
#A49 INTEGERS 10 (2010), 639-667

SUMS AND PRODUCTS OF DISTINCT SETS AND DISTINCT
ELEMENTS IN C

Karsten Chipeniuk1

Department of Mathematics, University of British Columbia, Vancouver, British
Columbia V6T 1Z2, Canada

Received: 3/11/09, Revised: 1/5/10, Accepted: 7/1/10, Published: 11/11/10

Abstract
Let A and B be finite subsets of C such that |B| = C|A|. We show the following
variant of the sum product phenomenon: If |AB| < α|A| and α ! log |A|, then
|kA+ lB|" |A|k|B|l. This is an application of a result of Evertse, Schlickewei, and
Schmidt on linear equations with variables taking values in multiplicative groups of
finite rank, in combination with an earlier theorem of Ruzsa about sumsets in Rd.
As an application of the case A = B we give a lower bound on |A+|+ |A×|, where
A+ is the set of sums of distinct elements of A and A× is the set of products of
distinct elements of A.

1. Introduction

Let A and B be finite subsets of a commutative ring R. Then we can form the sumset
A + B = {a + b : a ∈ A, b ∈ B} and the productset AB = {a · b : a ∈ A, b ∈ B}.
In the case A = B, we denote the sumset by 2A and the productset by A(2),
and we may also consider the variants kA = {a1 + ... + ak : a1, ..., ak ∈ A} and
A(k) = {a1 · ... · ak : a1, ..., ak ∈ A}, for k ∈ Z+, k ≥ 2.

The sum product phenomenon, roughly, is the observation that |kA| and |A(k)|
cannot both be small (except in degenerate cases; for example, when A is a subring
of R). The most general result, which holds in arbitrary rings, is due to Tao [14].
On the other hand, the classical conjecture, due to Erdős and Szemerédi, relates to
the specific case when R = Z:

Conjecture 1. (Erdős-Szemerédi) Let A ⊂ Z be finite with |A| = N . Let ε > 0.
Then if N ≥ N0 = N0(ε) we have

max(|A + A|, |A ·A|) ≥ N2−ε.
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While this remains open, Erdős and Szemerédi did prove that on the right-hand
side we must have at least N1+δ for some δ > 0. We then have the following
numerical lower bounds for δ: 1/31 [9], 1/15 [8], 1/4 [5], 3/14 [13],and 1/3 − ε
for any ε > 0 [12]. The latter three in fact hold for subsets of R. There is also an
extension of Conjecture 1 to k-fold sums and products: if A is a finite set of integers
then it is conjectured that for any ε > 0

|kA|+ |A(k)|"ε |A|k−ε.

There are also analogues of the sum-product phenomena which apply to sums
and products of distinct elements from a finite set A ⊂ R. In particular, letting
A = {a1, . . . , an}, one can construct the set of simple sums of A and the set of
simple products of A, respectively

A+ =

{
n∑

i=1

εiai : εi ∈ {0, 1} for each i = 1, . . . , n

}
(1)

and

A× =

{
n∏

i=1

aεi
i : εi ∈ {0, 1} for each i = 1, . . . , n

}
. (2)

It is then possible to consider

gR(n) = min
A⊂R, |A|=n

{|A+|+ |A×|}. (3)

Such expressions were investigated by Erdős and Szemerédi in [6] in the integer
setting. They showed that

gZ(n) < nc log n
log log n (4)

for some absolute constant c > 0. Later, in addition to providing an upper bound
on c, Chang proved ([2]) their conjecture that this provides the lower bound as well;
more precisely, she showed that for large enough values of n

gZ(n) > n(1/8−ε) log n
log log n . (5)

More recently, in [3], Chang addressed a question of Ruzsa, proving that gC(n)
grows faster than any power of n,

lim
n→∞

log(gC(n))
log n

= ∞. (6)

In this article we will obtain an explicit lower bound for gC(n). In particular,
since gR2(n) ≤ gR1(n) whenever R1 is a subring of R2, this bound will hold for any
subring of C. Our result in this direction is the following.
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Theorem 2. Let ε > 0 and let n0 = n0(ε) be sufficiently large in terms of ε. Then
for any n ≥ n0 we have

gC(n) ≥ n(1/200−ε) log log(n)
log log log(n) . (7)

The proof largely follows that of [2]. This approach uses yet another manifesta-
tion of the sum-product phenomenon, the statement that a small productset requires
a large iterated sumset. Chang proved that if A ⊂ Z is finite, and |A · A| ≤ α|A|
for some α, then for every h ≥ 2 we have

|hA| ≥ |A|h
(2h2 − h)hα

.

In [4], Chang also proved an analogous result in R, provided the multiplicative
doubling constant α satisfies α ! log |A|. We will use a version which holds in C:

Theorem 3. Let A ⊂ C be finite, and suppose that |A(2)| ≤ α|A|. Then there is
an absolute constant c1 such that for any integer h ≥ 2 we have

|hA| ≥ c1e
−h49hα|A|h.

We will prove this result by following Chang’s argument for the real case, making
necessary alterations to deal with the possibility of torsion elements in C. Note the
explicit dependence on h, which will be essential in our proof of Theorem 2. Using
a result of Ruzsa ([10], Theorem 17 below), we have also extended Theorem 3 to
distinct sets A and B.

Theorem 4. Let A,B ⊂ C with |B| = C|A| for some C ≥ 1, and suppose that
|AB| < α|A|. If α ! log |A| then there is an absolute constant c1 such that

|kA + lB| ≥ c1
|A|k|B|l

(k + l)4(k+l)
−Ok,l,α(|B|k+l−1)

where the implicit constant in the O term can be taken as c2e4(k+l)15(k+l)α for an
absolute constant c2.

This builds on the theme of sum product phenomena for distinct sets; other
results in a similar vein may also be found in [4].

The proofs of Theorems 3 and 4 rely on bounding the number of additive 2h-
tuples in A2h (respectively, additive (2k+2l)-tuples in Ak×Bl); this is accomplished
by using a result of Evertse, Schlickewei, and Schmidt [7] which we next describe.
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Let K be an algebraically closed field of characteristic 0. Let K∗ = K \ {0} be
the multiplicative subgroup of nonzero elements in K. For a positive integer d let
Γ be a subgroup of (K∗)d with rank r (so the minimum number of elements from
which we can generate Γ is r). For coefficients a1, . . . , ad ∈ K, let A(d, r) denote
the number of solutions (x1, . . . , xd) ∈ Γ to

a1x1 + a2x2 + · · ·+ adxd = 1

which are nondegenerate (namely, no proper subsum of the left side vanishes).
It is crucial that in the following result, which we will refer to as the Subspace

Theorem, the bound is finite and depends only on r and d, and not on the particular
group Γ nor the particular coefficients of the objective equation.

Theorem 5. (Evertse, Schlickewei, and Schmidt [7]) Let d, r, and A(d, r) be as
defined above. Then

A(d, r) ≤ exp
(
(6d)3d(r + 1)

)
.

We will also use two other standard tools of additive combinatorics (see, for example,
[15]). The first is Freiman’s theorem in torsion-free groups [1] (given for general
torsion free groups in, for example, [15]).

Theorem 6. (Freiman’s Theorem) Let Z be a torsion-free abelian group, and let
A ⊂ Z with |A+A| ≤ K|A| for some K ∈ R. Then there exists a proper generalized
arithmetic progression P of dimension at most K−1 and size |P | ≤ C(K)|A| which
contains A. Here C(K) depends only on K.

The second is the Plünnecke-Ruzsa Inequality, in a version due to Ruzsa [11].

Theorem 7. (Plünnecke-Ruzsa Inequality [11]) Let Z be an abelian group and let
A and B be subsets of Z with |A + B| ≤ K|A|. Then for every n,m ∈ N we have
|nB −mB| ≤ Kn+m|A|.

In Section 2 we begin by extending Chang’s notion of multiplicative dimension
of a set of integers to sets of complex numbers, and prove three key properties
of it. The third of these is an application of Freiman’s Theorem, and allows us
to bound the multiplicative dimension of a set from above by its multiplicative
doubling constant |A(2)|/|A|. This allows us to work with sets of low multiplicative
dimension without loss of generality in order to use Theorem 5 to prove Theorem
3.

In Section 3 we carry out the argument which proves Theorem 2 on simple sums
and products, using Theorem 3.
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In Section 4, we use a Theorem of Ruzsa in place of Freiman’s Theorem to show
that if distinct sets A and B have a small productset, then we may once again
bound the multiplicative dimension of both of them by |AB|/|A|. We are then once
again able to proceed using Theorem 5 to prove Theorem 4.

Notation. We will use the notation f(x) ! g(x) or f(x) = O(g(x)) to denote that
there is a constant C such that for every x, f(x) ≤ Cg(x). Similarly, f(x) " g(x)
is the same as g(x) ! f(x), and f(x) ≈ g(x) means that there are constants C1, C2

such that C1g(x) ≤ f(x) ≤ C2g(x) for every x. We will use N to denote the positive
integers, N0 to denote the nonnegative integers, and Z to denote the set of all
integers. For an integer L, ZL will denote the integers modulo L.

2. Sums and Products of a Single Set

2.1. Multiplicative Dimension and Bounding the Doubling Constant

Throughout this section A will denote a finite subset of C and n will denote the
cardinality of A. Let h ≥ 2 be an integer. Also, let

A∗ := A \ {0}.

Then A∗ consists of those elements of A contained in the multiplicative subgroup
C∗ of complex numbers. Lastly, the multiplicative subgroup of C∗ generated by the
elements z1, . . . , zm ∈ C∗ will be denoted by 〈z1, . . . , zm〉.

We begin by extending the definition of multiplicative dimension from [2].

Definition 8. Let A ⊂ C be finite. Then we define the multiplicative dimension
of A, denoted dim×(A), by

dim×(A) = min
{
M : ∃ z, z1, . . . , zM ∈ C∗ such that A∗ ⊂ z · 〈z1, . . . , zM 〉

}
. (8)

In other words, the multiplicative dimension of A is the minimal number M such
that A∗ is contained in a coset of subgroup of C∗ of rank M .

For d ∈ Z+ and X ⊂ Rd we will say that X is r-dimensional if the affine subspace
of Rd of smallest dimension in which X may be contained has dimension r. Note
that if a set is r-dimensional it must contain at least r + 1 elements, and must
also contain r linearly independent differences. From this fact, observe that for
X,Y ⊂ Rd,

dim(X + Y ) ≤ dim(X) + dim(Y ) (9)
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and also that
dim(X ∪ Y ) ≥ dim(X + Y ). (10)

We wish to relate the above two concepts of dimension to each other. To do so,
we will need to transition between groups of the form 〈z1, ..., zm〉 and the group
Zm. The Fundamental Theorem of Finitely Generated Abelian Groups provides
the necessary maps to do so, in the proof of Lemma 9 below. However, some
preliminary examples will help to clarify the argument.

Example. Let A = {2, 1
3eiπ/4, 1

9eiπ/2, eiπ
√

2}. Then A has multiplicative dimension
equal to 3, since it is contained in 〈2, 1

3eiπ/4, eiπ
√

2〉 which is torsion-free. But this
is just isomorphic to Z3, and furthermore if the isomorphism is denoted ν then we
can take ν(2) = (1, 0, 0), ν(1

3eiπ/4) = (0, 1, 0), and ν(eiπ
√

2) = (0, 0, 1). Then we
will have

ν(A) = {(1, 0, 0), (0, 1, 0), (0, 2, 0), (0, 0, 1)}.

Note that dim(ν(A)) = 3.

Example. The situation is slightly more complicated if A contains torsion elements.
Let A = {2, 1

3eiπ/4, eiπ/2, eiπ/3}. Then A once again has multiplicative dimension
equal to 3, since it is contained in 〈2, 1

3eiπ/4, eiπ/6〉 := G. This group is isomorphic
to Z2 × Z6. Denoting this isomorphism by η and proceeding as in the previous
example, we have

η(A) = {(1, 0, 0), (0, 1, 0), (0, 0, 2), (0, 0, 3)}.

However, we can consider this to be a subset of Z3 of dimension 3 by considering
the last component of each point to be in [0, 5] ⊂ Z. This provides a one-to-one
mapping η′′ between η(G) and Z3, and so we have a one-to-one mapping ν = η′′ ◦ η
between G and Z3.

By extending the above calculations to the general case, one obtains the following
key properties of multiplicative dimension, which we will use extensively.

Lemma 9. Let A ⊂ C∗ be finite with dim×(A) = m. Let G = 〈z1, ..., zm〉 for some
z1, ..., zm ∈ C∗, and suppose that A ⊂ z · G for some z ∈ C∗. Let h ∈ N, h ≥ 2.
Then

(a) There is an injection ν : zG → Zm mapping zG into the additive group of m-
tuples of integers such that for every B ⊂ A we have dim(ν(B)) ≥ dim×(B)
where ν(B) is viewed as a subset of Rm.
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(b) If ν is the map from (a), then for sets B,B1, ..., Bh ⊂ zG we have

|B1 · ... ·Bh| ≥
1
h
|ν(B1) + ... + ν(Bh)|. (11)

and
|B×| ≥ 1

|B| |ν(B)+| (12)

(c) m ≤ (2|(A)(2)|/|A|)− 1

Proof. (a) The map which takes za ∈ G to a is an isomorphism, so we may assume
without loss of generality that A ⊂ 〈z1, ..., zm〉 = G.

By the fundamental theorem of finitely generated abelian groups applied to
〈z1, . . . , zm〉, there is such a mapping if G is torsion-free.

Suppose that G is not torsion-free. We claim that, in this case, the fundamental
theorem of finitely generated abelian groups guarantees an isomorphism η : G →
Zm−1 × ZL for some integer L.

It certainly guarantees an isomorphism η′ : G → Zm−t×ZL1 × ...×ZLt for some
integer t, 1 ≤ t ≤ m and some L1, ..., Lt ∈ N. Then for 1 ≤ j ≤ m we let

ξj = η−1((0, ...0, 1, 0, ..., 0))

where the nonzero entry is in the jth component.
For m− t + 1 ≤ j ≤ m, ξj has finite order, so it must be a root of unity. Hence

there are positive integers rj , sj such that

ξj = e2πirj/sj .

Then, letting s = sm−t+1 · ... · sm and ξ = e2πi/s we see that ξj = ξrj(s/sj), where
rj(s/sj) ∈ Z. In other words,

ξj ∈ 〈ξ〉

for each j, m− t + 1 ≤ j ≤ m. Therefore,

A ⊂ 〈ξ1, ..., ξm−t, ξ〉

implying that dim×A ≤ m − t + 1. This is only possible if t = 1, and the claim
follows.

Now, the map η′′ : Zm−1 × ZL → Zm which takes (x1, ..., xm) ∈ Zm−1 × ZL to
(x1, ..., xm), where xm is the residue in [0, L−1] of the class xm ∈ ZL, is an injection.
We take ν = η′′ ◦ η. Note that ν maps G injectively onto Zm−1 × [0, L − 1],
but that η−1 may be extended to a surjection defined on all of Zm by setting
η−1((x1, ..., xm)) = (x1, ..., xm).
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It remains to prove the claim that ν(B) has dimension dim×(B) for each B ⊂ A.
This will follow from the definition of multiplicative dimension.

If ν(B) is contained in an affine subspace S of Rm of dimension d, we let x(0) ∈
S. It follows that there are vectors x(1), ..., x(d) ∈ S − {x(0)} such that ν(B) ⊂
span(x(1), ..., x(d)) + {x(0)}. In other words, if b ∈ B, we can represent ν(b) as

ν(b) = x(0) +
d∑

i=1

kix
(i)

for some integers ki, i = 1, ..., d.
Next, suppose that x(i) = (x(i)

1 , ..., x(i)
m ) for i = 0, ..., d, and denote by x(i) the

element of Zm−1 × ZL given by

x(i) =
(
x(i)

1 , ..., x(i)
m−1, x

(i)
m

)
,

where once again x(i)
m ∈ ZL is the residue class of x(i)

m ∈ [0, L− 1]. It follows that

η(b) = x(0) +
d∑

i=1

kix(i).

Then

b = η−1(η(b)) = η−1

(
x(0) +

d∑

i=1

kix(i)

)

= η−1
(
x(0)

) d∏

i=1

(
η−1

(
x(i)

))ki

∈ η−1
(
x(0)

)〈
η−1

(
x(1)

)
, ..., η−1

(
x(d)

)〉
.

By definition of multiplicative dimension, it follows that d ≥ dim×(B).

(b) Equations (11) and (12) follow immediately in the case where G is torsion-
free (and hence ν is an isomorphism). We may therefore assume that G contains
roots of unity.

Let η : G → Zm−1 × ZL be the isomorphism from (a). Then to prove (11), it is
sufficient to show |η(B1) + ... + η(Bh)| ≥ 1

h |ν(B1) + ... + ν(Bh)|. Let

x = (x1, ..., xm) ∈ ν(B1) + ... + ν(Bh).
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Then there are elements x(i) = (x(i)
1 , ..., x(i)

m ) ∈ ν(Bi) for each i, 1 ≤ i ≤ h such that

x =
h∑

i=1

x(i),

so
(x1, ..., xm) ∈ η(B1) + ... + η(Bh).

But
ν(B1) + ... + ν(Bh) ⊂ Zm−1 × [0, hL]

and so there are at most h elements (x1, ..., xm−1, y) of the left side such that
(x1, ..., xm−1, y) evaluates to (x1, ..., xm). Hence there are at least

|ν(B1) + ... + ν(Bh)|/h

elements in η(B1) + ... + η(Bh) as required.
The proof of (12) is nearly identical to that of (11). It is sufficient to show

|η(B)+| ≥ 1
|B| |ν(B)+|. Denote ν(B) = {x(1), ..., x(|B|)}, and let

x = (x1, ..., xm) ∈ ν(B)+.

Then there are values εi ∈ {0, 1} for each i, 1 ≤ i ≤ |B| such that

x =
|B|∑

i=1

εix
(i),

so
(x1, ..., xm) ∈ η(B)+.

But
ν(B)+ ⊂ Zm−1 × [0, |B|L]

and so there are at most |B| elements (x1, ..., xm−1, y) of the left side such that
(x1, ..., xm−1, y) evaluates to (x1, ..., xm). Hence there are at least

|ν(B)+|/|B|

elements in η(B)+ as required.

(c) Let β = |(A)(2)|/|A|. Then by the first claim in part (b), |ν(A) + ν(A)| ≤
2|(A)(2)| ≤ 2β|ν(A)|. Now, Theorem 6 applies, and we may contain ν(A) in a
progression in Zm of dimension 12β − 12, say

ν(A) ⊂




x(0) +
)2β−1*∑

i=1

jix
(i) : 0 ≤ ji ≤ ki − 1




 .
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But then
A ⊂ η−1(x(0))

〈
η−1(x(1)), ..., η−1(x)2β−1*)

〉
,

which demonstrates the desired bound. !

Note that if 0 ∈ A and α = |A(2)|/|A|, then we may apply Lemma 9 to A∗,
noting that

|(A∗)(2)| = |A(2) \ {0}|

= |A(2)|− 1

≤ α|A|− 1

= α(|A∗|+ 1)− 1

≤ 2α|A∗|,

so that we obtain the inequality

m ≤ 4α− 1. (13)

2.2. Bounding Additive 2h-tuples

In light of (13), we are free to work with sets of low multiplicative dimension.
Theorem 3 will follow as a corollary of the following.

Proposition 10. Let A ⊂ C be finite, and suppose that dim×(A) = m. Then for
any h ∈ N, h ≥ 2 there is n sufficiently large such that if |A| ≥ n we have

|hA| ≥ e−h49hm|A|h

We will say that a 2h-tuple (a1, ..., a2h) ∈ A2h is an additive 2h-tuple if a1 +
... + ah = ah+1 + ... + a2h. The above proposition is a consequence of the following
lemma from [2].

Lemma 11. Let A ⊂ C be finite. Let M denote the number of additive 2h-tuples
in A2h. Then

|hA| ≥ |A|2h

M
.

To prove Proposition 10 we therefore seek to bound the number of solutions
(a1, ..., a2h) in A2h to the equation

x1 + · · ·+ xh = xh+1 + · · ·+ x2h. (14)
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To do so, one finds a likely tool in Theorem 5. However, Theorem 5 gives a bound
on the number of nondegenerate solutions, whereas we must also account for the
possibility of degenerate solutions. The result is the following statement, similar to
a lemma of Chang in [4]:

Lemma 12. Suppose that A ⊂ C satisfies 0 /∈ A, and let dim×(A) = m. For every
k ≥ 1 there is n sufficiently large such that if |A| ≥ n and c1, ..., ck ∈ C∗ then

(a) The number of elements (y1, . . . , yk) ∈ Ak satisfying c1y1 + · · · + ckyk = 1 is
at most ek12kmn)k/2* if k is odd and ek12kmnk/2−1 if k is even.

(b) The number of elements (y1, . . . , yk) ∈ Ak satisfying c1y1 + · · · + ckyk = 0 is
at most ek12kmn)k/2*.

Proof. For r, s ∈ N, let

Ds,r = exp(s12sr),

and let

γ1(s) =
{

1s/22, if s is odd
s/2− 1, if s is even , (15)

γ0(s) = 1s/22. (16)

Then the statement we need to prove is that the number of solutions (y1, ..., yk) in
Ak to c1y1 + · · ·+ ckyk = 1 is at most Dk,mnγ1(k) and that the number of solutions
to c1y1 + · · ·+ ckyk = 0 is at most Dk,mnγ0(k).

Since A has multiplicative dimension m, A ⊂ zH for some subgroup H of C∗ of
rank m; hence G = 〈zH〉 is a group of rank at most m + 1 which contains A.

The proof proceeds by induction on the number of variables k.
Base Cases: The case k = 1 is immediate.

When k = 2 we see directly that the number of solutions (y1, y2) ∈ A × A to
c1y1 + c2y2 = 0 is at most n (Each of |A| = n choices for y1 determines a value
−c1y1/c2 for y2). Meanwhile the number of nondegenerate solutions (y1, y2) ∈ A×A
to c1y1 + c2y2 = 1 is at most exp((12)6(2(m + 1) + 1)) by Theorem 5, and the only
two possible degenerate solutions are (0, 1) and (1, 0). We have

exp((12)6(2m + 3)) + 2 ≤ exp(224m).

Hence the bound holds for k = 2 and all pairs (c1, c2) of coefficients.
Induction: Let k > 2 be fixed, and suppose both parts of the theorem have been
proved for t variables for each positive integer t < k and for all t-tuples of coefficients
(c1, ..., ct).
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We begin with the equation

c1y1 + · · ·+ ckyk = 0, (17)

which we rewrite as c1y1 + ... + ck−1yk−1 = −ckyk. There are at most n choices
for yk in A, all of which are nonzero. Picking one of these (call it a) and dividing
through by the value −cka, the number of solutions (y1, ..., yk−1, a) ∈ Ak to (17) is
the number of solutions to the new equation

c1

−cka
y1 + · · ·+ ck−1

−cka
yk−1 = 1 (18)

in k − 1 variables. There are still n possibilities for each variable in this equation,
and each still falls in A.

First suppose k is even. Then k − 1 is odd, so by the inductive hypothesis there
are at most Dk−1,mn(k−2)/2 solutions in Ak−1 to (18). Since there are at most n
possible values for a, we have at most Dk−1,mnk/2 solutions in Ak to (17). Since k
is even, this is the desired result.

Next, if k is odd, k−1 is even, and the equation (18) has fewer than Dk−1,mn(k−1)/2−1

solutions in Ak−1, whereby the (17) has fewer than Dk−1,mn(k−1)/2 in Ak. This
again gives the desired result.

Hence the result for vanishing sums holds in k variables.

To count solutions in Ak to

c1y1 + · · ·+ ckyk = 1, (19)

we begin by applying Theorem 5. This tells us that the number of nondegen-
erate solutions in the entirety of the rank k(m + 1) group Gk is bounded by
exp((6k)3k(k(m + 1) + 1)). We use the inductive hypothesis to count degenerate
solutions.

For each such degenerate solution (y1, ..., yk) ∈ Ak of (19) we have a nonempty
proper subset of {c1y1, ..., ckyk} which sums to 0, and the complement of this proper
subset sums to 1. From each degenerate solution, then, we obtain a corresponding
solution of a system of the form

t∑

j=1

cij yij = 0
k∑

j=t+1

cij yij = 1 (20)

where 2 ≤ t ≤ k−1, and i1, . . . , ik is some permutation of 1, . . . , k with i1 < · · · < it
and it+1 < · · · < ik. Furthermore, every other solution of (19) in Ak from which we
obtain the same solution of (20) in this manner must have components which are a
permutation of (y1, ..., yk).
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It follows that, since there are
(k

t

)
choices for {i1, . . . , it}, the total number of

solutions in Ak to (19) is bounded via the inductive hypothesis by

2(k!)
k−1∑

t=2

(
k

t

)
Dt,mDk−t,mnγ0(t)+γ1(k−t) (21)

where we have used the extra factor of two to simply account for the small number
nondegenerate solutions. We begin by computing the exponent on n. Arguing based
on parity of k, for k even we have

γ0(t) + γ1(k − t) = k/2− 1 = γ1(k), (22)

independent of the parity of t. Similarly, for k odd, we get

γ0(t) + γ1(k − t) =
{

(k − 1)/2, if t is even
(k − 3)/2, if t is odd

≤ γ1(k).

In both cases we see that we can bound (21) by
(

2(k!)
k−1∑

t=2

(
k

t

)
Dt,mDk−t,m

)
nγ1(k) (23)

and we need only compute the constant.
Now,

Dt,mDk−t,m = exp
[
(t12t + (k − t)12(k−t))m

]
. (24)

The exponent is maximized over all possible values of t for t = k − 1.
The entire sum is therefore bounded above by

2(k!) exp((1 + (k − 1)12(k−1))m)
k−1∑

t=2

(
k

t

)
≤ exp(k12km)

using the fact that
∑k−1

t=2

(k
t

)
< 2k.

The result for unit sums therefore holds for k variables. The lemma now follows
by induction. !

In order to prove Proposition 10 we must eliminate the hypothesis 0 /∈ A from
Lemma 12(b) for the case of equations of the form (14).
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We continue to use the notation n = |A|. Then if 0 ∈ A, the number of solutions
to (14) we gain is bounded above by

2h−1∑

t=1

(
2h
t

)
D2h−t,mn)(2h−t)/2*.

Here we have set t variables in the equation (14) equal to 0 and used Lemma 12 to
count the number of solutions to the resulting equation, for each t, 1 ≤ t ≤ 2h− 1.
We can further bound the above expression by

D2h−1,mnh−1 · 22h.

After a short calculation, we see that the total possible number of solutions in A2h

to (14) for arbitrary A is therefore

≤ exp(h49hm)nh

if n is sufficiently large. We have therefore proved:

Lemma 13. Let A ⊂ C be finite, and let dim×(A) = m. Then for every h ∈ N
there exists n sufficiently large that if |A| ≥ n then the number of additive 2h-tuples
in A is bounded above by exp(h49hm)nh.

Combining this with Lemma 11 we obtain Proposition 10.

Remark 14. The above lemma was proved with the bound e(−hCh(m+1))nh for
some undetermined constant C by Chang in [4]. In fact, Chang’s result is somewhat
stronger, with a bound of the form Oh(nh+e(−hCh(m+1))nh−1). Since using this form
of the bound makes the following estimates more complicated with no quantitative
gains in the final result, we will not use it here.

3. Simple Sums and Simple Products

We are now in a position to consider simple sums and simple products constructed
from a finite set A ⊂ C. The proof of Theorem 2 is similar to that for the integer
case, given in [2]. When working with subsets of the complex plane, however, we
use our revised definition of multiplicative dimension (8) and the bound in Lemma
13.

For a finite set A ⊂ C let g(A) = |A+| + |A×|. Then for each positive integer
n, we have gC(n) = minA⊂C, |A|=n g(A), and it is sufficient to show that for any
ε > 0 and an arbitrary set A of sufficiently large size n we necessarily have g(A) ≥
n(1/200−ε) log log(n)

log log log(n) .
We begin by showing that a large proportion of the iterated sumset hA is included

in the set |hA ∩A+|.
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Lemma 15. Let A ⊂ C be finite with dim×(A) = m and such that |A| is sufficiently
large. Then for any sufficiently large h ∈ N with h ≤ |A| we have

|hA ∩A+| ≥ |A|h
exp(h50hm)

.

Proof. This follows exactly as in [2]. First we observe that the left-hand side is at
least as large as the number of simple sums with exactly h summands. Letting

rhA(x) = |{(a1, . . . , ah) ∈ Ah : a1 + · · ·+ ah = x}|

we have
(
|A|
h

)
≤

∑

x∈hA∩A+

rhA(x). (25)

Using Stirling’s formula in the form N ! ≈ NN+1/2e−N on the left side we have
(
|A|
h

)
=

|A|!
h!(|A|− h)!

≥ C
|A||A|

hh+1/2|A||A|−h
= C(|A|/h1+1/2h)h.

for an absolute constant C. Combining the previous two relations and applying the
Cauchy-Schwartz inequality followed by Lemma 13 to the right side of (25) we have

C(|A|/h1+1/2h)h ≤ |hA ∩A+|1/2

(
∑

x∈hA∩A+

(rhA(x))2
)1/2

≤ |hA ∩A+|1/2(exp(h49hm)|A|h)1/2.

since the bracketed sum after the first inequality is at most the number of additive
2h tuples in A. It follows that

|hA ∩A+| ≥ C2 |A|h
h2h+1 exp(h49hm)

,

and absorbing the constant C2 and the factor h2h+1 into the exponential (recalling
h is large) we have

|hA ∩A+| ≥ |A|h
exp(h50hm)

.

!

The next step is to show that a set with small multiplicative dimension must
have a large simple sum.
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Lemma 16. Let B ⊂ C, and suppose that dim×(B) = m. Then for any ε1 with
0 < ε1 < 1/50, there exists n = n(ε1) ∈ N sufficiently large such that if

|B| ≥
√

n

and
m ≤

(
1
50
− ε1

)
log log(n)

log log log(n)
then

g(B) ≥ n
ε1
3

log log(n)
log log log(n) . (26)

Proof. We have

g(B) > |B+| ≥ |hB ∩B+|

for any h ∈ N. Applying Lemma 15 to the right side we therefore have

g(B) >
|B|h

exp(h50hm)

provided h is sufficiently large. We take h = 1 1
50

log log(n1/2)
log log log(n)2. Then

50h log(h) ≤ log log(n1/2)

so

exp(h50hm) ≤ nm/2.

But then we have

g(B) >
|B|h

nm/2
≥ nh/2−m/2.

Recalling our condition on m and our choice of h and using the fact that n is large
in terms of ε1, we have the result. !

We now use the previous two lemmas to prove Theorem 2. Let ε > 0 be suffi-
ciently small. Also, let A ⊂ C be finite with dim×(A) = m, and let ε1, ε2 < ε. Let
n = n(ε) be sufficiently large in terms of ε, and suppose |A| = n. We may assume
without loss of generality that 0 /∈ A.

By Lemma 16 we may also assume without loss of generality that every subset
B ⊂ A with |B| ≥

√
n satisfies

dim×(B) ≥
⌊(

1
50
− ε1

)
log log(n)

log log log(n)

⌋
. (27)
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We therefore divide A into sets B1, . . . , B)√n*, each with size |Bi| ≥
√

n, and denote

As = ∪s
i=1Bi,

so A)√n* = A.
Taking B = A in equation (27) we apply Lemma 9 to conclude the existence of

a map ν : zG → Zm for some coset zG of a subgroup G of C∗ which contains A
and for some m ≥ 1(1/50− ε1) log log(n)

log log log(n)2 . Applying (12) we have

g(A) > |A×| ≥ 1
|A| |ν(A)+|. (28)

It will therefore be sufficient to prove the bound of Theorem 2 for |ν(A)+|.
Let

ρ = 1 + n−1/2+ε2 .

The proof now splits into two cases: first the case in which the simple sums of
the sets ν(As) grow quickly with s, followed by a complementary case in which we
are able to effectively use the large multiplicative dimension of Bs for some s.

First, if |ν(As ∪ Bs+1)+| > ρ|ν(As)+| for every s, we can begin with A1 = B1

and iterate, gaining a factor of ρ each time, to get

|ν(A)+| > ρ)
√

n*−1|ν(B1)| > ρ
√

n−2√n.

Hence, using (for x small) log(1 + x) > x− x2/2 > x/2 we have

|ν(A)+| > exp
(

(
√

n− 2) log(ρ) +
1
2

log(n)
)

> exp
(

(
√

n− 2)(1/2)n−1/2+ε2 +
1
2

log(n)
)

> exp((1/2)nε2)

The last bound is much better than what we are ultimately trying to prove.

We are therefore reduced to the case where |ν(As∪Bs+1)+| ≤ ρ|ν(As)+| for some
s. Let m = dim×(Bs+1), so m ≥ 1

(
1
50 − ε1

) log log(n)
log log log(n)2 by (27).

Now, since the sets Bi are disjoint, the sets ν(Bi) are as well, so that

ν(As ∪Bs+1)+ = (ν(As) ∪ ν(Bs+1))+ = ν(As)+ + ν(Bs+1)+. (29)

We therefore have
|ν(As)+ + ν(Bs+1)+| ≤ ρ|ν(As)+|, (30)
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so by the Plünnecke-Ruzsa Inequality (Theorem 7) for any h ∈ N we have

|(h + 1)ν(Bs+1)+ − ν(Bs+1)+| ≤ ρh+2|ν(As)+|. (31)

Let ν(Bs+1) = {b1, . . . , bk}, and define the h-fold simple sum of ν(Bs+1) by

ν(Bs+1)+[h] :=

{
k∑

i=1

εibi : εi ∈ {0, 1, . . . , h}, i = 1, . . . , k

}
.

Then the left-hand side of (31) is larger than

|hν(Bs+1)+| ≥ |ν(Bs+1)+[h]|
≥ hm. (32)

The second inequality here comes from looking at the h-fold simple sum of a linearly
independent set in Rm chosen from ν(Bs+1), since by Lemma 9 (a), ν(Bs+1) is at
least m-dimensional.

We now take h = 1n1/2−ε22, so that

ρh+2 ≤ (1 + n−1/2+ε2)n1/2−ε2+2

< exp((n1/2−ε2 + 2) log(1 + n−1/2+ε2))
< e2. (33)

Combining (31), (32), and (33), we have

|ν(As)+| > e−2hm

> e−21n1/2−ε22)(
1
50−ε1) log log(n)

log log log(n) *.

This proves the theorem.

4. Sums of Distinct Sets With Small Productset

4.1. Bounding the Multiplicative Dimension in terms of the Relative Size
of the Productset

In this section we begin to prove Theorem 4. Let A,B ⊂ C be finite, with |B| =
C|A|, and suppose that |AB| < α|A|. In analogy with the proof of Theorem 3, our
strategy is to use the condition |AB| < α|A| to bound the multiplicative dimensions
of |A| and |B| in terms of α. However, we no longer have Freiman’s theorem at our
disposal. Instead, we substitute for it with the following result of Ruzsa [10].
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Theorem 17. ([10]) Let n ∈ N, and let X,Y ⊂ Rn be finite with |X| ≤ |Y |.
Suppose dim(X + Y ) = n. Then we have

|X + Y | ≥ |Y |+ n|X|− n(n + 1)
2

. (34)

We begin by translating the problem to the setting of Ruzsa’s result.
Suppose 0 /∈ A ∪ B, and let D = dim×(A ∪ B). Let GA∪B be a multiplicative

group in C∗ of rank D which has a coset zGA∪B that contains A ∪ B. Then by
Lemma 9 there is an injective map ν : zGA∪B → (ZD,+) ⊂ (RD,+). We set

d = dim(ν(A) + ν(B)) ≥ max(dim ν(A),dim ν(B)) ≥ max(dim×(A),dim×(B))
(35)

where the first inequality holds because ν(A) + ν(B) contains translates of both
ν(A) and ν(B) and the second inequality follows from Lemma 9(a).

Now, we may have d < D, so we cannot immediately apply Theorem 17. How-
ever, as mentioned ν(A) + ν(B) contains translates ν(A) + β and α + ν(B) for
α ∈ ν(A), β ∈ ν(B). Let Ad be the real affine space containing ν(A) + ν(B), and
let γ ∈ Ad. Then Ad− γ is a subspace of RD of dimension d, and so there is an iso-
morphism η : (Ad−γ) → Rd. Setting X = η(ν(A)+β−γ) and Y = η(ν(B)+α−γ)
we find that

|X + Y | = |η(ν(A) + ν(B) + α + β − 2γ)|
= |ν(A) + ν(B) + α + β − 2γ|
= |ν(A) + ν(B)|
≤ 2|AB| (36)

where in the last step we applied Lemma 9(b). In addition, we have

dim(X + Y ) = d. (37)

Combining (35), (36), and (37) we have now proven the following.

Lemma 18. Let A,B ⊂ C\{0} be finite. Then there exists d ≥ max(dim×(A),dim×(B))
and sets X,Y ⊂ Rd with |X| = |A| and |Y | = |B| such that

dim(X + Y ) = d

and
|X + Y | ≤ 2|AB|.

Theorem 17 now applies to the sets X and Y . Rewriting the result in terms of
A and B by using the above lemma, we get
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Corollary 19. Let A,B ⊂ C \ {0} be finite. Then there exists d ≥ max(dim×(A),
dim×(B)) such that

2|AB| ≥ |B|+ d|A|− d(d + 1)
2

. (38)

In order to bound the multiplicative dimensions of A and B in terms of α, we
need to handle the trailing term of −d(d+1)/2. Since, recalling (9), dim(X +Y ) ≤
dim(X) + dim(Y ), we have

|A|+ |B| = |X|+ |Y | ≥ d + 2.

Then if we let K = (|A|+ |B|)/(d + 2) we therefore have

K ≥ 1. (39)

We can now rewrite Corollary 19 in terms of α, C, and K.

Lemma 20. Let A,B ⊂ C \ {0} be finite, with |B| = C|A| for some C > 1 and
|AB| < α|A|, and let m = max(dim×(A),dim×(B)). Then there exists d ≥ m such
that if K = |A|+|B|

d+2 then

m <
2α− C

1− C
K

. (40)

Proof. Let d ≥ m be any value given by the conclusion of Corollary 19. It suffices
to prove the bounds for d.

By Corollary 19 we have

2α|A| > 2|AB| ≥ |B|+ d|A|− d(d + 1)
2

.

Rearranging,

2α ≥ C + d− d(d + 1)
2|A| .

Now, we have 2C|A| = 2|B| > |A|+ |B|, so this gives

2α− C ≥ d− Cd(d + 1)
K(d + 2)

≥ d

(
1− C

K

)
.

Dividing, we see the result. !

For our application of this lemma, we need to avoid the singular behavior when
K = C. The following will allow us to bound C/K away from 1.
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Lemma 21. Let d ∈ N be a sufficiently large integer and suppose that X,Y ⊂ Rd

are sufficiently large and satisfy

|Y | = C|X|, 1 ≤ C ! log2 |X|

and
dim(X + Y ) = d.

Set K = (|X|+ |Y |)/(d + 2). Then if K ≤ log2 |X| we have

|X + Y |" |X||Y |
log4 |X|

. (41)

Proof. We begin by recalling (10) to assert that dim(X ∪ Y ) = d. Hence there are
linearly independent vectors x1, . . . , xr and y1, . . . , yd−r for some 1 ≤ r ≤ d and a
point x0 ∈ X such that x0 +xi ∈ X for 1 ≤ i ≤ r and x0 +yj ∈ Y for 1 ≤ j ≤ d−r.

First, suppose that r ≥ d/2. Then let Y ′ be any subset of Y with |Y ′| =
1|Y |/(8 log2 |X|)2. Note that |Y | ≥ |X|, so |Y ′| 5= 0 since |Y | is taken to be suffi-
ciently large, but that (from the definition of K)

|Y ′| ≤ (d + 2)/8 = d/8 + 1/4 < d/4.

Hence we may choose X ′ ⊂ x0 + {x1, . . . , xr} such that

|X ′| = 1d/42 ≥ |Y ′| ≥ |X|/(16 log2 |X|)

and such that the spans of X ′−x0 and Y ′−x0 do not intersect. Since x+y = x′+y′

implies y − y′ = x′ − x, it follows that

|X + Y | ≥ |X ′ + Y ′|" (|X|/(25 log2 |X|))(|Y |/(25 log2 |X|)).

If r ≤ d/2, then d − r ≥ d/2, and the argument is the same with the sets
exchanged. !

The following summarizes the results of this section as they will apply in the
proof of Theorem 4:

Proposition 22. Let A,B ⊂ C\{0} be finite with |A| sufficiently large, and suppose
that |B| = C|A| for some 1 ≤ C ! log2 |A| and |AB| < α|A|. Assume that

α ! log |A|.

and let
m = max(dim×(A),dim×(B)).
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Then
m < 4α

Proof. By Lemma 18 there is d ≥ max(dim×(A),dim×(B)) and sets X,Y ⊂ Rd

with |X| = |A| and |Y | = |B| such that

|X + Y | ≤ 2|AB| ≤ 2α|A|! 2|A| log |A|.

Letting K = (|X|+ |Y |)/(d + 2) = (|A|+ |B|)/(d + 2), Lemma 21 therefore implies
that

K > log2 |X|.

Now, by Lemma 20 we have

m <
2α− C

1− C
K

,

and since C|A| = |B| ≤ |AB| ≤ α|A| we get C ! log |A|. Hence

C/K ≤ 1/2

since |A| is sufficiently large and we get

m <
2α− C

1− 1
2

< 4α.

!

With Propostion 22 proven, we could proceed by induction (albeit with more
bookeeping) as in Section 2 (or [4]) to complete the proof of Theorem 4. However,
the alternative proof in the next section leads to a better dependence on the numbers
of iterates k and l.

4.2. Conclusion of the Proof of Theorem 4

We have once again reduced our problem involving the relative productset size
|AB|/|A| into one involving multiplicative dimension. Theorem 4 is now a corollary
of the following lemma.

Lemma 23. Let A,B ⊂ C be finite sets and suppose that |B| = C|A| for some
C > 1. Let

m = max(dim×(A),dim×(B)),

and let k, l ∈ N0. Assume that m ! log |A|. Then there is an absolute constant c1

such that

|kA + lB| ≥ c1
|A|k|B|l

(k + l)4(k+l)
−Ok,l,m(|B|k+l−1)
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where the implicit constant in the O term can be taken as c2e(k+l)15(k+l)m for an
absolute constant c2.

Lemma 23 will in turn follow from a lemma which places slightly stronger hy-
potheses on the sets A and B, with small losses in the k and l dependence when
these hypotheses are removed.

Lemma 24. Let A,B ⊂ C\{0} be finite sets and suppose that |B| = C|A| for some
C > 1. Let

m = max(dim×(A),dim×(B)),

and let k, l ∈ N0. Assume that m ! log |A|. In addition, suppose that

A ∩ (−A) = B ∩ (−B) = A ∩B = A ∩ (−B) = ∅. (42)

Then

|kA + lB| ≥
(
|A|
k

)(
|B|
l

)
−Ok,l,m(|B|k+l−1),

where the implicit constant in the O term can be taken as ce(k+l)15(k+l)m for an
absolute constant c.

Once we have Lemma 24 we can arrive at Lemma 23 as follows. Let A,B ⊂ C be
finite, and suppose that they do not satisfy one or more of the hypotheses in (42).
First, we let A′ and B′ be such that

A′ ⊂ A B′ ⊂ B

|A′| ≥ |A|/4 |B′| ≥ |B|/4
a ∈ A′ =⇒ −a /∈ A′ b ∈ B′ =⇒ −b /∈ B′

If |A′ ∩B′| < |B′|/2, we let

A′′ = A′, B′′ = B′ \A′.

Next, if in addition |A′′ ∩ (−B′′)| < |B′′|/2, we let

A′′′ = A′′, B′′′ = B′′ \ (−A′′), k′′′ = k, l′′′ = l,
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and Lemma 24 applies with A′′′ in place of A, B′′′ in place of B, k′′′ in place of k,
and l′′′ in place of l to give

|kA + lB| ≥ |k′′′A′′′ + l′′′B′′′|

≥
(
|A′′′|

k

)(
|B′′′|

l

)
−Ok,l,m(|B|k+l−1)

" |A|k|B|l
16k+lkkll

−Ok,l,m(|B|k+l−1),

which is better than the bound in Lemma 23.
On the other hand, if in addition |A′′ ∩ (−B′′)| ≥ |B′′|/2, we let

A′′′ = A′′ ∩ (−B′′), k′′′ = k + l, l′′′ = 0.

Then Lemma 24 applies with A′′′ in place of A, k′′′ in place of k, and l′′′ in place
of l to give

|kA + lB| ≥ |k′′′A′′′|

≥
(
|A′′′|
k + l

)
−Ok,l,m(|B|k+l−1)

" |B|k+l

16k+l(k + l)(k+l)
−Ok,l,m(|B|k+l−1)

Lastly, if |A′ ∩B′| ≥ |B′|/2 then we let

A′′ = A′ ∩B′, k′′ = k + l, l′′ = 0.

Then Lemma 24 applies with A′′ in place of A, k′′ in place of k, and l′′ in place of
l to give

|kA + lB| ≥ |k′′A′′|

≥
(
|A′′|
k + l

)
−Ok,l,m(|B|k+l−1)

" |B|k+l

8k+l(k + l)(k+l)
−Ok,l,m(|B|k+l−1)

In any of the above cases we have the bound in Lemma 23. Notice in particular
that the above computations did not worsen the constant in the O term.
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It remains to prove Lemma 24. To proceed, we introduce some notation. Let
Ak denote the k element subsets of A and let Bl denote the l element subsets of B.
That is,

Ak = {S ⊂ A : |S| = k} Bl = {T ⊂ B : |T | = l}.

Next, for each x ∈ kA + lB, let

Sx =

{
(S, T ) ∈ Ak ×Bl :

∑

a∈S

a +
∑

b∈T

b = x

}
.

Observe that
|kA + lB| ≥ |Ak||Bl|− | ∪x∈kA+lB Ex|, (43)

where

Ex =
{(

(S, T ), (S′, T ′)
)
∈ Sx × Sx : (S, T ) 5= (S′, T ′)

}
.

Denote the union on the right side of (43) by E.
The first term in (43) has size

(|A|
k

)(|B|
l

)
, so we have only to estimate |E|. It is

sufficient to prove the following bound:

|E| ≤ ce(k+l)15(k+l)m|B|k+l−1. (44)

We will have use of the following definition:

Definition 25. Let M be an r by n complex matrix with at least one nonzero entry
in every column. Denote the entry in the ith row and jth column of M by Mij .
Then for any b ∈ C we say that a = (a1, ..., an) ∈ Cn is a nondegenerate solution of
Mx = b if it is a solution such that for each i, 1 ≤ i ≤ r there is no proper subset
J of {j : 1 ≤ j ≤ n,Mij 5= 0} such that

∑
j∈J Mijaj = 0.

We can use Theorem 5 to show that, within a finite subset of a low-rank multi-
plicative subgroup of (C∗)n, there are not many solutions to a system of equations.

Lemma 26. Let M be an r by n complex matrix, and let Y be a finite set contained
in a subgroup of C∗ of rank s. Then there are at most

(
exp((6n)3n(ns + 1))|Y |

)r

nondegenerate solutions to Mx = 0 in Y n.
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Proof. Letting the component of M in the ith row and jth column be Mij , we can
rewrite Mx = 0 as

n∑

j=1

Mijxj = 0, 1 ≤ i ≤ r. (45)

Now, let J(i) = max{j : Mij 5= 0}. Then, fixing a value of xJ(i) for each i, say
xJ(i) = Yi ∈ Y , we can rearrange (45) to get

n−1∑

j=1

Mij

−MiJ(i)Yi
yj = 1, 1 ≤ i ≤ r. (46)

For each nondegenerate solution (y1, ..., yn) of (45) with yJ(i) = Yi for each i, there
corresponds an r-tuple (z1, ..., zr) such that zi ∈ Y n−1 is a nondegenerate solution
of the ith equation in (46) with (zi)j = 0 for all indices j such that Mij = 0 and
(zi)j = yj otherwise. As well, this correspondence is one-to-one, so we need only
count the number of such r-tuples.

However, for a fixed i, the nonzero components of zi make up a nondegenerate
solution of the equation

∑

1≤j≤n−1
Mij #=0

Mij

−MiJ(i)Yi
xj = 1.

Now Theorem 5 applies, and we see that for a fixed i there are at most e(6n)3n(ns+1)

possibilities for zi. Hence the number of r-tuples (z1, ..., zr) is this value raised to
the rth power. Since there are |Y | choices for Yi, i = 1, ..., r, this gives the result of
the lemma. !

To prove (44), we would like to use the above lemma to count elements of E. To
do so, we will first demonstrate a low-multiplicity correspondence between E and
nondegenerate solutions of Mx = 0 for a small number of matrices M . Such will
be the content of the next lemma.

Lemma 27. Let A,B ⊂ C \ {0} satisfy the hypotheses of Lemma 24. Let M be the
set of matrices with r ≤ k + l − 1 rows and 2k + 2l columns and with each column
containing exactly one nonzero entry, which is one of the values 0,±1. Lastly, let

Z =
{
x ∈ (A ∪B)2k+2l : x is a nondegenerate solution of Mx = 0

for some M ∈M} .

Then with E as in (43) we have

|E| ≤ (2k)!(2l)!|Z|.
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Proof. By definition of E, for each element
(
(S, T ), (S′, T ′)

)
of E we have

∑

a∈S

a +
∑

b∈T

b =
∑

a′∈S′

a′ +
∑

b′∈T ′

b′.

Choose any ordering of the elements of each of the sets S, S′, T, T ′, say S =
{c1, ...ck}, S′ = {ck+1, ..., c2k}, T = {c2k+1, ..., c2k+l}, and T ′ = {c2k+l+1, ..., c2k+2l}.
This gives a one-to-one correspondence between E and a subset of the solutions in
(A ∪B)2k+2l of the equation

x1 + ...+xk−xk+1− ...−x2k +x2k+1 + ...+x2k+l−x2k+l+1− ...−x2k+2l = 0. (47)

Let di denote the ith coefficient in the expression (47); then for 1 ≤ i ≤ k
and 2k + 1 ≤ i ≤ 2k + l we have di = 1, whereas for k + 1 ≤ i ≤ 2k and
2k + l + 1 ≤ i ≤ 2k + 2l we have di = −1.

Now, there is a partition of {1, 2, ..., 2k + 2l} into sets J1, ..., Jr such that

∑

j∈Jt

djcj = 0, 1 ≤ t ≤ r (48)

and
∑

j∈J′t

djcj 5= 0, 1 ≤ t ≤ r

for each proper subset J ′t ⊂ Jt with J ′t 5= ∅.
Let M be the matrix of the system (48) (so the entry in row t and column j is

dj if j ∈ Jt and is 0 otherwise). Then (c1, ..., c2k+2l) is a nondegenerate solution of
the system Mx = 0.

Recalling that 0 /∈ A ∪ B, we see that each of the equations in (48) has at
least two terms on the left. Furthermore, applying (42) and the condition that
(S, T ) 5= (S′, T ′) one equation must have at least three. It follows that M has at
most k + l − 1 rows, and hence (c1, ..., c2k+2l) ∈ Z. The desired correspondence
therefore takes

(
(S, T ), (S′, T ′)

)
to the constructed value of (c1, ..., c2k+2l).

It remains only to show that this correspondence above has low multiplicity.
But any particular (2k + 2l)-tuple (c′1, ..., c′2k+2l) ∈ Z is mapped to from at most
(2k)!(2l)! elements of E, one for each possible rearrangement of the components
c′1, ..., c

′
2k+2l. This gives the result. !

Now, applying Lemmas 26 and 27 to sets A and B satisfying the hypotheses of
Lemma 24, we find that

|E| ≤ (2k)!(2l)!
(
2 exp

(
(12(k + l))6(k+l)((2k + 2l)(m + 1) + 1)

)
|B|

)k+l−1
|M|.

(49)
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But we certainly have

|M| ≤ 3(2k+2l)2 , (50)

since each element of M is a matrix with three possible values for each entry and
with fewer than 2k + 2l rows and 2k + 2l columns. Combining (49) and (50) and
absorbing extraneous factors into a single dominating constant, we have (44), and
Lemma 24 follows. !

Now, let A,B ⊂ C be finite, with |B| = C|A|, and suppose that |AB| < α|A|.
Fix integers k and l, and assume that

α ! log |A|.

By Lemma 23, there are absolute constants c1 and c2 such that we have

|kA + lB| ≥ c1|A|k|B|l

(k + l)4(k+l)
− c2e

(k+l)15(k+l)m|B|k+l−1 (51)

where m = max (dim×(A),dim×(B)). By Proposition 22 we have

m < 4α.

Substituting this into (51), we have proved Theorem 4.
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