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Abstract
We apply Tatuzawa’s version of Siegel’s theorem to derive two lower bounds on

the size of the principal genus of positive definite binary quadratic forms.

1. Introduction

Suppose −D < 0 is a fundamental discriminant. By genus theory we have an exact
sequence for the class group C(−D) of positive definite binary quadratic forms:

P(−D) def.= C(−D)2 ↪→ C(−D) ! C(−D)/C(−D)2 # (Z/2)g−1,

where D is the product of g primary discriminants (i.e., D has g distinct prime
factors). Let p(−D) denote the cardinality of the principal genus P(−D). The
genera of forms are the cosets of C(−D) modulo the principal genus, and thus
p(−D) is the number of classes of forms in each genus. The study of this invariant
of the class group is as old as the study of the class number h(−D) itself. Indeed,
Gauss wrote in [3, Art. 303]

. . . Further, the series of [discriminants] corresponding to the same
given classification (i.e. the given number of both genera and classes)
always seems to terminate with a finite number . . . However, rigorous
proofs of these observations seem to be very difficult.

Theorems about h(−D) have usually been closely followed with an analogous
result for p(−D). When Heilbronn [4] showed that h(−D) → ∞ as D → ∞,
Chowla [1] showed that p(−D) → ∞ as D → ∞. An elegant proof of Chowla’s
theorem is given by Narkiewicz in [8, Prop 8.8 p. 458].

Similarly, the Heilbronn-Linfoot result [5] that h(−D) > 1 if D > 163,
with at most one possible exception was matched by Weinberger’s result [14] that
p(−D) > 1 if D > 5460 with at most one possible exception. On the other
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hand, Oesterlé’s [9] exposition of the Goldfeld-Gross-Zagier bound for h(−D) al-
ready contains the observation that the result was not strong enough to give any
information about p(−D).

In [13] Tatuzawa proved a version of Siegel’s theorem: for every ε there is an
explicit constant C(ε) so that

h(−D) > C(ε)D1/2−ε

with at most one exceptional discriminant −D. This result has never been adapted
to the study of the principal genus. It is easily done; the proofs are not difficult
so it is worthwhile filling this gap in the literature. We present two versions. The
first version contains a transcendental function (the Lambert W function discussed
below). The second version gives, for each n ≥ 4, a bound which involves only
elementary functions. For each fixed n the second version is stronger on an interval
I = I(n) of D , but the first is stronger as D → ∞. The second version has the
added advantage that it is easily computable. (N.B. The constants in Tatuzawa’s
result have been improved in [6] and [7]; these could be applied at the expense of
slightly more complicated statements.)

Notation We will always assume that g ≥ 2, for if g = 1 then −D = −4,−8, or −q
with q ≡ 3 mod 4 a prime. In this last case p(−q) = h(−q) and Tatuzawa’s theorem
[13] applies directly.

2. First Version

Lemma 1. If g ≥ 2,
log(D) > g log(g).

Proof. Factor D as q1, . . . qg where the qi are (absolute values) of primary discrim-
inants, i.e. 4, 8, or odd primes. Let pi denote the ith prime number, so we have

log(D) =
g∑

i=1

log(qi) ≥
g∑

i=1

log(pi)
def.= θ(pg). (1)

By [11, (3.16) and (3.11)], we know that Chebyshev’s function θ satisfies θ(x) >
x(1− 1/ log(x)) if x > 41, and that

pg > g(log(g) + log(log(g))− 3/2).

After substituting x = pg and a little calculation, this gives θ(pg) > g log(g) as long
as pg > 41, i.e. g > 13. For g = 2, . . . , 13, one can easily verify the inequality
directly.
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Let W (x) denote the Lambert W -function, that is, the inverse function of f(w) =
w exp(w) (see [2], [10, p. 146 and p. 348, ex 209]). For x ≥ 0 it is positive,
increasing, and concave down. The Lambert W -function is also sometimes called
the product log, and is implemented as ProductLog in Mathematica.

Theorem 2. If 0 < ε < 1/2 and D > max(exp(1/ε), exp(11.2)), then with at most
one exception

p(−D) >
1.31
π

εD1/2−ε−log(2)/W (log(D)).

Proof. Tatuzawa’s theorem [13], says that with at most one exception

π · h(−D)√
D

= L(1,χ−D) > .655εD−ε, (2)

and thus

p(−D) =
2h(−D)

2g
>

1.31ε · D1/2−ε

π · 2g
.

The relation log(D) > g log(g) is equivalent to

log(D) > exp(log(g)) log(g).

Thus applying the increasing function W gives, by definition of W

W (log(D)) > log(g),

and applying the exponential gives

exp(W (log(D)) > g.

The left-hand side above is equal to log(D)/W (log(D)) by the definition of W .
Thus,

− log(D)/W (log(D)) < −g,

D− log(2)/W (log(D)) = 2− log(D)/W (log(D)) < 2−g,

and the theorem follows.

Remark 3. Our estimate arises from the bound log(D) > g log(g), which is nearly
optimal. That is, for every g, there exists a fundamental discriminant (although
not necessarily negative) of the form

Dg
def.= ±3 · 4 · 5 · 7 . . . pg,
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and
log |Dg| = θ(pg) + log(2).

From the Prime Number Theorem we know θ(pg) ∼ pg, so

log |Dg| ∼ pg + log(2)

while [11, 3.13] shows pg < g(log(g) + log(log(g)) for g ≥ 6.

3. Second Version

Theorem 4. Let n ≥ 4 be any natural number. If 0 < ε < 1/2 and D >
max(exp(1/ε), exp(11.2)), then with at most one exception

p(−D) >
1.31ε

π
· D1/2−ε−1/n

f(n)
,

where

f(n) = exp
[
(π(2n)− 1/n) log 2− θ(2n)/n

]
;

here π is the prime counting function and θ is the Chebyshev function.

Proof. First observe

f(n) =
2π(2n)

21/n
∏

primes p<2n p1/n
.

From Tatuzawa’s Theorem (2), it suffices to show 2g ≤ f(n)D1/n. Suppose first
that D is not ≡ 0 (mod 8).

Let S = {4, odd primes < 2n}, so |S| = π(2n). Factor D as q1 · · · qg where qi are
(absolute values) of coprime primary discriminants, that is, 4 or odd primes, and
satisfy qi < qj for i < j. Then, for some 0 ≤ m ≤ g, we have q1, . . . , qm ∈ S and
qm+1, . . . , qg +∈ S, and thus 2n < qi for i = m + 1, . . . , g. This implies

2gn = 2n · · · 2n
︸ ︷︷ ︸

m

· 2n · · · 2n
︸ ︷︷ ︸

g−m

≤ 2mn qm+1qm+2 . . . qg

=
2mn

q1 · · · qm
D ≤ 2|S|·n

∏
q∈S q

· D
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as we have included in the denominator the remaining elements of S (each of which
is ≤ 2n). The above is

=
2π(2n)·n

2
∏

primes p<2n p
· D = f(n)n · D.

This proves the theorem when D is not ≡ 0 mod 8. In the remaining case, apply
the above argument to D′ = D/2; so

2gn ≤ f(n)nD′ < f(n)nD.

Examples. If 0 < ε < 1/2 and D > max(exp(1/ε), exp(11.2)), then with at most
one exception, Theorem 4 implies

p(−D) > 0.10199 · ε · D1/4−ε (n = 4)

p(−D) > 0.0426 · ε · D3/10−ε (n = 5)

p(−D) > 0.01249 · ε · D1/3−ε (n = 6)

p(−D) > 0.00188 · ε · D5/14−ε (n = 7)

4. Comparison of the Two Theorems

How do the two theorems compare? Canceling the terms which are the same in
both, we seek inequalities relating

D− log 2/W (log D) v.
D−1/n

f(n)
.

Theorem 5. For every n, there is a range of D where the bound from Theorem 4
is better than the bound from Theorem 2. However, for any fixed n the bound from
Theorem 2 is eventually better as D increases.

For fixed n, the first statement of Theorem 5 is equivalent to proving

Dlog(2)/W (log(D))−1/n ≥ f(n)

on a non-empty compact interval of the D axis. Taking logarithms, it suffices to
show:
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Lemma 6. Let n ≥ 4. Then

x

(
log 2
W (x)

− 1
n

)
≥ log f(n)

on some non-empty compact interval of positive real numbers x.

Proof. Let g(n, x) = x (log 2/W (x)− 1/n). Then

∂g

∂x
=

log 2
W (x) + 1

− 1
n

and
∂2g

∂x2
=
− log 2 · W (x)
x(W (x) + 1)3

.

This shows g is concave down on the positive real numbers and has a maximum at

x = 2n(n log 2− 1)/e.

Because of the concavity, all we need to do is show that g(n, x) > log f(n) at some
x. The maximum point is slightly ugly so instead we let x0 = 2nn log 2/e.

Using W (x) ∼ log x− log log x, a short calculation shows

g(n, x0) ∼
1
e
· 2n

n
.

By [12, 5.7)], a lower bound on Chebyshev’s function is

θ(t) > t

(
1− 1

40 log t

)
, t > 678407.

(Since we will take t = 2n this requires n > 19 which is not much of a restriction.)
By [11, (3.4)], an upper bound on the prime counting function is

π(t) <
t

log t− 3/2
, t > e3/2.

Hence −θ(2n) < 2n (1/(40n log 2)− 1) and so

log f(n) =
(

π(2n)− 1
n

)
log 2− θ(2n)

n

<

(
2n

n log 2− 3/2
− 1

n

)
log 2 +

2n

n

(
1

40n log 2
− 1

)

∼ 61
40 log 2

· 2n

n2
.

Comparing the two asymptotic bounds for g and log f respectively we see that

1
e
· 2n

n
>

61
40 log 2

· 2n

n2
,

for n ≥ 6; small n are treated by direct computation.1
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Figure 1: log-log plots of the bounds from Theorems 2 and 4

Figure 1 shows a log-log plot of the two lower bounds, omitting the contribution
of the constants, which are the same in both, and the terms involving ε. That is,
Theorem 4 gives for each n a lower bound b(D) of the form

b(D) = C(n)εD1/2−1/n−ε, so
log(b(D)) = (1/2− 1/n− ε) log(D) + log(C(n)) + log(ε).

Observe that for fixed n and ε, this is linear in log(D), with the slope an increasing
function of the parameter n. What is plotted is actually (1/2 − 1/n) log(D) +
log(C(n)) as a function of log(D), and analogously for Theorem 2. In red, green, and
blue are plotted the lower bounds from Theorem 4 for n = 4, 5, and 6 respectively.
In black is plotted the lower bound from Theorem 2.

Examples. The choice ε = 1/ log(5.6 · 1010) in Theorem 2 shows that p(−D) > 1
for D > 5.6 · 1010 with at most one exception. (For comparison, Weinberger [14,
Lemma 4] needed D > 2·1011 to get this lower bound.) And, ε = 1/ log(3.5·1014) in
Theorem 2 gives p(−D) > 10 for D > 3.5 ·1014 with at most one exception. Finally,
n = 6 and ε = 1/ log(4.8 · 1017) in Theorem 4 gives p(−D) > 100 for D > 4.8 · 1017

with at most one exception.
1The details of the asymptotics have been omitted for conciseness.
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