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Abstract
In this article, we consider increasing sequences of positive integers defined in the
following manner. Let the initial terms a1 and a2 be given, and for any n > 2 define
an to be the smallest integer greater than an−1 which can not be written as a sum
of (distinct) previous terms of the sequence. For various parametrized choices of
the initial terms, we determine precisely the terms of the sequences obtained by
this method. We also conjecture that for all choices of the initial terms, even in a
more general setting, the terms of sequences defined in this manner have interesting
patterns.

1. Introduction

In this article, we study patterns found in weakly complete sequences constructed
by using a greedy algorithm. An increasing sequence a1, a2, . . . of positive integers
is called complete (see [3, Chapter 8, Section 13]) if every positive integer can be
written as a sum of distinct terms of the sequence. Probably the most well-known
nontrivial example of such a sequence is the sequence of Fibonacci numbers (with
one of the initial 1’s deleted): 1, 2, 3, 5, 8, 13, . . . . It is well-known that every positive
integer can be written as a sum of distinct terms of the Fibonacci sequence. For
example, we have

19 = 8 + 5 + 3 + 2 + 1
20 = 13 + 5 + 2
21 = 21
22 = 21 + 1

1Corresponding author.
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and so on. Note that the number 21 can be considered to be a sum of one term of
the sequence. The theory of complete sequences has been studied, and a theorem
due to Brown [1] gives a simple condition which is both necessary and sufficient for
a sequence to be complete.

An increasing sequence of integers is called weakly complete if every sufficiently
large number can be written as a sum of distinct terms of the sequence, i.e., if
there exists an integer N such that every integer n ≥ N can be written as a sum of
distinct terms of the sequence. For example, it is easy to see that the sequence

1, 100, 102, 104, 106, 108, . . .

is weakly complete, with N = 100.

In this article, we are interested in specifying the initial terms of the sequence and
constructing a weakly complete sequence from this data using the greedy algorithm.
To state this more formally, we allow s initial terms a1 < a2 < · · · < as to be
specified, and also specify N = as + 1. Then for n > s, we define an to be the
smallest number such that an > an−1 and such that an cannot be written as a sum
of distinct previous terms of the sequence. For example, if we set a1 = 1 and a2 = 5,
then we obtain the sequence

1, 5, 7, 9, 11, 29, 31, 89, 91, 269, 271, 809, 811, 2429, 2431, . . . .

Similarly, starting with a1 = 1 and a2 = 8 leads to the sequence

1, 8, 10, 12, 14, 16, 54, 56, 58, 222, 224, 226, 894, 896, 898, . . . ,

and starting with a1 = 2, a2 = 3, and a3 = 9 yields the sequence

2, 3, 9, 10, 16, 17, 23, 72, 73, 79, 296, 297, 303, 1192, 1193, 1199, . . . .

In all three of these sequences, the numbers appear to quickly organize themselves
into blocks with a common pattern. For example, in the first sequence each block
has two elements with a difference of 2. Thus one can think of this sequence as being
a union of the “shifted sets” bn + {−1, 1}, n = 0, 1, 2, . . .. Looking at the bn is also
interesting, as one quickly guesses the formula bn = 10 ·3n. Similar formulas can be
found for the other two sequences above, and in fact, if one tries any combination of
initial terms, formulas like this appear to always exist. Based on these observations,
we make the following conjecture.

Conjecture A. Suppose that a1, a2, . . . is an increasing, weakly complete sequence,
which has been constructed by the greedy algorithm as described above. Then there
exist numbers a and b and a set S such that the terms of the sequence are exactly
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the set

I ∪ J ∪
∞⋃

i=0

(a · bi + S),

where I is the set of initial terms, J is a small set of “junk terms,” and for any real
number r, the set r + S is defined by adding r to each element of S. Moreover, the
junk terms all lie between the largest element of I and the smallest element of the
union

⋃∞
i=0(a · bi + S).

Our goal in this article is to prove this conjecture for various choices of two initial
elements of the sequence (i.e., s = 2), giving formulas for a, b, and S. In particular,
we prove the three theorems below.

Theorem 1. Suppose that n ≥ 4 is an integer. Then the conjecture is true for
sequences beginning with a1 = 1 and a2 = n. For these sequences, we have I =
{1, n} and J = {n + 2}. The numbers a and b are given by

a = n + b + 2 and b =
⌊

n + 1
2

⌋
.

Finally, S is the set {2j − b + 2 : 0 ≤ j ≤ b− 2}.

Theorem 2. Suppose that n ≥ 2. Then the conjecture is true for sequences begin-
ning with a1 = n and a2 = n + 1. For these sequences, we have I = {n, n + 1} and
J = ∅. The numbers a and b are given by

a =
3n + 2

2
and b = n.

Finally, we have S = {j − n
2 + 1 : 0 ≤ j ≤ n− 2}.

Theorem 3. Suppose that n ≥ 2. Then the conjecture is true for sequences be-
ginning with a1 = n and a2 = 2n. For these sequences, we have I = {n, 2n} and
J = {2n + 1, 2n + 2, . . . , 3n− 1, 4n}. The numbers a and b are given by

a =
5n2 + 6n

2
and b = n.

Finally, we have S = {j − n
2 + 1 : 0 ≤ j ≤ n− 2}.

We note that while these theorems are only stated for sufficiently large n, they
are in fact true for all values of n, as the remaining cases can easily be dealt with
individually.

In the proof of each of these theorems, it will be convenient to denote the set
a · bi + S by Si. To prove the theorems, we first show that after the initial terms,
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the next terms of the sequence will be the elements of J , and then the elements of
S0. Following this, we proceed by induction on i, assuming that the initial elements
of the sequence are Pi = I ∪ J ∪ S0 ∪ · · · ∪ Si, and showing that the next terms are
those in Si+1. In order to do this, the key step is to consider the sets of numbers
represented by Pi−1 and exactly m elements of Si. We will show that these sets are
essentially sets of consecutive integers, and that they typically overlap each other.
This will show that there are no additional elements of the sequence smaller than
those in Si+1. After this, it will not be difficult to show that the elements of Si+1

cannot be written as sums of the previous elements, and that they must therefore
be the next block in the sequence.

Sections 2, 3, and 4 of this article are devoted to the proofs of the three theorems.
Unfortunately, although all of the proofs use the same methods, we are not able to
prove significant parts of the theorems at the same time. In Section 5, we discuss
in general terms the sequences that arise from two initial terms, and for a broad
range of initial values we conjecture formulae for the numbers a and b and the set
S. We note that since this work was completed, this conjecture has been partially
proven (see [2]).

We finish this introduction by briefly mentioning some of the notation and ter-
minology used in this article. If S is a finite set, then we write R(S) for the set of
all possible sums of distinct elements of S, and write Rm(S) for the set of all sums
of (exactly) m distinct elements of S. We will use interval notation to represent
sets of integers, so that [a, b] = {x ∈ Z : a ≤ x ≤ b}. If we have two intervals
[a, b] and [c, d] with a ≤ b, c and b, c ≤ d, then we will say that these intervals are
contiguous if [a, b] ∪ [c, d] = [a, d]. This occurs if and only if c ≤ b + 1. Finally, we
will at times refer to “all numbers of the same parity in the interval [a, b].” When
we do this, the endpoints a and b will have the same parity, and the expression is
intended to refer to all numbers in the interval which have the same parity as the
endpoints.

2. The Proof of Theorem 1

In our proof of Theorem 1, it will be convenient to define sij = abi − b + 2 + 2j
for 0 ≤ j ≤ b − 2. Then the sets Si = {si0, . . . , si,b−2} and a · bi + S coincide. We
can trivially see that the set I gives the first two terms of the sequence, and that
the set J gives the third term. We claim that the next terms of the sequence are
n+4, n+6, . . . , n+2b, the elements of S0. This follows easily from the observations
that if s is an element of the sequence then s + 1 is not, and that the smallest
possible sum of two elements of the sequence not involving 1 is 2n + 2.
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For any i ∈ Z≥0, define the set Pi as in the introduction, and assume that the
sequence begins with Pk for some k. We need to show that the next terms of the
sequence are the elements of Sk+1. First, we need to show that every integer be-
tween n + 1 and abk+1 − b + 2 (the smallest element of Sk+1) can be written as
a sum of terms of Pk. By hypothesis, we already know that every integer up to
abk + b− 2 (the largest element of Sk) can be represented, and so we only need to
show that every integer in the interval [abk+b−1, abk+1−b+1] has a representation.

By the definition of the sequence, we have

{1} ∪
[
n, abk − b + 1

]
⊆ R(Pk−1).

Now, for any m consider the set Rm(Sk). It is clear that the elements of Rm(Sk)
are all elements of the form

mabk −mb + 2m + 2s,

where s can be any integer from 0+1+ · · ·+(m−1) to (b−m−1)+ · · ·+(b−2). In
this way, we see that Rm(Sk) contains all integers of the same parity in the interval
[mabk−mb+m2 +m,mabk +mb−m2−m]. By adding 1 to each of these integers,
we see that every integer in the interval

Am =
[
mabk −mb + m2 + m,mabk + mb−m2 −m + 1

]

can be represented by elements of Pk.

Next, for any element s ∈ Rm(Sk), we consider the set s+R(Pk−1). Clearly this
set contains the interval [s+n, s+abk−b+1]. Keeping in mind that the elements s
are consecutive numbers of the same parity, it is easy to see that these sets of sums
overlap for consecutive values of s. Combining all these sets of sums, we see that
every number in the interval

Bm =
[
mabk −mb + m2 + m + n, (m + 1)abk + (m− 1)b−m2 −m + 1

]

can be represented as a sum of elements of Pk.

Now, if we consider the sets A1 and B1, we see that we have representations for
all numbers in the intervals [abk − b + 2, abk + b− 1] and [abk − b + 2 + n, 2abk − 1].
We can see that

abk − b + 2 + n =
{

abk + b + 1, if n is odd;
abk + b + 2, if n is even.

Thus we see that we do not yet have a representation for abk + b, and if n is even
then we are also missing a representation for abk + b + 1. To find representations
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for these integers, we begin by noting that

∑

s∈Si

s =
b−2∑

j=0

(abi − b + 2 + 2j) = (b− 1)abi, (1)

and hence that

∑

s∈Pk−1

s = 1 + n + (n + 2) +
k−1∑

i=0

∑

s∈Si

s

= 2n + 3 + a(bk − 1)

=
{

abk + b, if n is odd;
abk + b + 1, if n is even.

(2)

When n is even, we then see that
∑

s∈Pk−1−{1}

s = abk + b.

Thus we have representations for all numbers in the interval

C1 =
[
abk − b + 2, 2abk − 1

]
.

Similarly, if we consider the sets Ab−2 and Bb−2, we have representations for all
numbers in the intervals [(b− 2)abk − b + 2, (b− 2)abk + b− 1] and [(b− 2)abk − b +
2 + n, (b− 1)abk − 1]. This time, we have

(b− 2)abk − b + 2 + n =
{

(b− 2)abk + b + 1, if n is odd;
(b− 2)abk + b + 2, if n is even.

This time, we do not yet have a representation for (b − 2)abk + b, and if n is even
then we are also missing a representation for (b − 2)abk + b + 1. Note now that
(b− 3)abk ∈ Rb−3(Sk), and so is represented by our sequence. In the same way as
above, we can now see that if n is odd, then

(b− 2)bk + b = (b− 3)abk +
∑

s∈Pk−1

s,

and if n is even then we have

(b− 2)bk + b = (b− 3)abk +
∑

s∈Pk−1−{1}

s

and
(b− 2)bk + b + 1 = (b− 3)abk +

∑

s∈Pk−1

s.
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Thus we have representations for all numbers in the interval

Cb−2 =
[
(b− 2)abk − b + 2, (b− 1)abk − 1

]
.

Continuing, we see from (1) that
∑

s∈Sk
s = (b − 1)abk. If we add this to each

element of R(Pk−1), then we obtain representations of (b − 1)abk + 1 and every
number in the interval [(b− 1)abk + n, abk+1 − b + 1]. To represent the numbers in
between, if n is odd, then by (2), adding

∑
s∈Pk−1

s to each element of Rb−2(Sk)
gives representations of all numbers of the same parity from (b − 1)abk + 2 to
(b− 1)abk + n− 1. If we delete the term 1 from each of these representations, then
combined with the previous sentence we see that we can represent every integer in
the interval [(b−1)abk +1, (b−1)abk +n−1]. Thus, we have found representations
for every number in the interval

Cb−1 =
[
(b− 1)abk, abk+1 − b + 1

]
.

On the other hand, if n is even, then adding
∑

s∈Pk−1
s to each element of

Rb−2(Sk) gives representations of all numbers of the same parity from (b−1)abk +3
to (b − 1)abk + n − 1. Combining this with the integers obtained by deleting the
element 1 from each of these representations, we have representations for all num-
bers in the interval [(b− 1)abk + 2, (b− 1)abk + n− 1]. Thus we again find that we
can represent all elements of Cb−1.

If b − 2 ≥ 3, which happens if and only if n ≥ 9, we will now show that the
intervals Am and Bm are contiguous for 2 ≤ m ≤ b − 3. We see from the above
formulae that these intervals are contiguous if and only if

(mabk + mb−m2 −m + 1)− (mabk −mb + m2 + m + n) ≥ −1,

that is, if and only if
2mb− 2m2 − 2m + 2− n ≥ 0. (3)

If we have m = 1 or m = b − 2, then the expression on the left-hand side equals
2b − 2 − n, which is negative since n ≥ 9 and b ≤ (n + 1)/2. On the other hand,
if m = 2 or m = b− 3, then this expression equals 4b− 10− n. When we consider
the definition of b and the fact that n ≥ 9, we see that this expression must be
non-negative. Considering (3) as a quadratic in m, we then see that one root must
lie between 1 and 2, and the other between b−3 and b−2. Therefore (3) is satisfied
for 2 ≤ m ≤ b− 3, and so the sets are in fact contiguous. Thus for each of these m,
we have representations for all numbers in the interval

Cm =
[
mabk −mb + m2 + m, (m + 1)abk + (m− 1)b−m2 −m + 1

]
.

Note that this expression for Cm also holds when m = 1, b− 2, and b− 1.
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Finally, we wish to show that for any m, the sets Cm and Cm+1 are contiguous.
Subtracting the smallest element of Cm+1 from the largest element of Cm, we see
that this happens if and only if

2mb− 2m2 − 4m− 1 ≥ −1,

or in other words if and only if 2m(b − 2 −m) ≥ 0. Since 1 ≤ m ≤ b − 2, we see
that this is always true. Since the sets Cm are contiguous for consecutive values of
m, we see that we have found a representation for every number in the interval

C1 ∪ · · · ∪ Cb−1 =
[
abk − b + 2, abk+1 − b + 1

]
.

Thus every number between n + 1 and the smallest element of Sk+1 can be repre-
sented by the elements of Pk.

To complete the induction, we need to show that the elements of Sk+1 are the
next elements of the sequence. First, we note that the difference between any two
elements of Sk+1 is at most 2b− 4, which is less than n. Hence the only way to use
one element s of this interval to represent another is in the (obvious) representation
of s + 1. From this, it follows that if we can show that no element of Sk+1 can
be represented using only elements of Pk, then the elements of Sk+1 are the next
elements of the sequence.

To accomplish this, consider first a hypothetical representation of an element of
Sk+1 which uses at most b − 2 elements of Sk. The largest possible sum of these
b− 2 elements is

b−2∑

j=1

(abk − b + 2 + 2j) = (b− 2)abk + b− 2.

Hence the smallest possible remainder, which must be represented using elements
of Pk−1 is

(
abk+1 − b + 2

)
−

(
(b− 2)abk + b− 2

)
= 2abk − 2b + 4.

However, from (2) we can see that

2abk − 2b + 4 >
∑

s∈Pk−1

s.

Therefore any possible representation of an element of Sk+1 which uses only elements
of Pk must use all b−1 elements of Sk. By (1), the sum of these elements is (b−1)abk.
Therefore if we try to represent the element sk+1,j = abk+1 − b + 2 + 2j, then we
must use only elements of Pk−1 to represent the remainder

sk+1,j − (b− 1)abk = abk − b + 2 + 2j.
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However, this remainder is an element of Sk, and hence cannot be represented
by elements of Pk−1. This shows that no element of Sk+1 can be represented by
elements of Pk, and hence these elements are the next terms of the sequence. This
completes the proof of the theorem. !

3. The Proof of Theorem 2

This time, after the first two elements n and n + 1, we clearly cannot represent
any number smaller than 2n+1. Therefore the next elements of the sequence must
be n + 2, n + 3, . . . , 2n, which are the elements of S0. Defining Pi again as in the
introduction, we assume that the sequence starts with Pk for some k. We need to
show that the next elements of the sequence are the elements of Sk+1.

By the definition of the sequence, we know that all numbers in the interval
[
n, ank − 1 +

n

2

]

can be represented, since the right-hand endpoint is the largest element of Sk. Now,
from the definition of the sequence, we have

[
n, ank − n

2

]
⊆ R(Pk−1),

and it is easy to see that for any m we have

Rm(Sk) =
[
mank −m

(
n−m− 1

2

)
,mank + m

(
n−m− 1

2

)]
.

We now add each element of Rm(Sk) to each element of
[
n, ank − n

2

]
. Since both of

these sets are sets of consecutive integers, we find representations for every number
in the interval

Bm =
[
mank −m

(
n−m− 1

2

)
+ n, (m + 1)ank + m

(
n−m− 1

2

)
− n

2

]
.

Consider now the intervals R1(Sk) and B1. Comparing the endpoints, we see
that these intervals are almost contiguous. We are missing only a representation
for the number ank + n

2 . To represent this number, we can see that
∑

s∈Si

s = (n− 1)ani (4)

for all i, and hence

∑

s∈Pk−1

s = n + (n + 1) +
k−1∑

i=0

∑

s∈Si

s = 2n + 1 +
k−1∑

i=0

(n− 1)ani = ank +
n

2
. (5)
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Thus we now have representations for all elements of the interval

C1 =
[
ank − n

2
+ 1, 2ank − 1

]
.

Suppose now that n ≥ 4, and consider the intervals Rn−2(Sk) and Bn−2. Then

Rn−2(Sk) =
[
(n− 2)ank − n

2
+ 1, (n− 2)ank +

n

2
− 1

]
.

Adding all elements of Rn−2(Sk) to all elements of
[
n, ank − n

2

]
, we see that we can

represent the entire interval

Bn−2 =
[
(n− 2)ank +

n

2
+ 1, (n− 1)ank − 1

]
.

Comparing the last two intervals, we see that we are missing a representation for
(n− 2)ank + n

2 . However, from (5) we can write

(n− 2)ank +
n

2
= (n− 3)ank +

∑

s∈Pk−1

s,

and since (n − 3)ank ∈ Rn−3(Sk), this gives us a representation. Hence we can
represent all numbers in the interval

Cn−2 =
[
(n− 2)ank − n

2
+ 1, (n− 1)ank − 1

]
.

Next, if we add all the terms of Sk together, the sum is (n−1)ank by (4). Adding
this to each element of

[
n, ank − n

2

]
gives the interval

Bn−1 =
[
(n− 1)ank + n, ank+1 − n

2

]
.

We can represent the missing elements from (n− 1)ank + 1 to (n− 1)ank + n− 1
by noting that

(n− 1)ank + j =
(
(n− 2)ank − n

2
+ j

)
+

∑

s∈Pk−1

s,

and that when 1 ≤ j ≤ n− 1, the first term on the right is an element of Rn−2(Sk).
Hence we can represent all elements in the interval

Cn−1 =
[
(n− 1)ank, ank+1 − n

2

]
.

Now, if n ≥ 5, then we still need to consider values of m between 2 and n − 3.
From our formulae for the intervals Rm(Sk) and Bm, we can see that these two sets
are contiguous whenever

mn−m2 −m− n + 1 ≥ 0. (6)
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Considering the polynomial above as a quadratic in m, we see that if m = 1 or
m = n − 2, then this polynomial is equal to −1, and that if m = 2 or m = n − 3,
then this polynomial is equal to n−5, which is non-negative. Thus one of the roots
of this quadratic satisfies 1 < m ≤ 2 and the other satisfies n−3 ≤ m < n−2. Since
the coefficient of m2 is negative, this shows that the polynomial is non-negative for
2 ≤ m ≤ n−3. Hence the intervals Rm(Sk) and Bm are contiguous for these values
of m, whence we have representations for all terms in the interval

Cm =
[
mank −m

(
n−m− 1

2

)
, (m + 1)ank + m

(
n−m− 1

2

)
− n

2

]
.

Note that this expression for Cm also holds when m = 1, n− 2, and n− 1.
To show that the intervals Cm are contiguous for consecutive values of m, we

see that Cm and Cm+1 are contiguous if and only if mn − 2m − m2 ≥ 0. Since
the polynomial factors as m(n− 2−m), we see that this does hold for all m with
0 ≤ m ≤ n − 2. Since these intervals are contiguous, we may combine them and
see that we have representations for every number from ank − n

2 + 1 to ank+1 − n
2 .

This shows that we can represent all numbers less than the elements of Sk+1.
To complete the proof, we must show that the elements of Sk+1 are the next

members of the sequence. First, note that since the difference between any two
elements of Sk+1 is at most n − 2 and the sequence clearly cannot represent any
number smaller than n, no element of Sk+1 could ever be used in a representation
of another member of this set. Therefore any hypothetical representation of an
element of Sk+1 must use only elements of Pk.

Now, let s = ank+1− n
2 +1+j be an element of Sk+1, and consider a hypothetical

representation of s which uses at most n− 2 elements of Sk. Then the remainder,
which must be represented using elements of Pk−1, is at least

(
ank+1 − n

2
+ 1

)
−

n−2∑

i=1

(
ank − n

2
+ 1 + i

)
= 2ank − n + 2.

But from (5), the sum of all the elements of Pk−1 is only ank + n
2 , which is too

small to represent this remainder. So any possible representation of s must use
all of the elements of Sk. However, by (4) the sum of all the elements of Sk is
(n− 1)ank, which means that the remainder to be represented by elements of Pk−1

is ank− n
2 +1+ j. But this number is an element of Sk, and so the definition of the

sequence implies that it cannot be represented by elements of Pk−1. Since none of
the elements of Sk+1 can be represented using previous terms of the sequence, they
must actually be the next terms. This completes the induction, and also the proof
of the theorem. !
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4. The Proof of Theorem 3

While the details are different, this proof proceeds along the same lines as the
previous two proofs. Unfortunately, since the “junk” set J is more complicated
than before, the proof is a bit longer. Since the first two elements n and 2n sum
to 3n, it is clear that no number smaller than 3n can be represented, and so the
next terms of the sequence are 2n + 1, . . . , 3n − 1. By adding n to each of these
numbers, we find representations of 3n+1, . . . , 4n−1, so these numbers will not be
in our sequence. To see that 4n cannot be represented by the elements we have so
far, note that 4n cannot be written as a sum of any two of our elements, and that
the smallest possible sum of three or more elements is 5n + 1, which is too large.

To show that the next terms of the sequence are the elements of S0, we first show
that the numbers from 4n + 1 to a − n

2 all can be represented by the elements of
I ∪ J . Consider the set Dm = Rm([2n, 3n − 1]), and define Em = n + Dm. Since
both Dm and Em are intervals for all m, we can see as before that we have

Dm =
[
2mn +

m(m− 1)
2

, 3mn− m(m + 1)
2

]

and
Em =

[
2mn +

m(m− 1)
2

+ n, 3mn− m(m + 1)
2

+ n

]
.

It is then easily seen that Dm and Em are contiguous if and only if (n−1−m)(m−
1) ≥ 0, and that this is true for all m under consideration. Thus for each m we
have a representation for each number in the interval

Fm =
[
2mn +

m(m− 1)
2

, 3mn− m(m + 1)
2

+ n

]
.

Now, the intervals Fm and Fm+1 are contiguous if and only if mn −m2 −m −
n + 1 ≥ 0. This is the same as equation (6) from the previous section, where we
saw that it holds for 2 ≤ m ≤ n− 3, provided that n ≥ 5. Therefore we know that
the elements in each of the three intervals

F1 = [2n, 4n− 1], Fmid =
n−2⋃

m=2

Fm =
[
4n + 1,

5n2 − 7n
2

− 1
]

, and

Fn−1 =
[
5n2 − 7n

2
+ 1,

5n2 − 3n
2

]

are represented by the sequence. Note that if n = 2 then we only have the interval
F1, and that if n = 3, then we only have F1 and Fn−1. If we add 4n to each element
of each of these intervals (noting that this term has not been used in any of our
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representations so far), we find that we have representations for all elements in each
of the intervals

G1 = [6n, 8n− 1], Gmid =
[
8n + 1, 5n2+n

2 − 1
]
, and

Gn−1 =
[

5n2+n
2 + 1, 5n2+5n

2

]
=

[
5n2+n

2 + 1, a− n
2

]
.

The three sets F1, Fmid, Fn−1 are almost contiguous, except that they do not
contain the elements 4n and (5n2 − 7n)/2. Since 4n is one of the elements of the
sequence, we know that it has a representation. For the other number, we consider
various possible values of n. If n = 2, then (5n2 − 7n)/2 = 3, which by definition is
not represented by the sequence. If n = 3 or n = 4, then we can calculate directly
that (5n2 − 7n)/2 is represented by the sequence. Finally, if n ≥ 5, it is not hard
to see that

8n + 1 ≤ 5n2 − 7n
2

≤ 5n2 + n

2
− 1,

and hence that (5n2 − 7n)/2 ∈ Gmid. Hence this number is represented by the
sequence whenever n ≥ 3.

Similarly, note that the three sets G1, Gmid, Gn−1 together represent every num-
ber from 6n to a− n

2 except for 8n and (5n2 + n)/2. One can see that

5n2 + n

2
= n +

3n−1∑

s=2n

s,

and so this number always has a representation. To represent 8n, we can calculate
representations explicitly when n = 3 and n = 4, and as above, we can show that
8n ∈ Fmid when n ≥ 5. Thus this number is also represented by the sequence.
Putting all these intervals together, we see that every number less than the smallest
element of S0 has a representation.

To show that the elements of S0 are the next elements of the sequence, we see
as before that no element of S0 can be used in a representation of another element
of this set. Now, if we try to represent an element of S0 without using all of the
elements of [2n, 3n−1], the largest sum we can make is a− n

2 , which is smaller than
any element of S0. Thus any such representation must use all of the elements of this
interval. However, if we add n to all of these elements, we obtain (5n2 +n)/2, which
is still smaller than any element of S0, and if we add 4n to all of these elements,
then we obtain a + n

2 , which is larger than any element of S0. Thus none of the
elements of S0 can be represented by previous terms of the sequence, and must be
the next terms.

Now suppose we know that the sequence begins with Pk for some k. To show
that all the numbers between 2n and the smallest element of Sk+1 are represented
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by the sequence, we begin by noting that by definition, all the numbers from 2n to
ank + n

2 − 1 are represented. We know that we have

{n} ∪
[
2n, ank − n

2

]
⊆ R(Pk−1)

and we also have

Rm(Sk) =
[
mank −m

(
n−m− 1

2

)
,mank + m

(
n−m− 1

2

)]
.

By adding n to each element of Rm(Sk), we have representations for each element
in the interval

Am =
[
mank −m

(
n−m− 1

2

)
+ n,mank + m

(
n−m− 1

2

)
+ n

]
,

and by adding each element of
[
2n, ank − n

2

]
to each element of Rm(Sk), we obtain

the interval

Bm =
[
mank −m

(
n−m− 1

2

)
+ 2n, (m + 1)ank + m

(
n−m− 1

2

)
− n

2

]
.

The above formulas give

R1(Sk) =
[
ank − n

2 + 1, ank + n
2 − 1

]
, A1 =

[
ank + n

2 + 1, ank + 3n
2 − 1

]
,

and
B1 =

[
ank +

3n
2

+ 1, 2ank − 1
]

,

but we have not yet found representations for ank + n
2 or ank + 3n

2 . To represent
these, note that we have ∑

s∈Si

s = (n− 1)ani (7)

for any i. Thus we see that

ank +
3n
2

=
∑

s∈Pk−1

s and ank +
n

2
=

∑

s∈Pk−1−{n}

s.

Therefore we have representations for all numbers in the interval

C1 =
[
ank − n

2
+ 1, 2ank − 1

]
.

If n ≥ 4, then the case m = n− 2 is not included in the above, and we have

Rn−2(Sk) =
[
(n− 2)ank − n

2 + 1, (n− 2)ank + n
2 − 1

]
,

An−2 =
[
(n− 2)ank + n

2 + 1, (n− 2)ank + 3n
2 − 1

]
,
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and
Bn−2 =

[
(n− 2)ank +

3n
2

+ 1, (n− 1)ank − 1
]

.

We have not yet found representations for (n− 2)ank + n
2 or (n− 2)ank + 3n

2 . To
represent these, note that (n− 3)ank ∈ Rn−3(Sk). This yields the representations

(n− 2)ank +
n

2
= (n− 3)ank +

∑

s∈Pk−1−{n}

s

and
(n− 2)ank +

3n
2

= (n− 3)ank +
∑

s∈Pk−1

s.

Hence we can represent all the elements of the interval

Cn−2 =
[
(n− 2)ank − n

2
+ 1, (n− 1)ank − 1

]
.

By (7) with i = k, we can add (n− 1)ank to each element of R(Pk−1) to obtain
representations of (n− 1)ank + n and the interval

[
(n− 1)ank + 2n, ank+1 − n

2

]
.

This time, we have not yet represented the numbers (n−1)ank+j or (n−1)ank+n+
j, for 1 ≤ j ≤ n−1. To represent these, we note that the number (n−2)ank− n

2 +j
is an element of Rn−2(Sk) for each j, and so we have

(n− 1)ank + j =
(
(n− 2)ank − n

2
+ j

)
+

∑

s∈Pk−1−{n}

s

and
(n− 1)ank + n + j =

(
(n− 2)ank − n

2
+ j

)
+

∑

s∈Pk−1

s.

This gives representations for the numbers in the interval

Cn−1 =
[
(n− 1)ank, ank+1 − n

2

]
.

If n ≥ 5, then we still need to deal with the values of m from 2 to n− 3, and we
will show that for each of these n, the sets Rm(Sk), Am, and Bm are contiguous.
Considering our formulae for these sets, we see that the first two are contiguous if
and only if we have mn −m2 −m − n + 1 ≥ 0. But this is the same as equation
(6), which we have already shown holds for 2 ≤ m ≤ n− 3. Equation (6) also turns
out to be the equation to decide whether Am and Bm are contiguous, and so we
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know that these sets have this property also. Thus we have representations for all
numbers in the interval

Cm =
[
mank −m

(
n−m− 1

2

)
, (m + 1)ank + m

(
n−m− 1

2

)
− n

2

]
.

Note that this formula for Cm still holds when m = 1, n− 2, and n− 1.
Finally, we show that the sets Cm and Cm+1 are contiguous. We can see that

this is true if and only if we have m(n − m − 2) ≥ 0, which is clearly true when
1 ≤ m ≤ n − 2, as desired. Hence we can combine all the intervals Cm into one
interval, and this shows that we have representations for all numbers smaller than
the elements of Sk+1.

Now we need to show that the elements of Sk+1 are the next elements of the
sequence. As before, no element of this set can be used in a representation of
another element from the set. Hence we need to show that no element of Sk+1 can
be represented by the elements of Pk. The largest possible sum of exactly n − 2
elements of Sk is (n − 2)ank + n

2 − 1. Hence, if we try to represent an element
of Sk+1 using at most n − 2 elements of Sk, the remainder to be represented by
elements of Pk−1 is at least

(
ank+1 − n

2
+ 1

)
−

(
(n− 2)ank +

n

2
− 1

)
= 2ank − n + 2.

However, we have seen that the sum of all of the elements of Pk−1 is ank + 3n
2 ,

which is smaller than this remainder. Thus any possible representation of s =
ank+1 − n

2 + 1 + j ∈ Sk+1 must use all of the elements of Sk. Since the sum of
these elements is (n−1)ank, the remainder to be represented by elements of Pk−1 is
ank− n

2 +1+ j. But this number is an element of Sk, and so cannot be represented
by elements of Pk−1. This completes the induction and proof of the theorem. !

5. Some General Observations

In addition to proving the theorems above, we spent some time searching for a
general formula for the terms of the sequence which would arise for any two initial
terms. Unfortunately, this seems to be difficult. We did discover that the “right”
way to look at these sequences appears to be to write the first two terms as n and
n+d, and to consider the relationship between d and n. When d = n, then we have
Theorem 3 of this article. If d < n, then the formulae for the terms of the sequences
do appear to be related, and we make the following conjecture.

Conjecture B. If a sequence defined by our method begins with a1 = n and
a2 = n + d, with d < n, then the elements of the sequence are exactly the elements
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of the set

I ∪ J ∪
∞⋃

i=1

(ani + S)

(note that the indexed union starts with i = 1), where I = {n, n + d}, J = {n +
d + 1, n + d + 2, . . . , 2n + d− 1}, and

a =
3n2 + (2d− 3)n− 4d + 2

2(n− 1)
.

Finally, the set S is given by

S = {−c + j : 0 ≤ j ≤ n− 1, j (= d− 1} ,

where
c =

n2 − n− 2(d− 1)
2(n− 1)

.

We note that since the work in this article was completed, this conjecture has been
partially (when d ≤ n− 8) proven by Fox and the first author [2].

The sequences with d > n appear to be more complicated to study. Although
for any particular sequence it appears possible to conjecture and prove a formula
similar to the ones in this article, it seems to be more difficult to give a general
formula in terms of n and d for the parameters a, b, and S in Conjecture A. While
the formulae for these parameters do appear to have patterns, we are at this point
unable to conjecture a general formula for them.
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