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Abstract

The aim of this paper is to derive explicit formulas for two statistics. The first one is

the total number of symmetric peaks in a set partition of [1, n] with exactly k blocks,

and the second one is the total number of non-symmetric peaks in a set partition of

[1, n] with exactly k blocks. We represent these results in two ways: first, by using

the theory of generating functions, and second, by using combinatorial tools.

1. Introduction

A partition Π of the set [1, n] = {1, 2, . . . , n} of size k (a partition of [1, n] with

exactly k blocks) is a collection {B1, B2, . . . , Bk} that satisfies: ∅ ̸= Bi ⊆ [1, n] for

all i, Bi

⋂
Bj = ∅ for i ̸= j, and

⋃k
i=1 Bi = [1, n]. The elements Bi are called blocks.

We use the assumption that blocks are listed in an increasing order of their minimal

elements, that is, minB1 < minB2 < · · · < minBk. We let Pn,k denote the set

of all partitions of [1, n] with exactly k blocks (see [19]). Note that |Pn,k| = Sn,k,

which are known as the Stirling numbers of the second kind (see A008277 in [18]).

A partition Π can be written as π1π2 · · ·πn, where i ∈ Bπi
for all i. This form is

called the canonical sequential form. For example, Π = {{12}, {3}} is a partition

of [1, 3] and the canonical sequential form is π = 112. Then we can see that any

partition Π of the set [1, n] with exactly k blocks can be represented as a word of

length n over the alphabet [1, k]. A word ω of length n over the alphabet [1, k] is

an element of [1, k]n (see [7]) of the form 1(1)∗2(2)∗ · · · k(k)∗, where (m)∗ is a word

over the alphabet [1,m]. These words are called restricted growth functions. For

other properties of set partitions, see [16].
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The study of patterns in combinatorial structures is very popular. For example,

Kitaev [8] researched patterns in permutations and words. For more examples of

patterns in various combinatorial structures, refer to [9, 10, 12], and [17]. Given

π = π1π2 · · ·πn ∈ [1, k]n, a pattern πiπi+1πi+2 is called a peak at i if it satisfies

πi < πi+1 > πi+2 for 1 ≤ i ≤ n − 2. For instance, let π = 1322141251 be a word

in [1, 5]10. It has 3 peaks, which are 132, 141, and 251. Mansour and Shattuck [14]

determined the number of peaks in all words of length n over the alphabet [1, k],

and derived the number of peaks over Pn,k.

We say that π = π1π2 · · ·πn ∈ [1, k]n contains a symmetric peak, if there exists

1 ≤ i ≤ n − 2 such that πiπi+1πi+2 is a peak and πi = πi+2. Similarly, we say

that π contains a non-symmetric peak, if there exists 1 ≤ i ≤ n − 2 such that

πiπi+1πi+2 is a peak and πi ̸= πi+2. In the case of the example π = 1322141251,

there is one symmetric peak 141, and two non-symmetric peaks, namely 132, and

251. Asakly [1] determined the number of symmetric and non-symmetric peaks in all

words of length n over the alphabet [1, k]. Since then, researchers have investigated

these statistics in various combinatorial structures, and over the past decade they

have been extended to multiple contexts. In 2021, Elizalde, Flórez, and Ramı́rez [4]

studied symmetric peaks in non-decreasing Dyck paths. In 2022, Mansour, Moreno,

and Ramı́rez [13] examined symmetric and asymmetric peaks in compositions. More

recently, Baril, Flórez, and Ramı́rez [2, 3] have considered Motzkin and Dyck paths

with air pockets. For further related results, see also [6, 20]. Beyond symmetric

and non-symmetric peaks, other approaches to symmetry have been considered. For

instance, Elizalde [5] studied the degree of symmetry of lattice paths.

In this paper, we aim to determine the total number of symmetric and non-

symmetric peaks over Pn,k. Mansour, Shattuck, and Yan [15] found the total

number of occurrences of the subword pattern 121 (a symmetric peak) in all the

partitions of [1, n] with exactly k blocks. Additionally, they found the number of

occurrences of the subword patterns 231 and 321 (non-symmetric peaks) in all the

partitions of [1, n] with exactly k blocks. We present two alternative proofs that

yield the same results: the first one by using the theory of generating functions and

the results that Asakly [1] obtained, and the second one by using combinatorial

tools.

2. Counting Symmetric Peaks

2.1. The Ordinary Generating Function for the Number of Partitions
with Exactly k Blocks According to the Number of Symmetric Peaks

Let sp(π) denote the number of symmetric peaks in partition π. Let SPk(x, q) be

the ordinary generating function for the number of partitions of [1, n] with exactly
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k blocks according to the number of symmetric peaks, that is

SPk(x, q) =
∑
n≥k

xn
∑

π∈Pn,k

qsp(π).

Theorem 1. The generating function for the number of partitions of [1, n] with

exactly k blocks according to the number of symmetric peaks is given by

SPk(x, q) = xk(xq + 1− x)k−1
k∏

j=1

Wj(x, q),

where

Wj(x, q) =
x(q − 1) + (1− x(q − 1))Wj−1(x, q)

1− x(1− q)(1− (j − 1)x)− xWj−1(x, q)(x(j − 1) + q(1− x(j − 1)))
,

with initial condition W0(x, q) = 1.

Proof. In this context we want to use the canonical sequential form of a partition

π of [1, n] with exactly k blocks, where k ≥ 2. Any partition π of [1, n] with exactly

k blocks, can be decomposed as π = π′kω, where π′ is a partition of [1, n1] with

exactly k− 1 blocks and ω is a word of length n2 over the alphabet [1, k], satisfying

n1 + 1 + n2 = n. There are three possibilities: ω is empty, ω starts with a letter

equal to the last letter in π′, or ω starts with a letter different from the last letter

of π′. Let Wk(x, q) be the generating function for the number of words ω of length

n over the alphabet [1, k], according to the statistic of symmetric peaks. According

to Lemma 2 in [1], we have

Wk(x, q) =
x(q − 1) + (1− x(q − 1))Wk−1(x, q)

1− x(1− q)(1− (k − 1)x)− xWk−1(x, q)(x(k − 1) + q(1− x(k − 1)))
.

The corresponding generating functions for the aforementioned cases are

x SPk−1(x, q),

x2q SPk−1(x, q)Wk(x, q),

x SPk−1(x, q)(Wk(x, q)− xWk(x, q)− 1).

This leads to

SPk(x, q) = x SPk−1(x, q)Wk(x, q)(xq + 1− x),

with initial conditions SP0(x, q) = 1 and SP1(x, q) =
x

1−x . By induction, we obtain

the required result.
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Note that, by substituting q = 1 in Theorem 1, we obtain

SPk(x, 1) = xk
k∏

j=1

Wj(x, 1) = xk
k∏

j=1

1

1− jx
,

which is the generating function for the number of partitions of [1, n] with k blocks.

We aim to find the total number of symmetric peaks over all partitions of [1, n] with

exactly k blocks. We proceed as follows:

• First, differentiate the generating function SPk(x, q) with respect to the vari-

able q.

• Second, substitute q = 1 in ∂
∂q SPk(x, q).

• Finally, find the coefficients of xn in ∂
∂q SPk(x, q) |q=1 to obtain the total

number of symmetric peaks over all Pn,k.

Lemma 1. The partial derivative ∂
∂q SPk(x, q) |q=1 is given by

∂

∂q
SPk(x, q) |q=1= (k − 1)xSPk(x, 1) + SPk(x, 1)

k∑
m=1

x3
(
m
2

)
(1−mx)

. (1)

Proof. We need to differentiate the generating function SPk(x, q) with respect to

the variable q and then evaluate the result at q = 1:

∂

∂q
SPk(x, q) |q=1 = xk+1(k − 1)(xq + 1− x)k−2

k∏
j=1

Wj(x, q) |q=1

+ xk(xq + 1− x)k−1

 k∑
m=1

∂

∂q
Wm(x, q)

k∏
j=1,j ̸=m

Wj(x, q)

 |q=1

= xk+1(k − 1)

k∏
j=1

Wj(x, 1)

+ xk

 k∑
m=1

∂
∂qWm(x, q)

Wm(x, q)

k∏
j=1

Wj(x, q)

 |q=1 .

This leads to

∂

∂q
SPk(x, q) |q=1= xk+1(k− 1)

k∏
j=1

Wj(x, 1)+ xk

 k∑
m=1

∂
∂qWm(x, 1)

Wm(x, 1)

k∏
j=1

Wj(x, 1)

 .

(2)
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Using the facts that

SPk(x, 1) = xk
k∏

j=1

Wj(x, 1) = xk
k∏

j=1

1

1− jx
,

and Theorem 3 in [1],

∂

∂q
Wk(x, q) |q=1=

x3
(
k
2

)
(1− kx)2

.

Together with Equation (2), we obtain the required result.

Corollary 1. The total number of symmetric peaks in all partitions of [1, n] with

exactly k blocks is

(k − 1)Sn−1,k +

k∑
j=2

(
j

2

) n−k∑
i=3

ji−3Sn−i,k.

Proof. In order to enumerate the total number of partitions of [1, n] with exactly k

blocks according to the symmetric peaks, we need to find the coefficients of xn in

Equation (1). Due to the fact that

SPk(x, 1) =
xk∏k

j=1(1− jx)
=

∑
r≥k

Sr,kx
r

we get the required result.

2.2. Combinatorial Proof

In this subsection, we present a combinatorial proof for Corollary 1. For that, we

need the following definitions. Consider any set partition π = π1π2 · · ·πn, repre-

sented by its canonical sequence. We say that π contains a rise (descent) at i if

πi < πi+1 (πi > πi+1, respectively). For instance, for π = 1121324323 ∈ P10,4, we

have four rises at i = 2, 4, 6, 9 and four descents at i = 3, 5, 7, 8. Furthermore, we

say that πi is a record if πi > πj for all j = 1, 2, . . . , i− 1, and i is called the index

of the record πi (see [11]).

Proof. Let us divide the proof into two parts. In the first part, our focus is on sym-

metric peaks πℓπℓ+1πℓ+2 where πℓ+1 is a record. In the second part, our attention

will turn to a symmetric peak where πℓ+1 is not a record.

Let π = π1π2 · · ·πn−1 be a canonical sequential form for Π ∈ Pn−1,k. Choose any

record πℓ+1 in Π ∈ Pn−1,k, where 1 ≤ ℓ ≤ n−1, and let a = πℓ. It is obvious that we

have a rise at ℓ. Add ℓ+2 to block a and increase by one any member in their block

that is greater than or equal to ℓ+2. As a result, we obtain the canonical sequential

form π′ = π1π2 · · ·πℓπℓ+1aπℓ+2 · · ·πn−1, where πℓ+1aπℓ+2 forms a symmetric peak.
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With k−1 options for choosing a record, we have a total of (k−1)Sn−1,k symmetric

peaks.

Considering i and j, where 3 ≤ i ≤ n − k and 2 ≤ j ≤ k, the total number of

symmetric peaks at ℓ where πℓ+1 is not a record can be determined by summing the

possible partitions in Pn,k that can be decomposed as π = π′′jαβ for each i and j.

Here, π′′ is a partition with j − 1 blocks, α is a word of length i over the alphabet

[1, j] whose last three letters form a symmetric peak, and β may be an empty word.

There are
(
j
2

)
ji−3Sn−i,k members of Pn,k with this form. This is because there

are ji−3 choices for the first i − 3 letters of α,
(
j
2

)
for the final three letters in

α (representing a symmetric peak), and Sn−i,k choices for the remaining letters

π = π′′jβ, ensuring that they form a partition of an (n− i)-set into k blocks.

3. Counting Non-Symmetric Peaks

3.1. The Ordinary Generating Function for the Number of Partitions
with Exactly k Blocks According to the Number of Non-Symmetric
Peaks

Let nsp(π) denote the number of non-symmetric peaks in partition π. Let NSPk(x, q)

be the ordinary generating function for the number of partitions of [1, n] with ex-

actly k blocks according to the number of non-symmetric peaks. That is,

NSPk(x, q) =
∑
n≥k

xn
∑

π∈Pn,k

qnsp(π).

Theorem 2. The generating function for the number of partitions of [1, n] with

exactly k blocks according to the number of non-symmetric peaks is given by,

NSPk(x, q) = xk
k∏

i=1

W̃i(x, q)

k∏
j=3

((j − 2)xq + 1− (j − 2)x) ,

where

W̃j(x, q) =
x(q − 1) + (1− x(q − 1))W̃j−1(x, q)

1− x(1− q)(1− 2x)− xW̃j−1(x, q)(2x+ q(1− 2x))
,

with initial condition W̃0(x, q) = 1.

Proof. Let π be any partition of [1, n] with exactly k blocks, where k ≥ 3. It can be

decomposed as π = π′kω, where π′ is a partition of [1, n1] with exactly k−1 blocks,

and ω is a word of length n2 over the alphabet [1, k] satisfying n1 + 1 + n2 = n.

There are three possibilities: ω is empty, ω starts with a letter different from the

last letter in π′, and ω starts with a letter equal to the last letter of π′. Let W̃k(x, q)
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be the generating function for the number of words ω of length n over the alphabet

[1, k] according to the statistic of non-symmetric peaks. According to a result of

Asakly [1], we have

W̃k(x, q) =
x(q − 1) + (1− x(q − 1))W̃k−1(x, q)

1− x(1− q)(1− 2x)− xW̃k−1(x, q)(2x+ q(1− 2x))
.

Then the corresponding generating functions for the above cases respectively are

xNSPk−1(x, q),

x2(j − 2)qNSPk−1(x, q)W̃k(x, q),

xNSPk−1(x, q)(W̃k(x, q)− x(j − 2)W̃k(x, q)− 1).

This leads to

NSPk(x, q) = xNSPk−1(x, q)W̃k(x, q)(xq(j − 2) + 1− x(j − 2)),

with initial conditions, NSP0(x, q) = 1, NSP1(x, q) = x
1−x , and NSP2(x, q) =

x2

(1−x)(1−2x) . By induction we obtain the required result.

By substituting q = 1 in Theorem 2, we obtain NSPk(x, 1) = xk
∏k

j=1 Wj(x, 1) =

xk
∏k

j=1
1

1−jx , which is the generating function for the number of partitions of [1, n]

with k blocks.

Our goal is to find the total number of the non-symmetric peaks over all partitions

of [1, n] with exactly k blocks. To achieve this, we repeat the same steps as presented

in Lemma 1.

Lemma 2. The partial derivative ∂
∂q NSPk(x, q) |q=1 is given by

∂

∂q
NSPk(x, q) |q=1=

(
k − 1

2

)
xNSPk(x, 1) + NSPk(x, 1)

k∑
m=3

2x3
(
m
3

)
(1−mx)

.

Proof. By differentiating the generating function NSPk(x, q) with respect to the

variable q and then evaluating the result at q = 1 we obtain

∂

∂q
NSPk(x, q) |q=1

=

xk
k∑

m=1

∂

∂q
W̃m(x, q)

k∏
i=1,i̸=m

W̃i(x, q)

k∏
j=3

((j − 2)xq + 1− (j − 2)x)

 |q=1

+

xk
k∏

i=1

W̃i(x, q)

k∑
m=3

(m− 2)x

k∏
j=3,j ̸=m

((j − 2)xq + 1− (j − 2)x)

 |q=1 .
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Evaluating at q = 1 gives

∂

∂q
NSPk(x, q) |q=1

= xk
k∑

m=1

∂

∂q
W̃m(x, q) |q=1

k∏
i=1,i̸=m

W̃i(x, 1) + xk
k∏

i=1

W̃i(x, 1)

k∑
m=3

(m− 2)x

= xk
k∑

m=1

∂
∂q W̃m(x, q) |q=1

W̃m(x, 1)

k∏
i=1

W̃i(x, 1) + x
(k − 1)(k − 2)

2
xk

k∏
i=1

W̃i(x, 1).

According to Theorem 5 in [1], we have

∂

∂q
W̃k(x, q) |q=1=

2x3
(
k
3

)
(1− kx)2

,

and the equalities

W̃k(x, q) |q=1=
1

1− kx
and NSPk(x, 1) = xk

k∏
i=1

W̃i(x, 1),

lead to the required result.

Corollary 2. The total number of non-symmetric peaks in all partitions of [1, n]

with exactly k blocks is(
k − 1

2

)
Sn−1,k + 2

k∑
j=3

(
j

3

) n−k∑
i=3

ji−3Sn−i,k.

Proof. By finding the coefficients of x in ∂
∂q NSPk(x, q) |q=1 we get the result.

3.2. Combinatorial Proof

In this subsection, we present a combinatorial proof for Corollary 2.

Combinatorial Proof of Corollary 2. Let us focus on non-symmetric peaks

πℓπℓ+1πℓ+2 where πℓ+1 is a record. Consider π = π1π2 · · ·πn−1 as a canonical

sequential form for Π ∈ Pn−1,k. Choose any record πℓ+1 in Π ∈ Pn−1,k, where

1 ≤ ℓ ≤ n − 1. It is obvious that we have a rise at ℓ. Add ℓ + 2 to any block a,

where a < πℓ+1 and a ̸= πℓ, by increasing any member in their block that is greater

than or equal to ℓ+ 2 by one. As a result, we obtain the canonical sequential form

π′ = π1π2 · · ·πℓπℓ+1aπℓ+2 · · ·πn−1, where πℓ+1aπℓ+2 forms a non-symmetric peak.

For each chosen record πℓ+1, there are πℓ+1 − 2 possible choices for the block a.

The sum of these choices, considering all possible records from 3 to k (excluding 1



INTEGERS: 26 (2026) 9

and 2 since they do not form non-symmetric peaks), gives (k−1)(k−2)
2 possibilities.

This leads to
(
k−1
2

)
Sn−1,k non-symmetric peaks.

Let us focus on non-symmetric peaks πℓπℓ+1πℓ+2, where πℓ+1 is not a record.

Considering i and j, where 3 ≤ i ≤ n− k and 2 ≤ j ≤ k, the total number of non-

symmetric peaks at ℓ where πℓ+1 is not a record can be determined by summing

the possible partitions in Pn,k that can be decomposed as π = π′′jαβ for each i

and j. Here, π′′ is a partition with j − 1 blocks, α is a word of length i over the

alphabet [1, j] whose last three letters forming a non-symmetric peak, and β may

be an empty word. There are 2
(
j
3

)
ji−3Sn−i,k members of Pn,k with this form. This

is because there are ji−3 choices for the first i − 3 letters of α, 2
(
j
3

)
for the final

three letters in α (representing a non-symmetric peak), and Sn−i,k choices for the

remaining letters π = π′′jβ, ensuring that they form a partition of an (n − i)-set

into k blocks.
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