
Article 6 INTEGERS 9 Supplement (2009)

COLUMN-TO-ROW OPERATIONS ON PARTITIONS: THE
ENVELOPES

Brian Hopkins
Department of Mathematics, Saint Peter’s College, Jersey City, NJ 07306, USA

bhopkins@spc.edu

Received: 2/11/08, Revised: 8/9/08, Accepted: 9/8/08, Published: 10/13/09

Abstract
Conjugation and the Bulgarian solitaire move are considered as extreme cases of
several column-to-row operations on integer partitions. Each operation generates
a state diagram on the partitions of n, which leads to the questions: How many
Garden of Eden states are there? How many cycle states? How many connected
components? All of these questions are answered for partitions of n when at least
n−1

2 columns are switched to rows.

1. Introduction

Conjugation is the fundamental operation on integer partitions. Write a partition
λ as (λ1, . . . ,λ!(λ)) where "(λ) denotes the partition’s length, its number of parts.
The conjugate partition λ′ is defined as λ′ = (λ′1, . . . ,λ′s) where λ′i is the number
of parts {λi} greater than or equal to i. This is more easily understood in terms of
the Ferrers diagram: the dots are reflected along the diagonal, so that columns and
rows are swapped; see Figure 3.

We write P (n) for the set of partitions of n. Since conjugation is an involution,
the state diagram of P (n) determined by conjugation consists of singletons and
pairs, i.e., self-conjugate partitions and conjugate pairs. See Figure 1 for an example,
which also introduces the superscript notation for partitions, e.g., writing 213 for
(2, 1, 1, 1).
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Figure 1: Conjugation on P (5); all 7 partitions are in cycles and there are 4 com-
ponents.
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Consider the effect of conjugation on P (n) as a state diagram. Notice in Figure
1 that all seven partitions of 5 are in cycles and the diagram has four connected
components.

Bulgarian solitaire is an operation on partitions introduced by Brandt in 1982 [3].
We define it as D1(λ) = (λ′1,λ1− 1, . . . ,λ!(λ)− 1) where any zeros are removed and
the parts may not be in the standard non-increasing order. In terms of the Ferrers
diagram, the operation takes the first (leftmost) column and makes it a row; see
Figure 3. Figure 2 shows the effect of D1 on partitions of 5.
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Figure 2: Bulgarian solitaire on P (5); there are 2 Garden of Eden partitions, 3 cycle
partitions, and one component.

Like conjugation, the D1 operation also produces a state diagram on P (n). Notice
in Figure 2 that three partitions of 5 are in cycles and the diagram consists of a
single component. There are also two partitions that have no pre-image under the
operation (15 and 213); these are called Garden of Eden partitions (subsequently
abbreviated GE-partitions).

In this article, we introduce a sequence of column-to-row operations; conjugation
and the Bulgarian solitaire operation are the extreme cases. Bulgarian solitaire has
been the subject of several articles; Hopkins-Jones [4] includes a fairly complete
bibliography. Many of the questions concern state diagram concepts: partitions in
cycles, partitions with no preimages, and number of connected components. In this
article, we consider these same questions for all generalized column-to-row opera-
tions. We determine the number of GE-partitions, the number of cycle partitions,
and the number of connected components for approximately half of all possible
cases.

2. General Row-to-Column Operations

Conjugation can be thought of as moving all columns to rows; Bulgarian solitaire
moves one column to a row. We connect these ideas by introducing the sequence of
operations

Dk(λ) = (λ′1, . . . ,λ
′
k,λ1 − k, . . . ,λ!(λ) − k)

where any nonpositive numbers are removed and the parts may not be in the stan-
dard non-increasing order. In terms of the Ferrers diagram, the operation takes the
first k columns and makes them rows. Figure 3 shows a partition and its images
under various Dk.



INTEGERS: 9 Supplement (2009) 3

Figure 3: Ferrers diagrams for λ = (4, 1), D1(λ) = (3, 2), D2(λ) = (2, 2, 1), and
D3(λ) = D4(λ) = λ′ = (2, 1, 1, 1), with shaded dots showing which rows came from
columns of λ.

These operations all generate state diagrams on P (n). Figures 4 and 5 show
P (5) under D2 and D3, respectively.
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Figure 4: The D2 operation on P (5); there are 2 GE-partitions, 3 total partitions
in cycles, and 2 components.
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Figure 5: The D3 operation on P (5); there is 1 GE-partition, 5 cycle partitions,
and 3 components.

Notice that for P (5), conjugation (Figure 1) is equivalent to the operation D4.
This is an example of a general fact.

Lemma 1. For a partition λ with λ1 ≤ k or with λ1 = k + 1 and λ2 ≤ k, the
operation Dk is equivalent to conjugation. In particular, Dn−1 is equivalent to
conjugation on P (n).

Proof. For λ with k or fewer columns, the claim is evident. Assume λ1 = k +1 and
λ2 ≤ k, i.e., that λ has k + 1 columns with (k + 1)st having height 1. Moving k
columns to rows leaves a single row of length 1, so that the effect of Dk is equivalent
to moving all columns to rows. Every λ ∈ P (n) has λ1 ≤ n−1 except the single-part
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partition (n), which satisfies the other condition since the second part of (n) is 0.
Therefore, for all partitions of n, Dn−1(λ) = λ′.

3. Results on Partitions with Many Parts

This section consists of results about partitions of n with at least (n − 1)/2 or
n/2 parts. One result is well-known and others are particular to the purposes
of this article. First, we introduce some notation. Capital letters signify sets,
corresponding lower-case letters the number of elements in the set, e.g., p(5) = 7.
Recall the convention that p(0) = 1. We will use part-wise addition on partitions,
e.g., (3, 1, 1) + (2, 2) = (5, 3, 1).

Let P (n, j) denote the set of partitions of n with exactly j parts; from the
examples, we see p(5, 3) = 2. Table 1 shows the p(n, j) values for 1 ≤ n, j ≤ 12.
Notice that, reading right to left, roughly half of each row are initial values of p(n),
i.e., 1, 1, 2, 3, 5, 7, . . . We call that portion of the triangle the envelope.

n\k 1 2 3 4 5 6 7 8 9 10 11 12
1 1
2 1 1
3 1 1 1
4 1 2 1 1
5 1 2 2 1 1
6 1 3 3 2 1 1
7 1 3 4 3 2 1 1
8 1 4 5 5 3 2 1 1
9 1 4 7 6 5 3 2 1 1
10 1 5 8 9 7 5 3 2 1 1
11 1 5 10 11 10 7 5 3 2 1 1
12 1 6 12 15 13 11 7 5 3 2 1 1

Table 1: p(n, k), the number of partitions of n with k parts.

Lemma 2. Let a positive integer n be given. For each integer j ≥ n
2 , p(n, j) =

p(n− j).

Proof. We demonstrate a bijection between P (n, j) and P (n− j). Any λ ∈ P (n, j)
can be written as λ = 1j +µ where µ ∈ P (n−j); let λ %→ µ. Any µ ∈ P (n−j) has at
most j parts, since the restriction on j implies n−j ≤ j, so that λ = 1j+µ ∈ P (n, j);
let µ %→ λ. Clearly these are inverse maps.

This result shows that, in some sense, the difficulty of studying partitions lies in
the partitions with fewer than n/2 parts, which correspond to roughly the left-hand
half of each row in Table 1. There are direct formulas for p(n, j) with j ≤ 5 (see,
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e.g., [2] and [6]), but they quickly become complicated. Notice that the λ %→ µ
relation determined by λ = 1j + µ is equivalent to removing the first column of the
Ferrers diagram of λ, i.e., the Bulgarian solitaire D1 operation without including
the part λ′1.

Lemma 3. Let a positive integer n be given. For each integer j ≥ n−1
2 , the following

hold.
(a) All λ ∈ P (n, k) with k ≥ j + 2 have λj = 1.
(b) All µ ∈ P (n) with "(µ) ≤ µ′1 have µ1 ≤ n− "(µ) + 1.
(c) All ν ∈ P (n) with ν1 = j + 1 have ν2 ≤ j. That is, all ν ∈ P (n) with

ν1 ≤ j + 1 satisfy one of the conditions of Lemma 1.

Proof. (a) Assume that λ ∈ P (n, j + 2). Since λ has j + 2 parts, λj '= 0. Suppose
that λj ≥ 2. Then the sum of the parts of λ would be at least 2j + 1 + 1 ≥ n + 1,
a contradiction. For k > j + 2, the sum of the parts has a higher lower bound, so
the result follows.

(b) The first row and the first column share a dot in the Ferrers diagram, so their
sum is at most n + 1.

(c) If ν1 = ν2 = j + 1, then ν1 + ν2 > n, contradicting µ ∈ P (n).

Note that (a) is “sharp” in the sense that, for example, every λ ∈ P (9, 6) has
λ4 = 1 but P (9, 5) includes 32211 and 241 whose third parts are 2, not 1.

4. Garden of Eden Partitions

Let GE(n, k) denote the GE-partitions of n under the operation Dk. From the
examples of the previous section, we know ge(5, 1) = ge(5, 2) = 2, ge(5, 3) = 1, and
ge(5, 4) = 0. Those data correspond to the n = 5 row of Table 2.

The diagonal of zeros corresponds to the fact that every partition has a pre-image
under conjugation. Notice that other diagonals seem to eventually stabilize at some
value; these limiting values comprise the envelope.

What is the sequence of values 0, 1, 2, 4, 7, 12, 19, 30, 34, 67, 97, . . . in the envelope?
One possibility is the partial sum of partition numbers (A000070 in [8]). Let

s(n) =
n∑

i=0

p(i)

and s(−1) = 0. Before we can verify that this sequence describes the envelope, we
need to characterize GE-partitions.

Lemma 4. A partition λ = (λ1, . . . ,λ!(λ)) ∈ P (n) is in GE(n, k) precisely when
λk − "(λ) ≤ −1− k.

Proof. In terms of the Ferrers diagram, λ has a pre-image under Dk for every set of k
rows each greater than or equal to "(λ)−k, i.e., long enough to be moved to become
columns to the left side of the remaining dots. This fails when λk < "(λ)− k.
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1 2 3 4 5 6 7 8 9 10
2 0
3 1 0
4 1 1 0
5 2 2 1 0
6 3 3 2 1 0
7 5 5 4 2 1 0
8 7 8 6 4 2 1 0
9 10 12 10 7 4 2 1 0
10 14 18 15 11 7 4 2 1 0
11 20 25 23 17 12 7 4 2 1 0
12 27 35 33 26 18 12 7 4 2 1
13 37 48 47 38 28 19 12 7 4 2
14 49 66 65 55 41 29 19 12 7 4
15 66 88 89 77 60 43 30 19 12 7
16 86 118 120 107 85 63 44 30 19 12
17 113 155 161 145 119 90 65 45 30 19
18 147 203 213 196 163 127 93 66 45 30
19 190 263 280 260 222 175 132 95 67 45
20 243 340 364 344 297 240 183 135 96 67
21 311 435 471 449 394 323 252 188 137 97

Table 2: ge(n, k), the number of GE-partitions in P (n) under Dk.

This generalizes the initial lemma and corollary of Hopkins-Jones [4] for Bulgar-
ian solitaire (D1).

We now show that, in the envelope, the GE-partitions are precisely the partitions
with many parts.

Theorem 1. Let a positive integer n be given. For each integer n−1
2 ≤ j ≤ n− 1,

we have ge(n, j) = s(n− j − 2).

Proof. If j = n−1, then the operation is equivalent to conjugation and there are no
GE-partitions, matching ge(n, n−1) = s(−1) = 0. So assume that n−1

2 ≤ j ≤ n−2.
By the preceding lemma, GE(n, j) consists of all λ ∈ P (n) with λj− "(λ) ≤ −1− j.
This means that any GE-partition λ must have "(λ) ≥ λj + j + 1, so λj '= 0 and in
fact "(λ) ≥ j + 2.

But by Lemma 3a, all µ ∈ P (n) with j + 2 or more parts have µj = 1, so
that µj − "(µ) = 1 − "(µ) ≤ 1 − (j + 2) = −1 − j. That is, GE(n, j) is exactly
P (n, j+2)∪· · ·∪P (n, n). By Lemma 2, p(n, j+2) = p(n−j−2), . . . , p(n, n) = p(0).
We conclude that ge(n, j) =

∑
p(i) = s(n− j − 2).

As with the p(n, j) values of Table 1, one would like to have formulas for the
columns of Table 2. Hopkins-Sellers [5] provides two proofs of the following result.
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Theorem 2.

ge(n, 1) = p(n− 3)− p(n− 9) + p(n− 18)− · · · =
∑

j≥1

(−1)j+1p

(
n− 3j2 + 3j

2

)

We make the following conjectures about the next few columns.
Conjectures

ge(n, 2) = p(n− 4) + p(n− 5)− p(n− 11)− p(n− 12)− p(n− 13) + p(n− 21) + · · ·

=
∑

j≥1

j∑

k=0

(−1)j+1p

(
n− 3j2 + 3j

2
− j − k

)

ge(n, 3) = p(n− 5) + p(n− 6) + p(n− 7)− p(n− 13)− p(n− 14)− 2p(n− 15)
− p(n− 16)− p(n− 17) + p(n− 24) + · · ·

ge(n, 4) = p(n− 6) + p(n− 7) + p(n− 8) + p(n− 9)− p(n− 15)− p(n− 16)
− 2p(n− 17)− 2p(n− 18)− 2p(n− 19)− p(n− 20)− p(n− 21)
+p(n− 27) + p(n− 28) + 2p(n− 29) + 3p(n− 30) + 3p(n− 31) + · · ·

where complete expressions for ge(n, 3) and ge(n, 4) involve q-binomial coefficients.
These are consistent with Theorem 1, since only the initial positive terms arise
in the envelope. These conjectures will be considered in future work with Louis
Kolitsch.

5. Cycle Partitions

Let CP (n, k) denote the partitions of n in cycles under the operation Dk. From
the examples of the previous section, we know cp(5, 1) = cp(5, 2) = 3, cp(5, 3) = 5,
and cp(5, 4) = 7. Those data correspond to the n = 5 row on the left-hand side of
Table 3.

Under conjugation, we know every partition is in a cycle, either self-conjugate or
half of a conjugate pair. By Lemma 1, then, cp(n, n − 1) = p(n). The right-hand
side of Table 3 shows p(n) − cp(n, k). The envelope of this triangle of differences
appears to be 2s(n) for s(n) defined in Section 4.

Theorem 3. Let a positive integer n be given. For each integer n−1
2 ≤ j ≤ n− 1,

cp(n, j) = p(n)− 2s(n− j − 2).

Proof. Given λ ∈ GE(n, j), we claim that its iterated images under Dj have the
form

λ−́→λ′ −→ µ←́→µ′

where →́ indicates that the operation Dj coincides with conjugation and we allow
the possibility µ = µ′.
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1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
2 2 0
3 1 3 2 0
4 3 3 5 2 2 0
5 3 3 5 7 4 4 2 0
6 1 5 7 9 11 10 6 4 2 0
7 4 6 7 11 13 15 11 9 8 4 2 0
8 6 8 10 14 18 20 22 16 14 12 8 4 2 0
9 4 6 11 16 22 26 28 30 26 24 19 14 8 4 2 0
10 1 5 15 20 28 34 38 40 41 37 27 22 14 8 4 2
11 5 5 15 23 32 42 48 52 51 51 41 33 24 14 8 4
12 10 10 20 28 41 53 63 69 67 67 57 49 36 24 14 8
13 10 16 22 32 46 63 77 87 91 85 79 69 55 38 24 14
14 5 23 29 37 56 77 97 111 130 112 106 98 79 58 38 24
15 1 28 35 42 63 91 116 138 175 148 141 134 113 85 60 38
16 6 33 41 49 75 108 143 171 225 198 190 182 156 123 88 60
17 15 35 45 57 83 124 168 207 282 262 252 240 214 173 129 90
18 20 42 48 68 98 145 202 253 365 343 337 317 287 240 183 132
19 15 39 45 79 107 166 233 301 475 451 445 411 383 324 257 189
20 6 41 43 93 126 190 275 360 621 586 584 534 501 437 352 267
21 1 46 42 108 142 215 314 423 791 746 750 684 650 577 478 369

Table 3: On the left, cp(n, k), the number of cycle partitions. On the right, p(n)−
cp(n, k), the number of partitions not in cycles.

First, we know from the proof of Theorem 1 that λ ∈ GE(n, j) has at least j +2
parts, and then λ1 ≤ j by Lemma 3b. Therefore, by Lemma 1, Dj(λ) = λ′. Let
Dj(λ′) = µ. Since λ is a Garden of Eden partition, µ '= λ and applying Dj to λ′ is
not equivalent to conjugation. By the definition of Dj ,

µ = Dj(Dj(λ)) = Dj(λ′) = (λ1, . . . ,λj ,λ
′
1 − j)

with λ′2 − j and subsequent terms removed since λ′2 ≤ j by Lemma 3c. Therefore
µ′1 = j + 1 and, by Lemma 3b, µ1 ≤ j + 1. By Lemmas 3c and 1 we conclude that
Dj(µ) = µ′. Likewise, Dj(µ′) = µ. Since conjugation is an involution, the sets
{λ,λ′} and {µ, µ′} are disjoint, completing the claim.

We can now complete the proof of the theorem. If some partition λ ∈ P (n) is
not in a cycle, it is either a GE-partition or between a GE-partition and a cycle
partition. By the claim above, we know that a GE-partition maps to its conjugate,
which maps to a cycle partition. From Theorem 1, we know that there are s(n−j−2)
GE-partitions, which are not in cycles. Their conjugates are the other s(n− j − 2)
partitions not in cycles.

It is important to realize that the structural results of the proof do not imply that
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every component of P (n) under Dj in the envelope contains at most four partitions.
It is true that λ ∈ GE(n, j) has iterates λ→ λ′ → µ for µ ∈ CP (n, j), but multiple
GE-partitions can lead to the same µ, e.g.,

D3(D3((215)) = D3(61) = 3211, D3(D3((314)) = D3(511) = 3211.

Also, the structural results of the proof do not hold in general outside the enve-
lope. For instance, D2(D2(513)) = 3221 which does not have k +1 = 3 parts. Also,
Figure 1 shows that D1(D1(15)) = 41 /∈ CP (5, 1), so two steps from a GE-partition
is not always a cycle partition. Lengths from GE-partitions to cycle partitions for
D1 are among the data tabulated in [4].

A formula for the column cp(n, 1) is proven in [3].

Theorem 4. Write n =
(m+1

2

)
− a where 0 ≤ a ≤ m− 1. Then cp(n, 1) =

(m
a

)
.

Formulas for other columns would seem to require generalizing the characteriza-
tion of cycle partition for D1 found in [3]. The proof in the next section describes
cycle partitions in the envelope, but does not apply for smaller j.

6. Connected Components

Let cc(n, k) denote the number of connected components in the state diagram of
P (n) under the operation Dk. From the examples of the previous section, we know
cc(5, 1) = 1, cc(5, 2) = 2, cc(5, 3) = 3, and cc(5, 4) = 4. Those data correspond to
the n = 5 row on the left-hand side of Table 4.

The numbers of self-conjugate partitions and conjugate pairs were studied by
Osima [7]. It follows that the total number of components of P (n) under conjugation
(equivalently Dn−1) is given by

cc(n) = p(n)−p(n−2)+p(n−8)−p(n−18)+p(n−32)− · · · =
∑

k≥0

(−1)kp(n−2k2)

with initial terms 1, 1, 2, 3, 4, 6, 8, 12, 16, 22, 29... (A046682 in [8]). The right-hand
side of Table 4 shows cc(n) − cc(n, k). The envelope of this triangle of differences
appears once again to be s(n) defined in Section 4.

Theorem 5. Let a positive integer n be given. For each integer n−1
2 ≤ j ≤ n− 1,

we have cc(n, j) = cc(n)− s(n− j − 2).

Proof. Recall from the proof of Theorem 3 that a partition of P (n) not in a cycle
under Dj is either a GE-partition or the conjugate of a GE-partition. For each λ ∈
GE(n, j), the conjugate pair {λ,λ′} counted in cc(n) is part of another component.
The discussion of µ = Dj(Dj(λ)) in the proof of Theorem 3 established that the
conjugate pair {µ, µ′} is still a 2-cycle under Dj or the self-conjugate µ is still
self-conjugate under Dj .
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1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
2 1 0
3 1 2 1 0
4 1 2 3 2 1 0
5 1 2 3 4 3 2 1 0
6 1 2 4 5 6 5 4 2 1 0
7 1 2 4 6 7 8 7 6 4 2 1 0
8 2 3 5 8 10 11 12 10 9 7 4 2 1 0
9 1 2 5 9 12 14 15 16 15 14 11 7 4 2 1 0
10 1 2 6 10 15 18 20 21 21 20 16 12 7 4 2 1
11 1 2 6 11 17 22 25 27 28 27 23 18 12 7 4 2
12 2 3 7 13 21 28 33 36 38 37 33 27 19 12 7 4
13 2 4 7 14 23 33 40 45 50 48 45 38 29 19 12 7
14 1 5 9 15 27 39 50 57 68 64 60 54 42 30 19 12
15 1 6 11 17 30 46 60 71 89 84 79 73 60 44 30 19
16 1 7 12 18 34 54 73 88 117 111 106 100 84 64 45 30
17 3 8 13 20 37 61 85 106 148 143 138 131 114 90 66 45
18 4 9 14 23 41 69 101 128 191 186 181 172 154 126 94 67
19 3 9 13 25 44 78 116 152 245 239 235 223 204 170 132 96
20 1 8 12 29 49 87 135 181 316 309 305 288 268 230 182 136
21 1 7 12 33 53 97 153 212 399 393 388 367 347 303 247 188

Table 4: On left, cc(n, k), the number of connected components. On right, cc(n)−
cc(n, k).

We show that no partitions in CP (n, j) are part of larger cycles. Recall from
the proof of Theorem 1 that GE(n, j) = P (n, j + 2) ∪ · · · ∪ P (n, n). It follows that
{conjugates of GE-partitions} is the set of λ ∈ P (n) with λ1 ≥ j + 2. Therefore
CP (n, j) is the remainder of P (n), namely, the π ∈ P (n) with π1 ≤ j + 1 and
π′1 ≤ j + 1, i.e., the partitions of n that fit inside a (j + 1) × (j + 1) square. By
Lemmas 3c and 1, the operation Dj is equivalent to conjugation for CP (n, j), which
means that it consists of conjugate pairs and self-conjugate partitions.

Of the singletons and pairs counted by cc(n), exactly ge(n, j) pairs are no longer
components in P (n) under Dj . By Theorem 1, we conclude cc(n, j) = cc(n)−s(n−
j − 2).

Viewing P (n) dynamically under Dn−1, then Dn−2, . . . , some conjugate pairs
are “opened” into “λ → λ′ →” fragments that attach to preserved conjugate pairs
or self-conjugate partitions. To the left of the envelope, larger cycles develop and
there are longer paths from GE-partitions to cycle partitions, as in Figure 1.

A formula for the column cc(n, 1) is proven in [3].



INTEGERS: 9 Supplement (2009) 11

Theorem 6. Write n =
(m+1

2

)
− a where 0 ≤ a ≤ m− 1. Then

cc(n, 1) =
1
m

∑

d|(m,a)

ϕ(d)
(

m/d

a/d

)

where the summation is over all divisors of the greatest common divisor of m and
a, and ϕ is the Euler phi function.

It would be very interesting to determine formulas for other columns, as they
would transition between the number-theoretic formula for cc(n, 1) and the formulas
involving p(n) for cc(n, j) in the envelope.
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