS IN A SET PARTITION

Walaa Asakly

Department of Mathematics, Braude College, Karmiel, Israel
 walaaa@braude.ac.il

Noor Kezil

Department of Mathematics, University of Haifa, Haifa, Israel
 nkizil02@campus.haifa.ac.il

Received: 4/24/25, Revised: 9/12/25, Accepted: 12/2/25, Published: 1/5/26

Abstract

The aim of this paper is to derive explicit formulas for two statistics. The first one is the total number of symmetric peaks in a set partition of $[1, n]$ with exactly k blocks, and the second one is the total number of non-symmetric peaks in a set partition of $[1, n]$ with exactly k blocks. We represent these results in two ways: first, by using the theory of generating functions, and second, by using combinatorial tools.

1. Introduction

A *partition* Π of the set $[1, n] = \{1, 2, \dots, n\}$ of size k (*a partition of $[1, n]$ with exactly k blocks*) is a collection $\{B_1, B_2, \dots, B_k\}$ that satisfies: $\emptyset \neq B_i \subseteq [1, n]$ for all i , $B_i \cap B_j = \emptyset$ for $i \neq j$, and $\bigcup_{i=1}^k B_i = [1, n]$. The elements B_i are called *blocks*. We use the assumption that blocks are listed in an increasing order of their minimal elements, that is, $\min B_1 < \min B_2 < \dots < \min B_k$. We let $P_{n,k}$ denote the set of all partitions of $[1, n]$ with exactly k blocks (see [19]). Note that $|P_{n,k}| = S_{n,k}$, which are known as the *Stirling numbers of the second kind* (see A008277 in [18]). A partition Π can be written as $\pi_1 \pi_2 \dots \pi_n$, where $i \in B_{\pi_i}$ for all i . This form is called the *canonical sequential form*. For example, $\Pi = \{\{12\}, \{3\}\}$ is a partition of $[1, 3]$ and the canonical sequential form is $\pi = 112$. Then we can see that any partition Π of the set $[1, n]$ with exactly k blocks can be represented as a word of length n over the alphabet $[1, k]$. A *word ω of length n over the alphabet $[1, k]$* is an element of $[1, k]^n$ (see [7]) of the form $1(1)^*2(2)^*\dots k(k)^*$, where $(m)^*$ is a word over the alphabet $[1, m]$. These words are called *restricted growth functions*. For other properties of set partitions, see [16].

The study of patterns in combinatorial structures is very popular. For example, Kitaev [8] researched patterns in permutations and words. For more examples of patterns in various combinatorial structures, refer to [9, 10, 12], and [17]. Given $\pi = \pi_1\pi_2 \cdots \pi_n \in [1, k]^n$, a pattern $\pi_i\pi_{i+1}\pi_{i+2}$ is called a *peak* at i if it satisfies $\pi_i < \pi_{i+1} > \pi_{i+2}$ for $1 \leq i \leq n - 2$. For instance, let $\pi = 1322141251$ be a word in $[1, 5]^{10}$. It has 3 peaks, which are 132, 141, and 251. Mansour and Shattuck [14] determined the number of peaks in all words of length n over the alphabet $[1, k]$, and derived the number of peaks over $P_{n,k}$.

We say that $\pi = \pi_1\pi_2 \cdots \pi_n \in [1, k]^n$ contains a *symmetric peak*, if there exists $1 \leq i \leq n - 2$ such that $\pi_i\pi_{i+1}\pi_{i+2}$ is a peak and $\pi_i = \pi_{i+2}$. Similarly, we say that π contains a *non-symmetric peak*, if there exists $1 \leq i \leq n - 2$ such that $\pi_i\pi_{i+1}\pi_{i+2}$ is a peak and $\pi_i \neq \pi_{i+2}$. In the case of the example $\pi = 1322141251$, there is one symmetric peak 141, and two non-symmetric peaks, namely 132, and 251. Asakly [1] determined the number of symmetric and non-symmetric peaks in all words of length n over the alphabet $[1, k]$. Since then, researchers have investigated these statistics in various combinatorial structures, and over the past decade they have been extended to multiple contexts. In 2021, Elizalde, Flórez, and Ramírez [4] studied symmetric peaks in non-decreasing Dyck paths. In 2022, Mansour, Moreno, and Ramírez [13] examined symmetric and asymmetric peaks in compositions. More recently, Baril, Flórez, and Ramírez [2, 3] have considered Motzkin and Dyck paths with air pockets. For further related results, see also [6, 20]. Beyond symmetric and non-symmetric peaks, other approaches to symmetry have been considered. For instance, Elizalde [5] studied the degree of symmetry of lattice paths.

In this paper, we aim to determine the total number of symmetric and non-symmetric peaks over $P_{n,k}$. Mansour, Shattuck, and Yan [15] found the total number of occurrences of the subword pattern 121 (a symmetric peak) in all the partitions of $[1, n]$ with exactly k blocks. Additionally, they found the number of occurrences of the subword patterns 231 and 321 (non-symmetric peaks) in all the partitions of $[1, n]$ with exactly k blocks. We present two alternative proofs that yield the same results: the first one by using the theory of generating functions and the results that Asakly [1] obtained, and the second one by using combinatorial tools.

2. Counting Symmetric Peaks

2.1. The Ordinary Generating Function for the Number of Partitions with Exactly k Blocks According to the Number of Symmetric Peaks

Let $sp(\pi)$ denote the number of symmetric peaks in partition π . Let $SP_k(x, q)$ be the ordinary generating function for the number of partitions of $[1, n]$ with exactly

k blocks according to the number of symmetric peaks, that is

$$\text{SP}_k(x, q) = \sum_{n \geq k} x^n \sum_{\pi \in P_{n,k}} q^{\text{sp}(\pi)}.$$

Theorem 1. *The generating function for the number of partitions of $[1, n]$ with exactly k blocks according to the number of symmetric peaks is given by*

$$\text{SP}_k(x, q) = x^k (xq + 1 - x)^{k-1} \prod_{j=1}^k W_j(x, q),$$

where

$$W_j(x, q) = \frac{x(q-1) + (1-x(q-1))W_{j-1}(x, q)}{1-x(1-q)(1-(j-1)x) - xW_{j-1}(x, q)(x(j-1) + q(1-x(j-1)))},$$

with initial condition $W_0(x, q) = 1$.

Proof. In this context we want to use the canonical sequential form of a partition π of $[1, n]$ with exactly k blocks, where $k \geq 2$. Any partition π of $[1, n]$ with exactly k blocks, can be decomposed as $\pi = \pi' k \omega$, where π' is a partition of $[1, n_1]$ with exactly $k-1$ blocks and ω is a word of length n_2 over the alphabet $[1, k]$, satisfying $n_1 + 1 + n_2 = n$. There are three possibilities: ω is empty, ω starts with a letter equal to the last letter in π' , or ω starts with a letter different from the last letter of π' . Let $W_k(x, q)$ be the generating function for the number of words ω of length n over the alphabet $[1, k]$, according to the statistic of symmetric peaks. According to Lemma 2 in [1], we have

$$W_k(x, q) = \frac{x(q-1) + (1-x(q-1))W_{k-1}(x, q)}{1-x(1-q)(1-(k-1)x) - xW_{k-1}(x, q)(x(k-1) + q(1-x(k-1)))}.$$

The corresponding generating functions for the aforementioned cases are

$$\begin{aligned} & x \text{SP}_{k-1}(x, q), \\ & x^2 q \text{SP}_{k-1}(x, q) W_k(x, q), \\ & x \text{SP}_{k-1}(x, q) (W_k(x, q) - xW_k(x, q) - 1). \end{aligned}$$

This leads to

$$\text{SP}_k(x, q) = x \text{SP}_{k-1}(x, q) W_k(x, q) (xq + 1 - x),$$

with initial conditions $\text{SP}_0(x, q) = 1$ and $\text{SP}_1(x, q) = \frac{x}{1-x}$. By induction, we obtain the required result. \square

Note that, by substituting $q = 1$ in Theorem 1, we obtain

$$\text{SP}_k(x, 1) = x^k \prod_{j=1}^k W_j(x, 1) = x^k \prod_{j=1}^k \frac{1}{1 - jx},$$

which is the generating function for the number of partitions of $[1, n]$ with k blocks. We aim to find the total number of symmetric peaks over all partitions of $[1, n]$ with exactly k blocks. We proceed as follows:

- First, differentiate the generating function $\text{SP}_k(x, q)$ with respect to the variable q .
- Second, substitute $q = 1$ in $\frac{\partial}{\partial q} \text{SP}_k(x, q)$.
- Finally, find the coefficients of x^n in $\frac{\partial}{\partial q} \text{SP}_k(x, q) |_{q=1}$ to obtain the total number of symmetric peaks over all $P_{n,k}$.

Lemma 1. *The partial derivative $\frac{\partial}{\partial q} \text{SP}_k(x, q) |_{q=1}$ is given by*

$$\frac{\partial}{\partial q} \text{SP}_k(x, q) |_{q=1} = (k-1)x \text{SP}_k(x, 1) + \text{SP}_k(x, 1) \sum_{m=1}^k \frac{x^3 \binom{m}{2}}{(1-mx)}. \quad (1)$$

Proof. We need to differentiate the generating function $\text{SP}_k(x, q)$ with respect to the variable q and then evaluate the result at $q = 1$:

$$\begin{aligned} \frac{\partial}{\partial q} \text{SP}_k(x, q) |_{q=1} &= x^{k+1}(k-1)(xq+1-x)^{k-2} \prod_{j=1}^k W_j(x, q) |_{q=1} \\ &\quad + x^k(xq+1-x)^{k-1} \left(\sum_{m=1}^k \frac{\partial}{\partial q} W_m(x, q) \prod_{j=1, j \neq m}^k W_j(x, q) \right) |_{q=1} \\ &= x^{k+1}(k-1) \prod_{j=1}^k W_j(x, 1) \\ &\quad + x^k \left(\sum_{m=1}^k \frac{\frac{\partial}{\partial q} W_m(x, q)}{W_m(x, q)} \prod_{j=1}^k W_j(x, q) \right) |_{q=1}. \end{aligned}$$

This leads to

$$\frac{\partial}{\partial q} \text{SP}_k(x, q) |_{q=1} = x^{k+1}(k-1) \prod_{j=1}^k W_j(x, 1) + x^k \left(\sum_{m=1}^k \frac{\frac{\partial}{\partial q} W_m(x, 1)}{W_m(x, 1)} \prod_{j=1}^k W_j(x, 1) \right). \quad (2)$$

Using the facts that

$$\text{SP}_k(x, 1) = x^k \prod_{j=1}^k W_j(x, 1) = x^k \prod_{j=1}^k \frac{1}{1-jx},$$

and Theorem 3 in [1],

$$\frac{\partial}{\partial q} W_k(x, q) |_{q=1} = \frac{x^3 \binom{k}{2}}{(1-kx)^2}.$$

Together with Equation (2), we obtain the required result. \square

Corollary 1. *The total number of symmetric peaks in all partitions of $[1, n]$ with exactly k blocks is*

$$(k-1)S_{n-1,k} + \sum_{j=2}^k \binom{j}{2} \sum_{i=3}^{n-k} j^{i-3} S_{n-i,k}.$$

Proof. In order to enumerate the total number of partitions of $[1, n]$ with exactly k blocks according to the symmetric peaks, we need to find the coefficients of x^n in Equation (1). Due to the fact that

$$\text{SP}_k(x, 1) = \frac{x^k}{\prod_{j=1}^k (1-jx)} = \sum_{r \geq k} S_{r,k} x^r$$

we get the required result. \square

2.2. Combinatorial Proof

In this subsection, we present a combinatorial proof for Corollary 1. For that, we need the following definitions. Consider any set partition $\pi = \pi_1 \pi_2 \cdots \pi_n$, represented by its canonical sequence. We say that π contains a *rise* (*descent*) at i if $\pi_i < \pi_{i+1}$ ($\pi_i > \pi_{i+1}$, respectively). For instance, for $\pi = 1121324323 \in P_{10,4}$, we have four rises at $i = 2, 4, 6, 9$ and four descents at $i = 3, 5, 7, 8$. Furthermore, we say that π_i is a *record* if $\pi_i > \pi_j$ for all $j = 1, 2, \dots, i-1$, and i is called the *index* of the record π_i (see [11]).

Proof. Let us divide the proof into two parts. In the first part, our focus is on symmetric peaks $\pi_\ell \pi_{\ell+1} \pi_{\ell+2}$ where $\pi_{\ell+1}$ is a record. In the second part, our attention will turn to a symmetric peak where $\pi_{\ell+1}$ is not a record.

Let $\pi = \pi_1 \pi_2 \cdots \pi_{n-1}$ be a canonical sequential form for $\Pi \in P_{n-1,k}$. Choose any record $\pi_{\ell+1}$ in $\Pi \in P_{n-1,k}$, where $1 \leq \ell \leq n-1$, and let $a = \pi_\ell$. It is obvious that we have a rise at ℓ . Add $\ell+2$ to block a and increase by one any member in their block that is greater than or equal to $\ell+2$. As a result, we obtain the canonical sequential form $\pi' = \pi_1 \pi_2 \cdots \pi_\ell \pi_{\ell+1} a \pi_{\ell+2} \cdots \pi_{n-1}$, where $\pi_{\ell+1} a \pi_{\ell+2}$ forms a symmetric peak.

With $k-1$ options for choosing a record, we have a total of $(k-1)S_{n-1,k}$ symmetric peaks.

Considering i and j , where $3 \leq i \leq n-k$ and $2 \leq j \leq k$, the total number of symmetric peaks at ℓ where $\pi_{\ell+1}$ is not a record can be determined by summing the possible partitions in $P_{n,k}$ that can be decomposed as $\pi = \pi''j\alpha\beta$ for each i and j . Here, π'' is a partition with $j-1$ blocks, α is a word of length i over the alphabet $[1, j]$ whose last three letters form a symmetric peak, and β may be an empty word. There are $\binom{j}{2}j^{i-3}S_{n-i,k}$ members of $P_{n,k}$ with this form. This is because there are j^{i-3} choices for the first $i-3$ letters of α , $\binom{j}{2}$ for the final three letters in α (representing a symmetric peak), and $S_{n-i,k}$ choices for the remaining letters $\pi = \pi''j\beta$, ensuring that they form a partition of an $(n-i)$ -set into k blocks. \square

3. Counting Non-Symmetric Peaks

3.1. The Ordinary Generating Function for the Number of Partitions with Exactly k Blocks According to the Number of Non-Symmetric Peaks

Let $\text{nsp}(\pi)$ denote the number of non-symmetric peaks in partition π . Let $\text{NSP}_k(x, q)$ be the ordinary generating function for the number of partitions of $[1, n]$ with exactly k blocks according to the number of non-symmetric peaks. That is,

$$\text{NSP}_k(x, q) = \sum_{n \geq k} x^n \sum_{\pi \in P_{n,k}} q^{\text{nsp}(\pi)}.$$

Theorem 2. *The generating function for the number of partitions of $[1, n]$ with exactly k blocks according to the number of non-symmetric peaks is given by,*

$$\text{NSP}_k(x, q) = x^k \prod_{i=1}^k \widetilde{W}_i(x, q) \prod_{j=3}^k ((j-2)xq + 1 - (j-2)x),$$

where

$$\widetilde{W}_j(x, q) = \frac{x(q-1) + (1-x(q-1))\widetilde{W}_{j-1}(x, q)}{1-x(1-q)(1-2x) - x\widetilde{W}_{j-1}(x, q)(2x+q(1-2x))},$$

with initial condition $\widetilde{W}_0(x, q) = 1$.

Proof. Let π be any partition of $[1, n]$ with exactly k blocks, where $k \geq 3$. It can be decomposed as $\pi = \pi'k\omega$, where π' is a partition of $[1, n_1]$ with exactly $k-1$ blocks, and ω is a word of length n_2 over the alphabet $[1, k]$ satisfying $n_1 + 1 + n_2 = n$. There are three possibilities: ω is empty, ω starts with a letter different from the last letter in π' , and ω starts with a letter equal to the last letter of π' . Let $\widetilde{W}_k(x, q)$

be the generating function for the number of words ω of length n over the alphabet $[1, k]$ according to the statistic of non-symmetric peaks. According to a result of Asakly [1], we have

$$\widetilde{W}_k(x, q) = \frac{x(q-1) + (1-x(q-1))\widetilde{W}_{k-1}(x, q)}{1-x(1-q)(1-2x) - x\widetilde{W}_{k-1}(x, q)(2x+q(1-2x))}.$$

Then the corresponding generating functions for the above cases respectively are

$$\begin{aligned} & x \text{NSP}_{k-1}(x, q), \\ & x^2(j-2)q \text{NSP}_{k-1}(x, q)\widetilde{W}_k(x, q), \\ & x \text{NSP}_{k-1}(x, q)(\widetilde{W}_k(x, q) - x(j-2)\widetilde{W}_k(x, q) - 1). \end{aligned}$$

This leads to

$$\text{NSP}_k(x, q) = x \text{NSP}_{k-1}(x, q)\widetilde{W}_k(x, q)(xq(j-2) + 1 - x(j-2)),$$

with initial conditions, $\text{NSP}_0(x, q) = 1$, $\text{NSP}_1(x, q) = \frac{x}{1-x}$, and $\text{NSP}_2(x, q) = \frac{x^2}{(1-x)(1-2x)}$. By induction we obtain the required result. \square

By substituting $q = 1$ in Theorem 2, we obtain $\text{NSP}_k(x, 1) = x^k \prod_{j=1}^k W_j(x, 1) = x^k \prod_{j=1}^k \frac{1}{1-jx}$, which is the generating function for the number of partitions of $[1, n]$ with k blocks.

Our goal is to find the total number of the non-symmetric peaks over all partitions of $[1, n]$ with exactly k blocks. To achieve this, we repeat the same steps as presented in Lemma 1.

Lemma 2. *The partial derivative $\frac{\partial}{\partial q} \text{NSP}_k(x, q) |_{q=1}$ is given by*

$$\frac{\partial}{\partial q} \text{NSP}_k(x, q) |_{q=1} = \binom{k-1}{2} x \text{NSP}_k(x, 1) + \text{NSP}_k(x, 1) \sum_{m=3}^k \frac{2x^3 \binom{m}{3}}{(1-mx)}.$$

Proof. By differentiating the generating function $\text{NSP}_k(x, q)$ with respect to the variable q and then evaluating the result at $q = 1$ we obtain

$$\begin{aligned} & \frac{\partial}{\partial q} \text{NSP}_k(x, q) |_{q=1} \\ &= \left(x^k \sum_{m=1}^k \frac{\partial}{\partial q} \widetilde{W}_m(x, q) \prod_{i=1, i \neq m}^k \widetilde{W}_i(x, q) \prod_{j=3}^k ((j-2)xq + 1 - (j-2)x) \right) |_{q=1} \\ &+ \left(x^k \prod_{i=1}^k \widetilde{W}_i(x, q) \sum_{m=3}^k (m-2)x \prod_{j=3, j \neq m}^k ((j-2)xq + 1 - (j-2)x) \right) |_{q=1}. \end{aligned}$$

Evaluating at $q = 1$ gives

$$\begin{aligned}
& \frac{\partial}{\partial q} \text{NSP}_k(x, q) |_{q=1} \\
&= x^k \sum_{m=1}^k \frac{\partial}{\partial q} \widetilde{W}_m(x, q) |_{q=1} \prod_{i=1, i \neq m}^k \widetilde{W}_i(x, 1) + x^k \prod_{i=1}^k \widetilde{W}_i(x, 1) \sum_{m=3}^k (m-2)x \\
&= x^k \sum_{m=1}^k \frac{\frac{\partial}{\partial q} \widetilde{W}_m(x, q) |_{q=1}}{\widetilde{W}_m(x, 1)} \prod_{i=1}^k \widetilde{W}_i(x, 1) + x \frac{(k-1)(k-2)}{2} x^k \prod_{i=1}^k \widetilde{W}_i(x, 1).
\end{aligned}$$

According to Theorem 5 in [1], we have

$$\frac{\partial}{\partial q} \widetilde{W}_k(x, q) |_{q=1} = \frac{2x^3 \binom{k}{3}}{(1-kx)^2},$$

and the equalities

$$\widetilde{W}_k(x, q) |_{q=1} = \frac{1}{1-kx} \quad \text{and} \quad \text{NSP}_k(x, 1) = x^k \prod_{i=1}^k \widetilde{W}_i(x, 1),$$

lead to the required result. \square

Corollary 2. *The total number of non-symmetric peaks in all partitions of $[1, n]$ with exactly k blocks is*

$$\binom{k-1}{2} S_{n-1, k} + 2 \sum_{j=3}^k \binom{j}{3} \sum_{i=3}^{n-k} j^{i-3} S_{n-i, k}.$$

Proof. By finding the coefficients of x in $\frac{\partial}{\partial q} \text{NSP}_k(x, q) |_{q=1}$ we get the result. \square

3.2. Combinatorial Proof

In this subsection, we present a combinatorial proof for Corollary 2.

Combinatorial Proof of Corollary 2. Let us focus on non-symmetric peaks $\pi_\ell \pi_{\ell+1} \pi_{\ell+2}$ where $\pi_{\ell+1}$ is a record. Consider $\pi = \pi_1 \pi_2 \cdots \pi_{n-1}$ as a canonical sequential form for $\Pi \in P_{n-1, k}$. Choose any record $\pi_{\ell+1}$ in $\Pi \in P_{n-1, k}$, where $1 \leq \ell \leq n-1$. It is obvious that we have a rise at ℓ . Add $\ell+2$ to any block a , where $a < \pi_{\ell+1}$ and $a \neq \pi_\ell$, by increasing any member in their block that is greater than or equal to $\ell+2$ by one. As a result, we obtain the canonical sequential form $\pi' = \pi_1 \pi_2 \cdots \pi_\ell \pi_{\ell+1} a \pi_{\ell+2} \cdots \pi_{n-1}$, where $\pi_{\ell+1} a \pi_{\ell+2}$ forms a non-symmetric peak. For each chosen record $\pi_{\ell+1}$, there are $\pi_{\ell+1} - 2$ possible choices for the block a . The sum of these choices, considering all possible records from 3 to k (excluding 1

and 2 since they do not form non-symmetric peaks), gives $\frac{(k-1)(k-2)}{2}$ possibilities. This leads to $\binom{k-1}{2} S_{n-1,k}$ non-symmetric peaks.

Let us focus on non-symmetric peaks $\pi_\ell \pi_{\ell+1} \pi_{\ell+2}$, where $\pi_{\ell+1}$ is not a record. Considering i and j , where $3 \leq i \leq n-k$ and $2 \leq j \leq k$, the total number of non-symmetric peaks at ℓ where $\pi_{\ell+1}$ is not a record can be determined by summing the possible partitions in $P_{n,k}$ that can be decomposed as $\pi = \pi'' j \alpha \beta$ for each i and j . Here, π'' is a partition with $j-1$ blocks, α is a word of length i over the alphabet $[1, j]$ whose last three letters forming a non-symmetric peak, and β may be an empty word. There are $2\binom{j}{3} j^{i-3} S_{n-i,k}$ members of $P_{n,k}$ with this form. This is because there are j^{i-3} choices for the first $i-3$ letters of α , $2\binom{j}{3}$ for the final three letters in α (representing a non-symmetric peak), and $S_{n-i,k}$ choices for the remaining letters $\pi = \pi'' j \beta$, ensuring that they form a partition of an $(n-i)$ -set into k blocks. \square

References

- [1] W. Asakly, Enumerating symmetric and non-symmetric peaks in words, *Online J. Anal. Comb.* **10** (2018), Article 2.
- [2] J.-L. Baril, R. Flórez, and J. L. Ramírez, Counting symmetric and asymmetric peaks in Motzkin paths with air pockets, *Australas. J. Combin.* **89** (2) (2024), 323–343.
- [3] J.-L. Baril, R. Flórez, and J. L. Ramírez, Symmetries in Dyck paths with air pockets, *Aequationes Math.* **98** (2024), 1235–1264.
- [4] S. Elizalde, R. Flórez, and J. L. Ramírez, Enumerating symmetric peaks in non-decreasing Dyck paths, *Ars Math. Contemp.* **21** (2) (2021), 219–241.
- [5] S. Elizalde, The degree of symmetry of lattice paths, *Ann. Comb.* **25** (2021), 877–911.
- [6] R. Flórez and J. L. Ramírez, Enumerating symmetric and asymmetric peaks in Dyck paths, *Discrete Math.* **343** (2020), Article 112118.
- [7] S. Heubach and T. Mansour, *Combinatorics of Compositions and Words*, CRC Press, Boca Raton, FL, 2010.
- [8] S. Kitaev, *Patterns in Permutations and Words*, Springer, New York, 2011.
- [9] M. Klazar, Counting pattern-free set partitions. I. A generalization of Stirling numbers of the second kind, *European J. Combin.* **21** (2000), 367–378.
- [10] M. Klazar, Counting pattern-free set partitions. II. Noncrossing and other hypergraphs, *Electron. J. Combin.* **7** (2000), #R34.
- [11] A. Knopfmacher, T. Mansour, and S. Wagner, Records in set partitions, *Electron. J. Combin.* **17** (2010), #R109.
- [12] T. Mansour and A. O. Munagi, Enumeration of partitions by rises, levels and descents, in *Permutation Patterns, St Andrews 2007*, Cambridge University Press, Cambridge, 2007, 221–232.

- [13] T. Mansour, A. R. Moreno, and J. L. Ramírez, Symmetric and asymmetric peaks in compositions, *Online J. Anal. Comb.* **17** (2022), Article 4.
- [14] T. Mansour and M. Shattuck, Counting peaks and valleys in a partition of a set, *J. Integer Seq.* **13** (2010), Article 10.6.8.
- [15] T. Mansour, M. Shattuck, and S. H. F. Yan, Counting subwords in a partition of a set, *Electron. J. Combin.* **17** (2010), #R191.
- [16] T. Mansour, *Combinatorics of Set Partitions*, CRC Press, Boca Raton, FL, 2013.
- [17] M. Shattuck, Recounting the number of rises, levels and descents in finite set partitions, *Integers* **10** (2010), #A13.
- [18] OEIS Foundation Inc., The On-Line Encyclopedia of Integer Sequences, <https://oeis.org>.
- [19] R. P. Stanley, *Enumerative Combinatorics, Vol. 1*, Cambridge University Press, Cambridge, 1996.
- [20] Y. Sun, W. Shi, and D. Zhao, Symmetric and asymmetric peaks or valleys in (partial) Dyck paths, *Enumer. Comb. Appl.* **2** (2022), Article S2R24.