
#A41 INTEGERS 12 (2012)

DISTRIBUTION AND ADDITIVE PROPERTIES OF SEQUENCES
WITH TERMS INVOLVING SUMSETS IN PRIME FIELDS

Victor Cuauhtemoc Garćıa 1
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vc.garci@gmail.com

Received: 9/22/11, Revised: 4/4/12, Accepted: 7/4/12, Published: 7/13/12

Abstract
Let p be a large prime number, and U , V be nonempty subsets of the set of residue
classes modulo p. In this paper we obtain results on the distribution and the additive
properties of sequences involving terms of the form u + v, where u ∈ U and v ∈ V.
For instance, we prove that (A+A)(B+Y)+(C+C)(D+W) = Fp, for any subsets
A,B, C,D,Y,W of F∗p with |A||C|,

�
|B||D||Y||W| ≥ 10 p. This extends a previous

result of Garaev and the author.

1. Introduction

In what follows, p denotes a large prime number and F∗p is the multiplicative group
of Fp. The notation f � g is equivalent to f = O(g) and means that |f(x)| ≤ Cg(x),
as x→∞, for some absolute constant C > 0. Given A, B nonempty subsets of Fp

and k a positive integer we shall use the standard notation

A+ B = {a + b (mod p) : a ∈ A, b ∈ B},
AB = {ab (mod p) : a ∈ A, b ∈ B},
kA = {a1 + . . . + ak (mod p) : a1, . . . , ak ∈ A}.

Using combinatorial arguments, Glibichuk [2] established that if A,B are subsets
with |A||B| ≥ 2p, then 8AB = Fp. We note that the proof of [2, Theorem 1] also
implies that (A+A)(B + B) + (A+A)(B + B) = Fp.

This result can be interpreted as the assertion that for any arbitrary pair of small
sets A,B, with |A||B| ≥ 2p, every residue class modulo p can be written as a small
number of combinations of sums and products of their elements.

We note that the condition |A||B| ≥ 2p, is sharp apart from the constant 2.
Indeed, let ∆ = ∆(p) be any increasing function with ∆ → ∞, as p → ∞, and
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set A = B = {1, 2, 3, . . . , [
�

p/∆]}. We have that AB ⊆ {1, 2, 3, . . . , [p/∆] + 1} and
clearly there is no fixed integer k ≥ 2 such that for every prime number p ≥ p0 the
equality kAB = Fp holds: See the discussion given in [3].

It is natural to ask if it is possible to obtain similar results combining more than a
pair of different sets. In [1, Theorem 4] it was proved that if A,B, C,D are arbitrary
subsets of F∗p with

|A||C|, |B||D| > (2 +
√

2)p,

then
(A+A)(B + B) + (C + C)(D +D) = Fp.

This result directly implies that 4AB + 4CD = Fp. Furthermore, from the work by
Hart and Iosevich [4], it follows that for any 2k subsets Ai,Bi, 1 ≤ i ≤ k, satisfying

k�

i=1

|Ai||Bi| ≥ Cpk+1,

we have F∗p ⊆ A1B1 + . . . + AkBk, where C = C(k) is some large constant. In
particular

F∗p ⊆ A1B1 + . . . +A8B8,

whenever
8�

i=1

|Ai||Bi|� p9. (1)

This result involves 16 different sets at the cost of an optimal order.

With these facts in mind, we expect that for arbitrary subsets Ai,Bi, Ci,Di; i =
1, 2, of F∗p with

2�

i=1

|Ai||Bi||Ci||Di|� p4,

the following expresion holds:

(A1 +A2)(B1 + B2) + (C1 + C2)(D1 +D2) = Fp. (2)

We also notice that the most interesting case takes place if the zero class is
removed for each set. Otherwise, it is possible to construct exceptional examples;
for instance, A1 = A2 = C1 = C2 = Fp, B1 = B2 = D1 = D2 = {0} gives

2�

i=1

|Ai||Bi||Ci||Di| = p4

and
(A1 +A2)(B1 + B2) + (C1 + C2)(D1 +D2) = {0}.
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Using the combinatorial point of view, and methods of estimation of trigonomet-
ric sums we establish (2) for some important cases. We obtain that for any subsets
A,B, C,D,Y,W of F∗p satisfying

|A||C| > 10p, |B||D||Y||W| > 100p2,

the following equality holds: (A+A)(B+Y) + (C + C)(D+Z) = Fp. This extends
the already mentioned result of [1]. As a direct consequence we have

2AB + 2AY + 2CD + 2CY = Fp.

Moreover, we prove that A1B1 + . . . +A8B8 = Fp, assuming that Ai,Bi, 1 ≤ i ≤ 8,
are subsets of F∗p with

4�

i=1

|Ai|,
8�

i=5

|Ai|,
4�

i=1

|Bi|,
8�

i=5

|Bi| ≥ 100 p2;

and A1 = A2, A3 = A4, A5 = A6, A7 = A8.

(3)

This result sharpen the one of Hart and Iosevich for some cases. We remove one
factor p in the right side of (1) using 12 different sets subject to (3).

2. Formulation of the Results

Throughout the paper, given u in F∗p, by u∗ (mod p) we denote the residue class
such that uu∗ ≡ 1 (mod p). Also, for U ,U �,V,V �, nonempty subsets of F∗p, we denote
by (U + U �)(V + V �)∗ the subset of F∗p with elements of the form

(u + v)(u� + v�)∗ (mod p),

where

u ∈ U , u� ∈ U �, v ∈ V, v� ∈ V �,
u + v �≡ 0 (mod p), u� + v� �≡ 0 (mod p).

Theorem 1. Let δ be a real number satisfying δ > 1 and B,Y,D,W, subsets of F∗p
with |B||Y||D||W| ≥ δp2. Then

|(B + Y)(D +W)∗| = (p− 1) +
θp2

�
1− 1√

δ

��
|B||Y||D||W|

,

where θ is a real number satisfying |θ| < 1.
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Combining Theorem 1 with some arguments used in [1] one can obtain the fol-
lowing result.

Theorem 2. Let A,B, C,D,Y,W be subsets of F∗p such that

|A||C| ≥ 10p, |B||Y||D||W| ≥ 100p2.

Then
(A+A)(B + Y) + (C + C)(D +W) = Fp. (4)

We immediately derive 2AB + 2AY + 2CD + 2CY = Fp. However, we obtain a
slight improvement on the number of different sets.

Theorem 3. Let Ai,Bi, 1 ≤ i ≤ 8, be subsets of F∗p with

4�

i=1

|Ai|,
8�

i=5

|Ai| ≥ 100 p2;
4�

i=1

|Bi|,
8�

i=5

|Bi| ≥ 100 p2;

A1 = A2, A3 = A4, A5 = A6, A7 = A8.

Then A1B1 + . . . +A8B8 = Fp.

We note that from Theorem 1 it follows that if |U||U �||V||V �| ≥ ∆p2, with ∆ an
arbitrary strictly increasing function such that ∆ = ∆(p)→∞ as p→∞, then

|(U + V)(U � + V �)∗| = p
�
1 +O(1/

√
∆)

�
.

In particular, almost all residue classes modulo p can be written as

(u + v)(u� + v�)∗ (mod p),

for some u ∈ U , u� ∈ U �, v ∈ V, v� ∈ V �.
Within this spirit, combining Theorem 1 with the pigeon–hole principle we have

that (A+X )(B+Y)∗+(C+Z)(D+W)∗ = Fp, if A,B, C,D,X ,Y,Z,W are subsets
of F∗p satisfying |A||X ||C||Z| ≥ 100p2 and |B||Y||D||W| ≥ 100p2.

3. Proof of Theorem 1

First, we establish the following lemma.

Lemma 4. Let B,Y,D,W ⊆ Fp be nonempty. If max{|B|, |Y|}max{|D|, |W|} > p,
then, for the set H = (B + Y)∗(D +W), the following asymptotic formula holds:

|H| = (p− 1) +
θp2

�
1− p

max{|B|,|Y|}max{|D|,|W|}

��
|B||Y||D||W|

, (5)

where θ is some real number with |θ| ≤ 1.
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Proof. We define R := F∗p \ H. In view of the equality |R| = (p − 1) − |H|, it is
sufficient to establish the inequality

|R| ≤ p2

�
|B||Y||D||W|

�
1− p

max{|B|,|Y|}max{|D|,|W|}

� .

For any r ∈ R the congruence

d + w ≡ r(b + y) (mod p) (6)

does not have solutions with b, y, d, w subject to

b + y �≡ 0 (mod p), d + w �≡ 0 (mod p).

Therefore, since b + y ≡ 0 (mod p) implies that d + w ≡ 0 (mod p), for any r in R,
the congruence (6) has at most min{|B|, |Y|}min{|D|, |W|} solutions subject to

b ∈ B, y ∈ Y, d ∈ D, w ∈W.

Expressing the number of solutions of (6), with r ∈ R, via trigonometric sums we
have

1
p

p−1�

t=0

�

r∈R

�

b∈B
y∈Y

�

d∈D
w∈W

e2πi t
p ((d+w)−r(b+y)) ≤ |R|min{|B|, |Y|}min{|D|, |W|}.

Picking up the term corresponding to t = 0, we obtain

|R||B||Y||D||W| ≤ p|R|min{|B|, |Y|}min{|D|, |W|}+ S, (7)

where

S = S(R,B,Y,D,W) :=
p−1�

t=1

����
�

d∈D
w∈W

e2πi t
p (d+w)

����
�

r∈R

����
�

b∈B
y∈Y

e2πi tr
p ((b+y)

����.

Extending the range of the summation over r to 1 ≤ r ≤ p− 1, we obtain

S ≤
p−1�

t=1

����
�

d∈D
w∈W

e2πi t
p (d+w)

����
p−1�

r=1

����
�

b∈B
y∈Y

e2πi tr
p ((b+y)

����

≤




p−1�

t=1

����
�

d∈D
w∈W

e2πi t
p (d+w)

����








p−1�

r=1

����
�

b∈B
y∈Y

e2πi r
p ((b+y)

����



 .
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Applying the Cauchy-Schwarz-Bunyakovskii inequality,

S ≤
�

p−1�

t=0

����
�

d∈D
e2πi td

p

����
2 p−1�

t=0

����
�

w∈W
e2πi tw

p

����
2
�1

2





p−1�

h=0

����
�

b∈B
e2πi hb

p

����
2 p−1�

h=0

����
�

y∈Y
e2πi hy

p

����
2





1
2

≤ p2
�
|B||Y||D||W|.

Therefore, combining this with estimation (7),

|R|
�
|B||Y||D||W|

�
1− p

max{|B|, |Y|}max{|D|, |W|}

�
≤ p2;

Lemma 4 follows.

Now we turn directly to the proof of Theorem 1. From the hypothesis we obtain

(max{|B|, |Y|}max{|D|, |W|})2 ≥ |B||Y||D||W| ≥ δ p2,

which implies
1�

1− p
max{|B|,|Y|}max{|D|,|W|}

� ≤ 1�
1− 1√

δ

� .

Theorem 1 follows from this relation applied to (5).

4. Proof of Theorem 2

To prove Theorem 2, denote by J the number of solutions of the congruence

a1 + hc1 ≡ a2 + hc2 (mod p),

with
a1, a2 ∈ A, c1, c2 ∈ C, h ∈ H.

If a1 ≡ a2 (mod p), then c1 ≡ c2 (mod p) and h can be an arbitrary element of
H. Otherwise, for given a1, a2, c1, c2 with a1 �≡ a2 (mod p) we have at most one
possible value for h. Therefore, J ≤ |H||A||C| + |A|2|C|2. Thus, there exists an
element h0 ∈ H such that J0, the number of solutions of the congruence

a1 + h0c1 ≡ a2 + h0c2 (mod p); a1, a2 ∈ A, c1, c2 ∈ C,

satisfies
J0 ≤ |A||C|+ |A|2|C|2

|H| . (8)
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By the Cauchy-Schwarz-Bunyakovskii inequality it follows that

#{A+ h0C } ≥
|A|2|C|2
J0

. (9)

Since h0 is a fixed element of H, there exist fixed elements b0 ∈ B, y0 ∈ Y, d0 ∈ D,
w0 ∈W such that

h0 ≡ (b0 + y0)∗(d0 + w0) (mod p).

Multiplying the set {A+ h0C} by (b0 + y0), it is clear that

#{(b0 + y0)A+ (d0 + w0)C} = #{A+ h0C}. (10)

We claim that
#{(b0 + y0)A+ (d0 + w0)C} > p/2. (11)

Indeed, by combining the relation (10) with the equations (8) and (9) we have

#{(b0 + y0)A+ (d0 + w0)C} ≥
|A||C|

1 + |A||C|/|H| .

Thus, it will suffice to show that

|A||C|
1 + |A||C|/|H| > p/2,

or equivalently

|A||C|
�

2− p

|H|

�
> p.

Next, applying Theorem 1; |A||C|,
�
|B||Y||D||W| ≥ 10p, and the value set

|H| = (p− 1) +
θ p2

9
10

�
|B||Y||D||W|

>
3
5
p,

we get

|A||C|
�

2− p

|H|

�
> 10p

�
2− p

3p/5

�
≥ 10

3
p.

Therefore Eq. (11) holds.
Finally, let λ be any integer. It is clear that

#{λ− (b0 + y0)A− (d0 + w0)C} > p/2.

By the pigeonhole principle there exist fixed elements a�, a�� ∈ A, c�, c�� ∈ C, such
that

(a� + a��)(b0 + y0) + (c� + c��)(d0 + w0) ≡ λ (mod p).
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5. Proof of Theorem 3

Following the same arguments as Theorem 2, it follows that there exist fixed ele-
ments

b�i ∈ Bi, 1 ≤ i ≤ 8,

such that

#{(b�1 + b�2)A1 + (b�3 + b�4)A3} > p/2, #{(b�5 + b�6)A5 + (b�7 + b�8)A7} > p/2.

Let λ be any integer. It is clear that

#{λ− (b�5 + b�6)A5 − (b�7 + b�8)A7} > p/2.

Hence, by the pigeon-hole principle there exist elements

a�1 ∈ A1, a�3 ∈ A3, a�5 ∈ A5, a�7 ∈ A7,

such that

a�1(b
�
1 + b�2) + a�3(b

�
3 + b�4) ≡ λ− a�5(b

�
5 + b�6)− a�7(b

�
7 + b�8) (mod p),

thus
8�

i=1

a�ib
�
i ≡ λ (mod p),

with
a�1 = a�2, a�3 = a�4, a�5 = a�6, a�7 = a�8.
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