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Abstract
For a positive integer k let φk be the k-fold composition of the Euler function φ. In
this paper, we study the size of the set {φk(n) ≤ x} as x tends to infinity.

1. Introduction

Let φ be Euler’s function. For a positive integer k, let φk be the k-fold composition
of φ. In this paper, we study the range Vk of φk. For a positive real number x we
put

Vk(x) = {φk(n) ≤ x}.

In 1935, Erdős [7] showed that #V1(x) = x/(log x)1+o(1). (Stronger estimates are
known for #V1(x), see [10], [17].) In 1977, Erdős and Hall [8] considered the more
general problem of estimating #Vk(x), suggesting that it is x/(log x)k+o(1) for each
fixed integer k ≥ 1. They were able to prove that

#V2(x) ≤ x

(log x)2+o(1)
,

and in fact, they were able to establish a somewhat more explicit form for this
inequality. Our first result is the following general upper bound on #Vk(x) which
is uniform in k.

1Work by the first author was done in Spring of 2006 while he visited Williams College. He
would like to thank this college for their hospitality and Professor Igor Shparlinski for enlightening
conversations.

2The second author would like to thank Bob Vaughan for helpful correspondence. He was
supported in part by NSF grants DMS-0401422 and DMS-0703850.
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Theorem 1. The estimate

#Vk(x) ≤ x

(log x)k
exp

(
13k3/2(log log x log log log x)1/2

)
(1)

holds uniformly in k ≥ 1 once x is sufficiently large.

As a corollary we have, when x→∞,

#Vk(x) ≤ x

(log x)k+o(1)
(2)

when k = o((log log x/ log log log x)1/3), and

#Vk(x) ≤ x

(log x)(1+o(1))k

when k = o(log log x/ log log log x). Note that (1) is somewhat stronger than the
explicit upper bound in [8] for the case k = 2.

Let k ≥ 1 be fixed. Let m > 2 be such that m, 2m + 1, . . . , 2k−1m + 2k−1 − 1
are all prime numbers. Then φk(2k−1m + 2k−1 − 1) = m − 1. The quantitative
version of the Prime k-tuples Conjecture of Bateman and Horn [2] implies that the
number of such values m ≤ x should be ≥ ckx/(log x)k for x sufficiently large,
where ck > 0 is a constant depending on k. Thus, we see that up to the factor
of size (log x)o(1) appearing on the right hand side of estimate (2), it is likely that
#Vk(x) = x/(log x)k+o(1) holds when k is fixed as x→∞, thus verifying the surmise
of Erdős and Hall.

Next, we prove a lower bound on #V2(x) comparable to the one predicted by
the above heuristic construction.

Theorem 2. There exists an absolute constant c2 > 0 such that the inequality

#V2(x) ≥ c2
x

(log x)2

holds for all x ≥ 2.

In [8], Erdős and Hall assert that they were able to prove such a lower bound with
the exponent 2 replaced by some larger real number.

In the last section we study the integers that are in every Vk and we also discuss
analogous problems for Carmichael’s universal exponent function λ(n).

In what follows, we use the Vinogradov symbols & and ' and the Landau sym-
bols O and o with their usual meaning. The constants and convergence implied by
them might depend on some other parameters such as k, K, ε, etc. We use p and q
with or without subscripts for prime numbers. We use ω(n) for the number of dis-
tinct prime factors of n, Ω(n) for the number of prime power divisors (> 1) of n, p(n)
and P (n) for the smallest and largest prime divisors of n, respectively, and v2(n)
for the exponent of 2 in the factorization of n. We write log1 x = max{1, log x},
and for k ≥ 2 we put logk x for the k-fold iterate of the function log1 evaluated at
x. For a subset A of positive integers and a positive real number x we write A(x)
for the set A ∩ [1, x].
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2. The Proof of Theorem 1

Let x be large. By a result of Pillai [18], we may assume that k ≤ log x/ log 2,
since otherwise Vk(x) = {1}. Furthermore, we may in fact assume that k ≤
10−2 log2 x/ log3 x, since otherwise the upper bound on #Vk(x) appearing in es-
timate (1) exceeds x. We may also assume that n ≥ x/(log x)k, since otherwise
there are at most x/(log x)k possibilities for n, and, in particular, at most x/(log x)k

possibilities for φk(n) also.
By the minimal order of the Euler function, there exists a constant c0 > 0 such

that the inequality φ(m)/m ≥ c0m/ log log m holds for all m ≥ 3. From this it is
easy to prove by induction on k that if x is sufficiently large and φk(n) ≤ x, then
n ≤ x(2c0 log2 x)k for all k in our stated range. Let X := x(log2 x)2k, so that for
large x, we may assume that n ≤ X.

Let y = x1/(log2 x)2 and write n = pm, where p = P (n). By familiar estimates
(see, for example, [3]), the number of n ≤ X such that p ≤ y is at most, for large x,

X

(log x)log2 x
=

x(log2 x)2k

(log x)log2 x
≤ x

(log x)k
,

so we need only deal with the case p > y. Assume that Ω(φk(n)) ≥ 2.9k log2 x.
Lemma 13 in [15] shows that the number of such possibilities for φk(n) ≤ x is

' kx log x log2 x

22.9k log2 x
≤ x(log2 x)2

(log x)2.9k log 2−1
' x

(log x)k

for all k in our range. It follows that we may assume that

Ω(φk(n)) ≤ 2.9k log2 x.

It is easy to see that Ω(φ(a)) ≥ Ω(a) − 1 for every natural number a. Thus, since
φk(m) | φk(n), we have

Ω(φ(m)) ≤ 2.9k log2 x + k − 1 ≤ 3k log2 x (3)

for all x sufficiently large.
Since also φk(p) | φk(n), we may assume that

Ω(φk(p)) ≤ 2.9k log2 x.

Since p > y, we have log2 p > log2 x − 2 log3 x, so that Ω(φk(p)) ≤ 3k log2 p for
x large. Since p ≤ X/m, we thus have, in the notation of Lemma 4 below, that
p ∈ Ak,3k(X/m), and that result shows that the number of such possibilities is at
most

#Ak,3k(X/m) ≤ X

m(log(X/m))k
exp

(
3k(6k log2 X log3 X)1/2 + 3k2 log3 X

)
.
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Observe further that with our bound on k,

3k(6k log2 X log3 X)1/2 + 3k2 log3 X

= k3/2(log3 X)
(
3(6 log2 X/ log3 X)1/2 + 3k1/2

)

≤ k3/2(log2 X log3 X)1/2(3
√

6 + 3/10).

Since 3
√

6 + 3/10 < 7.7, it thus follows that if we put

U(x) = exp(7.7k3/2(log2 x log3 x)1/2),

then for large x,

#Ak,3k(X/m) ≤ xU(x)(log2 x)2k

m(log y)k
≤ xU(x)(log2 x)4k

m(log x)k

uniformly in m and k. Thus, the number of such possibilities for n ≤ X is

≤ xU(x)(log2 x)4k

(log x)k

∑

m∈M

1
m

,

where M is the set of all possible values of m. Such m satisfy, in particular, the
inequality (3). Lemma 3 below shows that if x is sufficiently large then

∑

m∈M

1
m
≤ exp

(
2.9(3k log2 X log3 X)1/2

)
,

which together with the fact that 2.9
√

3 < 5.1 and the previous estimate shows that
the count on the set of our n ≤ X is

≤ x

(log x)k
exp

(
13k3/2(log2 x log3 x)1/2

)

for large values of x. We thus finish the proof of Theorem 1 and it remains to prove
Lemmas 3 and 4.

Lemma 3. Let x be large, K be any positive integer and let N (K,x) denote the
set of natural numbers n ≤ x with Ω(φ(n)) ≤ K log2 x. Then

∑

n∈N (K,x)

1
n
≤ exp(2.9(K log2 x log3 x)1/2)

holds for large values of x uniformly in K.

Proof. We assume that K ≤ log2 x/ log3 x since otherwise the right hand side above
exceeds (log x)2.9, while the left hand side is at most log x + O(1), so the desired
inequality holds anyway.
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Let z be a parameter that we will choose shortly. For each integer n ≤ x write
n = n0n1, where each prime q | n0 has Ω(q − 1) < log z and each prime q | n1 has
Ω(q− 1) ≥ log z. For n ∈ N (K,x) we have that Ω(n1) ≤ K log2 x/ log z. Let N0(x)
denote the set of numbers n0 ≤ x divisible only by primes q with Ω(q − 1) < log z
and let N1(x) denote the set of numbers n1 ≤ x with Ω(n1) ≤ K log2 x/ log z. We
thus have

∑

n∈N (K,x)

1
n
≤




∑

n0∈N0(x)

1
n0








∑

n1∈N1(x)

1
n1



 . (4)

Note that

∑

n0∈N0(x)

1
n0

≤
∞∑

j=0

1
j!




∑

q≤x
Ω(q−1)<log z

1
q

+
1
q2

+ · · ·





j

= exp




∑

q≤x
Ω(q−1)<log z

1
q − 1



 .

It follows from Erdős [7] that there is some c > 0 such that the number of primes
q ≤ t with ω(q − 1) ≤ 1

2 log2 q is O(t/(log t)1+c). Since ω(q − 1) ≤ Ω(q − 1), the
same O-estimate holds for the distribution of primes q with Ω(q − 1) ≤ 1

2 log2 q. In
particular the sum of their reciprocals is convergent, so that

∑

ez2
<q≤x

Ω(q−1)<log z

1
q − 1

≤
∑

ez2
<q

Ω(q−1)< 1
2 log2 q

1
q − 1

' 1.

Thus,
∑

q≤x
Ω(q−1)<log z

1
q − 1

≤
∑

q≤ez2

1
q − 1

+
∑

ez2
<q≤x

Ω(q−1)<log z

1
q − 1

≤ 2 log z + O(1),

and so ∑

n0∈N0(x)

1
n0
' z2. (5)

For the sum over N1(x), we have

∑

n1∈N1(x)

1
n1

≤
∑

j≤K log2 x/ log z

1
j!




∑

q≤x

1
q − 1




j

≤
∑

j≤K log2 x/ log z

1
j!

(log2 x + O(1))j .
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We choose z = exp((1
2K log2 x log3 x)1/2). Observe that the inequalities

K log2 x/ log z = (2K log2 x/ log3 x)1/2 < 21/2 log2 x/ log3 x < log2 x

hold for large values of x. Thus,

∑

n1∈N1(x)

1
n1
' (2 log2 x)K log2 x/ log z. (6)

Putting (5) and (6) into (4) and using the fact that 2
√

2 < 2.9, we have

∑

n∈N (K,x)

1
n
≤ exp(2.9(K log2 x log3 x)1/2))

for all sufficiently large x. This proves the lemma.

Remark 1. The above proof uses ideas from Erdős [7] and is also similar to
Lemma 4 in Luca [14].

Lemma 4. Let k, K be positive integers not exceeding 1
2 log2 x. Put

Ak,K = {p : Ω(φk(p)) ≤ K log2 p}.

We have

#Ak,K(x) ≤ x

(log x)k
exp

(
3k(2K log2 x log3 x)1/2 + 3k2 log3 x

)

for all sufficiently large values of x, independent of the choices of k,K.

Proof. When k = 1, this trivially follows from the Prime Number Theorem. We
assume that k > 1. We let p ∈ Ak,K(x) and assume that p ≥ x/(log x)k because
there are only π(x/(log x)k) ≤ x/(log x)k primes p failing this condition. Let p0 = p
and write

p0 − 1 = p1m1;
p1 − 1 = p2m2;

...
pk−2 − 1 = pk−1mk−1,

where pi = P (pi−1 − 1) for all i = 1, . . . , k − 1. Since Ω(φ(n)) ≥ Ω(n)− 1, we have
that

Ω(pi−1 − 1) ≤ Ω(φi(p)) ≤ Ω(φk(p)) + k ≤ 2K log2 x

for all i = 1, 2, . . . , k − 1 if x is sufficiently large. In particular

pi ≥ p1/(2K log2 x)
i−1 ≥ p1/(log2 x)2

i−1 ,
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so that for x sufficiently large we have

pi ≥ p1/(log2 x)2i

0 ≥ yi :=
1
2
x1/(log2 x)2i

for i = 1, 2, . . . , k − 1.
Consider the k linear functions Lj(x) = Ajx+Bj for j = k, k− 1, . . . , 1 given by

Lk(x) = x and

Lk−1(x) = mk−1x + 1,
Lk−2(x) = mk−2mk−1x + mk−2 + 1,

...
L1(x) = m1 · · ·mk−1x + (m1 · · ·mk−2 + m1 · · ·mk−3 + · · ·+ m1 + 1).

Note that pk−1 ≤ x/(m1 · · ·mk−1) is such that Lj(pk−1) is a prime for all j =
1, . . . , k. If some (Ai, Bi) > 1, then there is at most one prime pk−1 for which all
of Lj(pk−1) are prime. Further, since 0 = Bk < Bk−1 < · · · < B1, it follows that
if some AjBi = AiBj for some 0 ≤ j < i ≤ k − 1, then 1 < Ai/Aj | Bi so that
(Ai, Bi) > 1. Thus, we may assume that each AjBi − AiBj += 0. The following
result allows us to use something like a traditional sieve upper bound for prime
k-tuples, where it is not assumed that k is bounded. Note that a stronger form of
this lemma will appear in [11].

Lemma 5. Let Li(n) = Ain + Bi be linear functions for i = 1, . . . , k with integer
coefficients such that each Ai > 0, each (Ai, Bi) = 1, and

E := A1 · · ·Ak

∏

1≤j<i≤k

(AjBi −AiBj)

is nonzero. Put F (n) =
∏k

i=1 Li(n) and for each p let ρ(p) be the number of
congruence classes n mod p such that F (n) ≡ 0 (mod p). Assume that for each p,
we have ρ(p) < p. If N ≥ 2 and k ≤ log N/(10 log2 N)2, then the number of n ≤ N
such that each Li(n) is prime is at most

(ck log1 k)k

(
∆

φ(∆)

)k N(log2 N)k

(log N)k
,

where c is an absolute constant and ∆ is the product of the distinct primes p | E
with p > k.

Proof. We may assume that N is large since the constant c may be adjusted for
smaller values. Let Z denote the number of n ≤ N with each Li(n) prime. We first
show

Z ≤ N
∏

k<p≤N1/(100k log2 N)

(
1− ρ(p)

p

)
+ O

(
N

(log N)10k

)
. (7)
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For the proof, let ρ(m) be the number of solutions n modulo m of the congru-
ence F (n) ≡ 0 (mod m). Clearly, ρ is a multiplicative function. Put N1 =
N1/(100k log2 N). Noting that ρ(p) ≤ k, it follows that ρ(d) ≤ kω(d) holds for all
squarefree positive integers d. Taking M to be the first even integer exceeding
10k log2 N , we get, by the Principle of Inclusion and Exclusion and the Bonferroni
upper-bound inequality, that

Z ≤ N1/2 +
∑

k<p(d)≤P (d)≤N1
ω(d)≤M

(
Nµ(d)ρ(d)

d
+ O(kω(d))

)

≤ N
∏

k<p≤N1

(
1− ρ(p)

p

)

+O

(
N1/2 +

∑

d : P (d)≤N1
ω(d)≤M

kω(d) + N
∑

d : µ(d)%=0,
P (d)≤N1
ω(d)>M

kω(d)

d

)
.

It remains to look at the O-terms. For the first sum, we have that

kω(d) ≤ k10k log2 N+2 = exp((10k log2 N + 2) log k) < N1/9

for all large values of N uniformly in our range for k. The number of possibilities
for d is ≤ NM

1 ≤ N (10k log2 N+2)/(100k log2 N) < N1/9 for large values of N . Hence,
the first sum is < N2/9. The second one is

≤
∑

j>M

N

j!




∑

p≤N1

k

p




j

≤
∑

j>M

N

j!
(k log2 N + O(k))j

≤ N
∑

j>M

(
ek log2 N + O(k)

j

)j

≤ N
∑

j>M

(e

9

)j
≤ N

eM
≤ N

(log N)10k

for large values of N . Note that in our range for k, this last error estimate dominates
the other two. Thus, we have (7).

To finish the proof of the lemma, we estimate the main term in (7). We have

log




∏

k<p≤N1

(
1− ρ(p)

p

)

 ≤ −
∑

k<p≤N1

ρ(p)
p

≤ −
∑

k<p≤N1

k

p
+

∑

p|∆

k

p

= −k log2 N1 + k log2 k − k
∑

p|∆

log(1− 1/p) + O(k).

Since the last sum above is − log(∆/φ(∆)) and log2 N1 = log2 N− log3 N− log1 k+
O(1), the main term in (7) is at most

(ck log1 k)k

(
∆

φ(∆)

)k N(log2 N)k

(log N)k
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for some absolute constant c. Thus, by adjusting the constant c if necessary, we
have the lemma.

We apply Lemma 5 to our system of linear functions with N = x/(m1 . . .mk−1) ≥
yk−1. Thus, the number of choices for pk−1 ≤ N with each Li(pk−1) prime is at
most

x(log log x)k

m1 . . .mk−1(log yk−1)k

(
c

∆
φ(∆)

k log k

)k

.

We need an estimate for ∆/φ(∆). For this, note that each AjBi in our setting is at
most x2, so that ∆ ≤ xO(k2), therefore by the minimal order of φ, we have

∆/φ(∆)' log1 k + log2 x' log2 x. (8)

With our choice for yk−1, our upper bound for k in the lemma, and the estimate
(8), our count for the number of choices for pk−1 is now at most

x

m1 . . .mk−1(log x)k
exp(3k2 log3 x),

for x sufficiently large.
Observe that Ω(φk−j(mj)) ≤ K log log x holds for all j = 1, . . . , k − 1, so that

Ω(φ(mj)) ≤ 2K log log x for each j = 1, . . . , k − 1 if x is sufficiently large. It
then follows, by Lemma 3, that summing up over all possibilities for m1, . . . ,mk−1

(positive integers m ≤ x such that Ω(φ(m)) ≤ 2K log2 x), we have

#Ak,K(x) ≤ x exp(3k2 log3 x)
(log x)k




∑

1≤m≤x
Ω(φ(m))≤2K log log x

1
m





k−1

≤ x

(log x)k
exp

(
3k(2K log2 x log3 x)1/2 + 3k2 log3 x

)

once x is large. This completes the proof of Lemma 4.

3. The Proof of Theorem 2

Here, we use the following theorem essentially due to Chen [5, 6].

Lemma 6. There exists x0 such that if x > x0 the interval [x/2, x] contains &
x/(log x)2 primes p such that (p− 1)/2 is either prime or a product of two primes
each of them exceeding x1/10.

Let
C1(x) = {p ∈ [x/2, x] : (p− 1)/2 is prime}
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and let

C2(x) = {p ∈ [x/2, x] : (p− 1)/2 = q1q2, qi > x1/10 is prime for i = 1, 2}.

We distinguish two cases.

Case 1. #C1(x) ≥ #C2(x).

In this case, for large x, φ2(p) = (p− 3)/2 is injective when restricted to C1(x).
Hence,

#V2(x) ≥ #C1(x)& x

(log x)2
,

where the last inequality follows from Lemma 6.

Case 2. #C1(x) < #C2(x).

Let p ∈ C2(x) and write p − 1 = 2q1q2, where x1/10 < q1 ≤ q2. Put y =
exp((log x)4/5). Let C3(x) be the subset of C2(x) such that q1 > x1/2/y. Since
q1q2 < x, we get that q2 < x/q1 < x1/2y. We find an upper bound on #C3(x).
Let q1 ∈ [x1/2/y, x1/2] be a fixed prime. By Brun’s sieve, the number of primes
q2 ≤ x/q1 such that 2q1q2 + 1 is a prime is

' x

φ(q1)(log(x/q1))2
' x

q1(log x)2
.

Summing the above bound for all q1 ∈ [x1/2/y, x1/2], we get that

#C3(x) ' x

(log x)2
∑

x1/2/y≤q1≤x1/2

1
q1
' x

(log x)2
· log y

log x

=
x

(log x)11/5
= o (#C2(x))

as x→∞, where the last estimate follows again from Lemma 6.
We now look at primes p ∈ C2(x)\C3(x) and we let C4(x) be the set of such primes

with the property that φ2(p) = φ2(p′) for some p′ += p also in C2(x)\C3(x). Writing
p− 1 = 2q1q2 and p′ − 1 = 2q′1q′2, we have (q1 − 1)(q2 − 1) = (q′1 − 1)(q′2 − 1). Fix
q1 and q′1. If q1 = q′1, we then get that q2 = q′2, therefore p = p′, which is false.
So, q1 += q′1 and they are both < x1/2/y. Let D = gcd(q1 − 1, q′1 − 1). Then the
equation

(q1 − 1)(q2 − 1) = (q′1 − 1)(q′2 − 1)

can be rewritten as

q2

(
q1 − 1

D

)
+

q′1 − q1

D
= q′2

(
q′1 − 1

D

)
.

Let A = (q1 − 1)/D, B = (q′1 − q1)/D, C = (q′1 − 1)/D. Then q2A + B = Cq′2
and A and C are coprime. This puts q2 into a fixed class modulo C, namely the
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congruence class of −BA−1 modulo C. Let this class be C0, where 1 ≤ C0 ≤ C−1.
Then q2 = C' + C0 for some ' ≥ 0. We have q2 ≤ x/q1, therefore ' ≤ x/(q1C). To
count such '’s for a given choice of q1, q′1, note that

C' + C0 = q2, 2q1C' + 2q1C0 + 1 = 2q1q2 + 1 = p,

A' +
AC0 + B

C
= q′2, 2q′1A' + 2q′1

(
AC0 + B

C

)
+ 1 = 2q′1q

′
2 + 1 = p′

are all four prime numbers. By the Brun sieve (it is easy to see that since B += 0, the
four forms above satisfy the hypothesis from the Brun sieve for large x), it follows
that if we put

∆ = 2q1q
′
1AC0(2q1C0 + 1)(AC0 + B)(2q′1(AC0 + B)/C + 1),

then the number of ' ≤ x/(q1C) with the above property is bounded by

' x

(q1C)(log(x/q1C))4

(
∆

φ(∆)

)4

' xD

q1q′1

(log log x)4

(log y)4
=

xD(log log x)4

q1q′1(log x)16/5
,

by the minimal order of the Euler function. Keeping now D fixed and summing
the above inequality over all pairs of primes q1, q′1 ≤ x1/2 which are congruent to
1 modulo D we get, by the Brun-Titchmarsh theorem, that the number of such
primes p once D is fixed is

' xD(log log x)4

(log x)16/5




∑

1≤q≤x1/2

q≡1 (mod D)

1
q





2

' xD(log log x)6

φ(D)2(log x)16/5
' x(log log x)8

D(log x)16/5
,

where we again used the minimal order of the Euler function. Summing up over all
the values for D, we finally get that

#C4(x)' x(log log x)8

(log x)16/5

∑

D≤x1/2

1
D
' x(log log x)8

(log x)11/5
= o(#C2(x))

as x → ∞. Thus, putting C5(x) = C2(x)\(C3(x) ∪ C4(x)), we have, by the above
calculations and Lemma 6, that #C5(x) & x/(log x)2. Certainly, φ2 is injective
when restricted to C5(x). This takes care of the desired lower bound.

4. Further Problems

Observe that Vk ⊆ Vk−1 for all k ≥ 2. Put V∞ = ∩k≥1Vk. The following result,
which was conjectured by A. Chakrabarti [4], characterizes V∞.
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Theorem 7. The set V∞ is equal to the set of positive integers n whose largest
squarefree divisor is 1, 2, or 6.

Proof. It is clear that such numbers n are in V∞, since if the largest squarefree
divisor of n is 1 or 2, then φk(2kn) = n for every k, while if the largest squarefree
divisor of n is 6, then φk(3kn) = n.

Suppose that n ∈ V∞. There is thus a sequence n = n0, n1, n2, . . . such that
φ(ni) = ni−1 for each i ≥ 1. Note that v2(ϕ(m)) ≥ v2(m) for m not a power
of 2. In addition, if we have equality, then m = 2cpb where b, c are positive and
p is a prime that is 3 (mod 4). Assume that n0 is not a power of 2, so that
v2(n0) ≥ v2(n1) ≥ · · · . Thus, starting at some point, say nk, we have equality; that
is, v2(nk) = v2(nk+1) = · · · . Thus, for i ≥ 1 we have

nk+i = 2cpbi
i , pi ≡ 3 (mod 4).

We may assume that all pi > 3 for otherwise the theorem holds. If some bi > 1,
then nk+i−1 = ϕ(nk+i) is divisible by two different odd primes, namely pi and an
odd prime factor of pi − 1. Thus, we may assume that each bi = 1 for i ≥ 2. We
have

nk+i = 2cpi, i ≥ 2, pi = 2pi−1 + 1, i ≥ 2.

We can solve this last recurrence, getting pi = 2i−1(p1 + 1) − 1, i ≥ 2. But note
then since 2p1−1 ≡ 1 (mod p1), we have pp1 ≡ (p1 +1)−1 ≡ 0 (mod p1). Thus, pp1

cannot be prime, a contradiction which proves the theorem.

Remark 2. Note that the numbers n with largest squarefree divisor 1, 2, or 6 are
precisely those n with φ(n) | n. Note too that from the counting function up to x
of the integers whose largest squarefree factor is 1, 2, or 6, we have

#V∞(x) =
1

log 3 log 4
(log x)2 + O(log x). (9)

It is possible to use the proof of Theorem 7 to show that there is a number k = k(n)
such that if n ∈ Vk, then the largest squarefree divisor of n is 1, 2, or 6. That is, if
n is not of this form, not only does there not exist an infinite “reverse Euler chain”
starting at n, there also cannot exist arbitrarily long finite reverse Euler chains
starting at n. It is an interesting question to estimate k(n); in [11] it is shown on
the generalized Riemann hypothesis that k(n)' log n for n > 1.

Let λ(n) be the Carmichael function of n; that is the universal exponent modulo
n. This is the largest possible multiplicative order of invertible elements modulo
n. For k ≥ 1, let λk(n) be the k-fold iterate of λ evaluated at n. It would be
interesting to study Lk = {λk(n)}. For k = 1, an upper bound of the shape
#L1(x) ' x/(log x)c1 with an inexplicit positive constant c1 was outlined in [9],
and an actual numerical value for c1 was established in [12]. Trivially, #L1(x) &
x/ log x. A slightly stronger lower bound appears in [1]. Stronger upper and lower
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bounds on #L1(x) will appear in [16]. While #Lk(x) seems difficult to study for
larger values of k, it is easy to see that the method of the present paper shows that
uniformly for x large,

#{λk(n) : n ≤ x} ≤ x

(log x)k
exp

(
16k3/2(log2 x log3 x)1/2

)
. (10)

Indeed, to see this, assume in the notation of the proof of Theorem 1, that n =
pm ≤ x, and that p > y. Further, we may assume that λk(n) ≥ x/(log x)k, since
there are at most x/(log x)k positive integers failing this condition. We assume that
Ω(λk(n)) ≤ 2.9k log2 x, since otherwise Lemma 13 in [15] tells us again that there are
at most O(x/(log x)k) possibilities for the number of such positive integers λk(n).
We now note that λk(n) | φk(n) and that φk(n) ≤ x, therefore φk(n)/λk(n) ≤
(log x)k. Hence,

Ω(φk(n)) = Ω(λk(n)) + Ω(φk(n)/λk(n))

≤ 2.9k log log x +
(

k

log 2

)
log log x < 4.5k log log x.

In particular, both Ω(φk(p)) and Ω(φk(m)) are at most 4.5k log log x. The argument
from the end of the proof of Theorem 1 combined with the fact that 3

√
9 + 3/10 +

2.9
√

4.5 < 16 shows that the number of possibilities for such n ≤ x is at most
what is shown in the right hand side of inequality (10). The conditional argument
from the introduction suggests that ckx/(log x)k should be a lower bound on the
cardinality of the above set.

Finally we remark that if n has the property that λ(n) | n, then n is in every set
Lk, as is easy to see. It is not clear if the converse holds; for example, is n = 10 in
every Lk? It is not so easy to find values of λ that are not values of λ2, but in fact,
one can use Brun’s method to show most shifted primes p−1 have this property. By
using the basic argument at the end of [7] plus the latest results on the distribution
of primes p with P (p − 1) small, one can prove that for large x there are at least
x0.7067 numbers n ≤ x with λ(n) | n. Thus, there are at least this many numbers
n ≤ x which are in every Lk, a result which stands in stark contrast to (9).
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