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Abstract
We apply Tatuzawa’s version of Siegel’s theorem to derive two lower bounds on
the size of the principal genus of positive definite binary quadratic forms.

1. Introduction

Suppose —D < 0 is a fundamental discriminant. By genus theory we have an exact
sequence for the class group C(—D) of positive definite binary quadratic forms:

P(~D) € C(~D)? < (D) — C(~D)/C(~D)? = (Z/2)*"*,

where D is the product of g primary discriminants (i.e., D has g distinct prime
factors). Let p(—D) denote the cardinality of the principal genus P(—D). The
genera of forms are the cosets of C(—D) modulo the principal genus, and thus
p(—D) is the number of classes of forms in each genus. The study of this invariant
of the class group is as old as the study of the class number h(—D) itself. Indeed,
Gauss wrote in [3, Art. 303]

. Further, the series of [discriminants] corresponding to the same
given classification (i.e. the given number of both genera and classes)
always seems to terminate with a finite number . . . However, rigorous
proofs of these observations seem to be very difficult.

Theorems about h(—D) have usually been closely followed with an analogous
result for p(—D). When Heilbronn [4] showed that h(—D) — oo as D — oo,
Chowla [1] showed that p(—D) — oo as D — oco. An elegant proof of Chowla’s
theorem is given by Narkiewicz in [8, Prop 8.8 p. 458].

Similarly, the Heilbronn-Linfoot result [5] that h(—D) > 1 if D > 163,
with at most one possible exception was matched by Weinberger’s result [14] that
p(—=D) > 1 if D > 5460 with at most one possible exception. On the other
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hand, Oesterlé’s [9] exposition of the Goldfeld-Gross-Zagier bound for h(—D) al-
ready contains the observation that the result was not strong enough to give any
information about p(—D).

In [13] Tatuzawa proved a version of Siegel’s theorem: for every e there is an
explicit constant C(e) so that

h(-D) > C(e)DY/?~¢

with at most one exceptional discriminant —D. This result has never been adapted
to the study of the principal genus. It is easily done; the proofs are not difficult
so it is worthwhile filling this gap in the literature. We present two versions. The
first version contains a transcendental function (the Lambert W function discussed
below). The second version gives, for each n > 4, a bound which involves only
elementary functions. For each fixed n the second version is stronger on an interval
I = I(n) of D, but the first is stronger as D — co. The second version has the
added advantage that it is easily computable. (N.B. The constants in Tatuzawa’s
result have been improved in [6] and [7]; these could be applied at the expense of
slightly more complicated statements.)

Notation We will always assume that g > 2, for if g = 1 then —D = —4, —8, or —¢q
with ¢ = 3 mod 4 a prime. In this last case p(—q) = h(—¢) and Tatuzawa’s theorem
[13] applies directly.

2. First Version

Lemma 1. Ifg > 2,
log(D) > glog(g).

Proof. Factor D as qi,...q, where the g; are (absolute values) of primary discrim-
inants, i.e. 4, 8, or odd primes. Let p; denote the ith prime number, so we have

log(D) = > log(ai) > Y _log(pi) "= 6(py). M)

By [11, (3.16) and (3.11)], we know that Chebyshev’s function 0 satisfies 6(z) >
(1 —1/log(x)) if > 41, and that

pg > g(log(g) + log(log(g)) — 3/2).

After substituting = p, and a little calculation, this gives §(py) > glog(g) as long
as pg > 41, ie. g > 13. For g = 2,...,13, one can easily verify the inequality
directly. O]
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Let W (z) denote the Lambert W-function, that is, the inverse function of f(w) =
wexp(w) (see [2], [10, p. 146 and p. 348, ex 209]). For = > 0 it is positive,
increasing, and concave down. The Lambert W-function is also sometimes called
the product log, and is implemented as ProductLog in Mathematica.

Theorem 2. If0 <& < 1/2 and D > max(exp(1/e),exp(11.2)), then with at most
one exception

p(=D) > 131 pu/2—c-tog(2)/W(1og(D)).
™

Proof. Tatuzawa’s theorem [13], says that with at most one exception

7 h(=D)

— L(1,x_p) > .655¢D~=, P

and thus

_ 2h(-D) - 1.31e - DV/2~¢

p(=D) 59 99

The relation log(D) > glog(g) is equivalent to

log(D) > exp(log(g)) log(g)-
Thus applying the increasing function W gives, by definition of W
W(log(D)) > log(g),
and applying the exponential gives

exp(WW (log(D)) > g.

The left-hand side above is equal to log(D)/W (log(D)) by the definition of W.
Thus,

—log(D)/W (log(D)) < —y,
D~ 108(2)/W(log(D)) _ 9—log(D)/W (log(D)) - 279,
and the theorem follows. O

Remark 3. Our estimate arises from the bound log(D) > glog(g), which is nearly
optimal. That is, for every g, there exists a fundamental discriminant (although
not necessarily negative) of the form

D, 43.4.5.7...p,,
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and
log | Dy| = 0(py) + log(2).
From the Prime Number Theorem we know 0(py) ~ pg, s0

log |Dy| ~ pg + log(2)

while [11, 3.13] shows p, < g(log(g) + log(log(g)) for g > 6.

3. Second Version

Theorem 4. Let n > 4 be any natural number. If 0 < ¢ < 1/2 and D >
max(exp(1/e),exp(11.2)), then with at most one exception

1.3l D'/2—=-1/n

p(_D) > T f(n) 5

where

f(n) =exp [(7‘((2") —1/n)log2 — 0(2”)/71];
here 7 is the prime counting function and 0 is the Chebyshev function.
Proof. First observe

271'(2”)

= 51/n 1/n”
2 / Hprimes p<2"p /

fn)

From Tatuzawa’s Theorem (2), it suffices to show 29 < f(n)D'/". Suppose first
that D is not =0 (mod 8).

Let S = {4, odd primes < 2"}, so |S| = m(2"). Factor D as ¢i - - - ¢; where g¢; are
(absolute values) of coprime primary discriminants, that is, 4 or odd primes, and
satisfy ¢; < g; for ¢ < j. Then, for some 0 < m < g, we have q1,...,¢, € S and
Gm+1,---,q9 €S, and thus 2" < g; for i =m+1,...,¢. This implies

29" =2m .27 2" 2" 2™ G 1Gmt2 - - - g
m g—m

p— DS .
q e Gm [les9

D
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as we have included in the denominator the remaining elements of S (each of which
is < 2™). The above is

271'(2")%

=—° D= f(n)"-D.
2Hprimes p<2™ p

This proves the theorem when D is not = 0 mod 8. In the remaining case, apply
the above argument to D' = D/2; so

929" < f(n)"D' < f(n)"D.
O

Examples. If 0 < £ < 1/2 and D > max(exp(1/e),exp(11.2)), then with at most
one exception, Theorem 4 implies

p(—=D) > 0.10199 - ¢ - DY/4=  (n = 4)

p(—D) > 0.0426 - - D307 (p = 5)

p(— > 0. -€- - n=
D) > 0.01249 - ¢ - DY/3~¢ 6

p(—D) > 0.00188 - ¢ - D145 (n=7)

4. Comparison of the Two Theorems

How do the two theorems compare? Canceling the terms which are the same in
both, we seek inequalities relating

D—l/n
fn)
Theorem 5. For every n, there is a range of D where the bound from Theorem /

1s better than the bound from Theorem 2. However, for any fixed n the bound from
Theorem 2 is eventually better as D increases.

D™ log 2/W (log D)

For fixed n, the first statement of Theorem 5 is equivalent to proving

D08/ W (log(D)=1/n > £

on a non-empty compact interval of the D axis. Taking logarithms, it suffices to
show:
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Lemma 6. Letn > 4. Then

af<;;%j) - %) > log f(n)

on some non-empty compact interval of positive real numbers x.

Proof. Let g(n,z) = x (log2/W(z) — 1/n). Then
dg log 2 1 9?9  —log?2- -W(x)
o W@l on M T W@
This shows g is concave down on the positive real numbers and has a maximum at
x=2"(nlog2 —1)/e.

Because of the concavity, all we need to do is show that g(n,z) > log f(n) at some
2. The maximum point is slightly ugly so instead we let 2o = 2"nlog2/e.

Using W (x) ~ logx — loglog x, a short calculation shows
1 27

glnao) ~ -

By [12, 5.7)], a lower bound on Chebyshev’s function is

1
1-— 407.
9(t)>t< 4010gt>’ t > 678407

(Since we will take ¢ = 2™ this requires n > 19 which is not much of a restriction.)
By [11, (3.4)], an upper bound on the prime counting function is

t .
t —_—, 3/2,
71-()<logt—3/2’ e

Hence —60(2™) < 2™ (1/(40nlog?2) — 1) and so

log f(n) = <W(2”) — %) log 2 — @

S (R T iy (e
nlog2—-3/2 n & n \ 40nlog 2

61 2"
40log2 n?’

Comparing the two asymptotic bounds for g and log f respectively we see that
1 27 61 2"

e n ~ 40log2 n?’

for n > 6; small n are treated by direct computation.® O
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Figure 1: log-log plots of the bounds from Theorems 2 and 4

Figure 1 shows a log-log plot of the two lower bounds, omitting the contribution
of the constants, which are the same in both, and the terms involving €. That is,
Theorem 4 gives for each n a lower bound b(D) of the form

b(D) = C(n)eDY?*7 1= 5o
log(b(D)) = (1/2 — 1/n —€)log(D) + log(C(n)) + log(e).

Observe that for fixed n and e, this is linear in log(D), with the slope an increasing
function of the parameter n. What is plotted is actually (1/2 — 1/n)log(D) +
log(C(n)) as a function of log(D), and analogously for Theorem 2. In red, green, and
blue are plotted the lower bounds from Theorem 4 for n = 4, 5, and 6 respectively.
In black is plotted the lower bound from Theorem 2.

Examples. The choice ¢ = 1/1og(5.6 - 101°) in Theorem 2 shows that p(—D) > 1
for D > 5.6 - 1019 with at most one exception. (For comparison, Weinberger [14,
Lemma 4] needed D > 2-10*! to get this lower bound.) And, & = 1/log(3.5-10%*) in
Theorem 2 gives p(—D) > 10 for D > 3.5-10'* with at most one exception. Finally,
n =6 and ¢ = 1/log(4.8 - 10'7) in Theorem 4 gives p(—D) > 100 for D > 4.8 - 107
with at most one exception.

IThe details of the asymptotics have been omitted for conciseness.
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