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Abstract
A length k Newman polynomial is any polynomial of the form za1 + · · ·+zak (where
a1 < · · · < ak). Some Newman polynomials are reducible over the rationals, and
some are not. Some Newman polynomials have roots on the unit circle, and some
do not. Defining, in a natural way, what we mean by the “proportion” of length k
Newman polynomials with a given property, we prove that

• 1/4 of length 3 Newman polynomials are reducible over the rationals

• 1/4 of length 3 Newman polynomials have roots on the unit circle

• 3/7 of length 4 Newman polynomials are reducible over the rationals

• 3/7 of length 4 Newman polynomials have roots on the unit circle

We also show that certain plausible conjectures imply that the proportion of length 5
Newman polynomials with roots on the unit circle is 909/9464.

1. Introduction

A Newman polynomial of length k is any polynomial of the form

P (z) = za1 + za2 + · · · + zak (a1 < a2 < · · · < ak)

and S denotes the unit circle in the complex plane. Some Newman polynomials have
roots on S, and some do not. Some are reducible, and some are not. (Throughout
this paper, “reducible” means “reducible over Q” and hence also “reducible over Z”.)

If a1 > 0, then P (z) is trivially reducible. The factor 1 + za2−a1 + · · · + zak−a1

has the same roots as P (z) except for a root at 0. Thus, we will sometimes restrict
our attention to the case a1 = 0.

Other authors have explored necessary or sufficient conditions for Newman poly-
nomials of small length to be reducible [2, 3, 6, 8, 10]. In this paper, we are interested
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in the questions: (1) What proportion of Newman polynomials are reducible? (2)
What proportion of Newman polynomials have roots on the unit circle?

To make this more precise, we introduce some notation. If N is a positive integer,
we define

Newm3(N) =
{
1 + za + zb

∣∣∣ 1 ≤ a < b ≤ N
}

Newm4(N) =
{
1 + za + zb + zc

∣∣∣ 1 ≤ a < b < c ≤ N
}

Newmk(N) =
{
1 + za1 + · · · + zak−1

∣∣∣ 1 ≤ a1 < · · · < ak−1 ≤ N
}

so |Newmk(N)| =
( N
k−1

)
. We also define Newmk(∞) =

⋃

N

Newmk(N).

A root on S is a root of unit modulus, or a unimodular root. A polynomial with
at least one unimodular root will sometimes be called a UR polynomial. We then
define

NewmRedk(N) =
{
P (z) ∈ Newmk(N)

∣∣ P (z) is reducible
}

NewmURk(N) =
{
P (z) ∈ Newmk(N)

∣∣ P (z) is UR
}

as well as

NewmRedk(∞) =
⋃

N

NewmRedk(N)

NewmURk(∞) =
⋃

N

NewmURk(N).

We further define

ProbRedk(N) =
|NewmRedk(N)|
|Newmk(N)|

ProbRedk(∞) = lim
N→∞

ProbRedk(N)

ProbURk(N) =
|NewmURk(N)|
|Newmk(N)|

ProbURk(∞) = lim
N→∞

ProbURk(N)

which we can informally regard as the probability that a Newman polynomial of
length k is reducible or UR, as appropriate.

Other authors [5, 9] have asked what proportion of Newman polynomials are
reducible. However, they considered the set of all 2N Newman polynomials of
degree at most N , which in our notation would be

⋃
k Newmk(N). In this paper,

we consider Newman polynomials of fixed length.
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As the main results of this paper, we prove

ProbUR3(∞) = ProbRed3(∞) =
1
4

ProbUR4(∞) = ProbRed4(∞) =
3
7
.

We also show that ProbUR5(∞) ≥ 0.096 and explore some conjectures.

2. Notation and Terminology

We will use ek to denote exp(2πi/k). Note that in general, ea
k = eb

k if and only if
a ≡ b (mod k). We also always have ea

k = eta
tk.

For any integer m ≥ 2, we denote the integers modulo m by

Z/m = {0, 1, . . . ,m− 1}.

Throughout this document, if we write coset with no further explanation, we mean
a coset of some nontrivial subgroup of the additive group Z/m. Sometimes the
value of m will be understood from the context; if not, we will refer to a mod m
coset. For example, “mod 6 coset” means any of the following subsets of Z/6

{0, 3} {1, 4} {2, 5} {0, 2, 4} {1, 3, 5} {0, 1, 2, 3, 4, 5}.

We note that if A = {a1, . . . , ak} is any mod m coset, then k '= 1 is a divisor of m,
and we have ∑

a∈A

ζa = 0

if ζ is a primitive mth root of 1.
We allow curly brackets to denote multisets, where multiplicity matters but order

does not matter. For instance, we have

{0, 2, 3, 4, 0} = {0, 0, 2, 3, 4} '= {0, 2, 3, 4}.

The size of a multiset counts repetition, so we say {0, 0, 2, 3, 4} has size 5.
We use round brackets to denote tuples, where order matters. For example,

(0, 2, 3, 4, 0) '= (0, 0, 2, 3, 4).

We define union of multisets in the obvious way. For example, we have

{0, 2, 4} ∪ {0, 3} = {0, 0, 2, 3, 4}.
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For multisets A = {a1, . . . , ak} and B = {b1, . . . , bk}, we say A and B are congruent
mod m if, after relabeling if necessary, we have ai ≡ bi (mod m) for all i. We
sometimes abbreviate this by A ≡m B. For example, we have

{0, 0, 2, 3, 4} ≡6 {0, 2, 3, 4, 6}.

If A = (a1, . . . , ak) and B = (b1, . . . , bk) are tuples, we say A and B are congruent
mod m if we have ai ≡ bi (mod m) for all i without relabeling. For example,

(0, 2, 3, 4, 6) ≡6 (0, 2, 3, 4, 0) '≡6 (0, 0, 2, 3, 4).

Let A and B be multisets. If A ≡m B and ζ is any mth root of 1, we have
∑

a∈A

ζa =
∑

b∈B

ζb.

Also, if ζ is a primitive mth root of 1 and A is a union of mod m cosets, then
∑

a∈A

ζa = 0.

(Interestingly, the converse is not true: P (z) = 1+ z + z7 + z13 + z19 + z20 vanishes
at e30, but {0, 1, 7, 13, 19, 20} is not a union of mod 30 cosets.)

In this paper, “polynomial” will always be understood to mean “over Q”. Given a
polynomial P (z) of degree d, we define the reciprocal of P (z) to be P̃ (z) = zdP (z−1).
If P (0) '= 0, then P̃ (z) has degree d, and the roots of P̃ (z) are the reciprocals of
the roots of P (z). If P (z) = P̃ (z), we say P (z) is reciprocal.

3. Earlier Results

The following is well-known.

Lemma 1. If P (z) '= z−1 is an irreducible UR polynomial, then P (z) is reciprocal.

Proof. If P (z) = κdzd + · · · + κ0 is irreducible, then κ0 '= 0. If P (ζ) = 0 for some
ζ ∈ S, then P (z) is the minimal polynomial for both ζ and ζ. Then P̃ (z) vanishes at
1/ζ = ζ, so P̃ (z) must be a multiple of P (z), which implies P̃ (z) = (κ0/κd)P (z) =⇒
κ2

0 = κ2
d =⇒ κ0 = ±κd, so P̃ (z) = ±P (z). If P̃ (z) = −P (z), we can conclude that

P (1) = 0. !

We will let Φk(z) denote the kth cyclotomic polynomial, which is the minimal
polynomial for ek. The roots of Φk(z) are the primitive kth roots of unity; there
are φ(k) of those, where φ is the Euler totient function.

The next result follows straightforwardly from basic properties of cyclotomic
polynomials. We omit the proof.
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Lemma 2. We have

Φk(1) =
{

p if k is a prime power pm

1 if k is divisible by more than one prime.

Of interest to us is the following consequence.

Corollary 3. The polynomials in Newm3(∞) that are cyclotomic are the polyno-
mials Φ3(z),Φ9(z),Φ27(z), . . .. There are no polynomials in Newm4(∞) that are
cyclotomic. The polynomials in Newm5(∞) that are cyclotomic are the polynomials
Φ5(z),Φ25(z),Φ125(z), . . ..

We also have the next result, which has a simple geometric proof. The second
part of our Lemma 4 is equivalent to Lemma 1 in [1] and to Lemma 1 in [3], but
our proof is different.

Lemma 4. Let α, β, γ denote complex numbers of modulus 1.

• If 1 + α + β = 0, then one of α, β is e3.

• If 1 + α + β + γ = 0, then one of α, β, γ is −1.

Proof. Suppose 1 + α + β = 0. Note that α '= ±1. Thus the points 0, 1, and 1 + α
form a triangle. The triangle has side lengths 1, |α|, |β| and hence is equilateral.
The first claim follows.

Now suppose 1 + α + β + γ = 0. If all of α,β, γ are ±1, we are done, so suppose
α '= ±1. Then the points A = 0, B = 1, C = 1 + α form a triangle. Note AB
has length 1 and BC has length |α| = 1. Let D be the point 1 + α + β. Note CD
has length |β| = 1 and DA has length |γ| = 1. It follows that triangles ABC and
ADC are congruent. Then ABC and ADC either coincide, or they form a rhombus.
Either way, the second claim follows. !

There is no counterpart to Lemma 4 for sums of five complex numbers. Note
that P (z) = 1 + z + z3 + z5 + z6 has roots on S that are not roots of unity.

The next result appears in [6]. We omit the proof.

Proposition 5. If a Newman polynomial of length 3 or 4 is reducible, then it has
a cyclotomic factor (equivalently, it vanishes at some root of unity).

The proof of Proposition 5 does not seem to generalize to the length 5 case. How-
ever, I cannot find a reducible length 5 Newman polynomial without a cyclotomic
factor.

Conjecture 6. If a Newman polynomial of length 5 is reducible, then it has a
cyclotomic factor.

Conjecture 6 is true for all length 5 Newman polynomials of degree up to 24.
From Theorem 1 in [2], we know that for a reducible length 5 Newman polynomial,
at most one of its irreducible factors is non-reciprocal.
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4. Main Results

Theorem 7. We have the following four results.

1. NewmUR3(∞) ={
1 + za + zb

∣∣∣ {0, a, b} ≡ {0, 3k−1, 2 · 3k−1} (mod 3k) for some k
}

2. NewmRed3(∞) = NewmUR3(∞) \ {Φ3(z),Φ9(z),Φ27(z), . . .}

3. NewmRed4(∞) ={
1 + za + zb + zc

∣∣∣ {0, a, b, c} ≡ {0, 0, 2k−1, 2k−1} (mod 2k) for some k
}

4. NewmUR4(∞) = NewmRed4(∞).

Result 1 is equivalent to part 1 of Theorem 3 in [10], where it is stated without
proof. Result 3 is equivalent to part 1 of Theorem 2 in [3]. Our proof of Theorem 7
at one point uses a crucial trick taken from the proof of Theorem 2 in [3].

Proof. We will prove results 1 and 2 first. For brevity, define

A =
{
1 + za + zb

∣∣∣ {0, a, b} ≡ {0, 3k−1, 2 · 3k−1} (mod 3k) for some k
}
.

Note that A ⊆ NewmUR3(∞) because a polynomial in A must vanish at e3k . Next,
suppose P (z) = 1+za+zb ∈ NewmUR3(∞). To show NewmUR3(∞) ⊆ A, we must
show {0, a, b} ≡ {0, 3k−1, 2 · 3k−1} (mod 3k) for some k. Let a = 3ka′, b = 3kb′,
where a′, b′ are not both divisible by 3. Since P (z) is UR, we have 1 + ζa + ζb = 0
for some ζ ∈ S. By Lemma 4, ζa and ζb are equal to e3 and e2

3 in some order; say
ζa = e3 and ζb = e2

3. Then note that ζ2b = e3. Thus,

ea′

3 = (ζ2b)a′ = (ζa)2b′ = e2b′

3

so a′ ≡ 2b′ (mod 3). Then either (a′, b′) ≡3 (1, 2) or (a′, b′) ≡3 (2, 1), implying
{0, a, b} ≡3k {0, 3k−1, 2 · 3k−1} as required. This proves result 1. Note that we
have also shown that if P (z) ∈ NewmUR3(∞), then P (z) vanishes at e3k for some k,
so P (z) is divisible by Φ3k(z). So if P (z) is not itself of the form Φ3k(z), then P (z)
is reducible. We have thus shown

NewmUR3(∞) \ {Φ3(z),Φ9(z),Φ27(z), . . .} ⊆ NewmRed3(∞)

and the reverse inclusion follows from Proposition 5 (note that a reducible polyno-
mial is not cyclotomic). This proves result 2.

Next, we prove results 3 and 4. Define

B =
{
1 + za + zb + zc

∣∣∣ {0, a, b, c} ≡ {0, 0, 2k−1, 2k−1} (mod 2k) for some k
}
.
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If P (z) ∈ B, then P (z) vanishes at e2k , so P (z) is divisible by the cyclotomic
polynomial Φ2k(z). By Corollary 3, P (z) is not itself cyclotomic. Therefore P (z) is
reducible. We have thus shown

B ⊆ NewmUR4(∞) ⊆ NewmRed4(∞).

Next, we show the reverse inclusions. If P (z) ∈ NewmRed4(∞), then by Proposi-
tion 5, we must have P (z) ∈ NewmUR4(∞). Now suppose P (z) = 1+za +zb +zc ∈
NewmUR4(∞). We must show {0, a, b, c} ≡ {0, 0, 2k−1, 2k−1} (mod 2k) for some k.
Let a = 2k−1a′, b = 2k−1b′, c = 2k−1c′, where not all of a′, b′, c′ are divisible by 2.
It suffices to show {a′, b′, c′} ≡2 {0, 1, 1}, i.e. exactly one of a′, b′, c′ is even. Since
P (z) is UR, then 1+ ζa + ζb + ζc = 0 for some ζ ∈ S. By Lemma 4, one of ζa, ζb, ζc

is −1; say ζa = −1. Then also ζb + ζc = 0, implying ζc−b = −1. As in the proof of
Theorem 2 in [3], we then have

(−1)a′ = (ζc−b)a′ = (ζa)c′−b′ = (−1)c′−b′

so a′ ≡2 c′ − b′. If a′ is even, then b′, c′ have the same parity. They cannot both
be even, so {a′, b′, c′} ≡2 {0, 1, 1}. On the other hand, if a′ is odd, then b′, c′ have
opposite parity. So again {a′, b′, c′} ≡2 {0, 1, 1}. This completes the proof of results
3 and 4. !

From Theorem 7, we conclude that if P (z) = 1 + za + zb is a UR Newman
polynomial of length 3, then one of the following conditions must hold:

{0, a, b} ≡3 {0, 1, 2}
{0, a, b} ≡9 {0, 3, 6}
{0, a, b} ≡27 {0, 9, 18}.

...

Note that this list of conditions is pairwise disjoint. Similarly, we conclude that if
P (z) = 1 + za + zb + zc is a UR Newman polynomial of length 4, then one of the
following conditions must hold:

{0, a, b, c} ≡2 {0, 0, 1, 1}
{0, a, b, c} ≡4 {0, 0, 2, 2}
{0, a, b, c} ≡8 {0, 0, 4, 4}.

...

This list of conditions is also pairwise disjoint.
That is what allows us to find the proportion of polynomials in Newm3(N) or

Newm4(N) that are UR. To state this precisely, we introduce more notation. If N
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is a positive integer, we define

Permk(N) =
{
(a1, . . . , ak−1)

∣∣∣ the ai are distinct and 1 ≤ ai ≤ N
}
,

where we do not assume a1 < a2 < · · · . Note that |Permk(N)| = (k− 1)!
( N
k−1

)
. We

then define a function F : Permk(N)→ Newmk(N) by

F ((a1, . . . , ak−1)) = 1 + za1 + · · · + zak−1 .

The pre-image of each polynomial in Newmk(N) consists of (k−1)! different tuples
in Permk(N).

Lemma 8. Let P be any property of the form

{a1, . . . , ak−1} ≡m {u1, . . . , uk−1},

where m and the ui are constants. Let GoodPermk(N) be the set of tuples in
Permk(N) that satisfy P, and let GoodNewmk(N) be the set of polynomials in
Newmk(N) that satisfy P. Then

|GoodNewmk(N)|
|Newmk(N)| =

|GoodPermk(N)|
|Permk(N)| .

Proof. A polynomial P (z) ∈ Newmk(N) satisfies P if and only if all (k− 1)! tuples
in F−1(P (z)) satisfy P. Therefore

|GoodPermk(N)| = (k − 1)! |GoodNewmk(N)| .

Since also |Permk(N)| = (k − 1)! |Newmk(N)|, the result follows. !

Lemma 9. Let P be any property of the form

(a1, . . . , ak−1) ≡m (u1, . . . , uk−1),

where m and the ui are constants. Let GoodPermk(N) be the set of tuples in
Permk(N) that satisfy P. Then

lim
N→∞

|GoodPermk(N)|
|Permk(N)| =

1
mk−1

.

Proof. Construct such a (k − 1)-tuple by first choosing a1, then choosing a2, and
so on. We must have 1 ≤ a1 ≤ N and a1 ≡m u1. If W1 is the number of ways to
choose a1, we have

N

m
− 1 ≤

⌊
N

m

⌋
≤W1 ≤

⌈
N

m

⌉
≤ N

m
+ 1.
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Next, we must have 1 ≤ a2 ≤ N , a2 ≡m u2, and a2 '= a1. If W2 is the number of
ways to choose a2, we have

N

m
− 2 ≤

⌊
N

m

⌋
− 1 ≤W2 ≤

⌈
N

m

⌉
≤ N

m
+ 1.

Continuing in this way, we find that
(N

m
− 1

)(N

m
− 2

)
· · ·

(N

m
− k + 1

)
≤ |GoodPermk(N)| ≤

(N

m
+ 1

)k−1
.

The upper and lower bound are both of the form

1
mk−1

Nk−1 + O(Nk−2)

whereas |GoodPermk(N)| ∼ Nk−1. The result follows. !

Theorem 10. We have

ProbUR3(∞) = lim
N→∞

|NewmUR3(N)|
|Newm3(N)| =

1
4
,

ProbUR4(∞) = lim
N→∞

|NewmUR4(N)|
|Newm4(N)| =

3
7
.

Proof. The set NewmUR3(N) is the disjoint union of the sets

A1 =
{
1 + za + zb ∈ Newm3(N)

∣∣∣ {a, b} ≡3 {1, 2}
}

A2 =
{
1 + za + zb ∈ Newm3(N)

∣∣∣ {a, b} ≡9 {3, 6}
}

A3 =
{
1 + za + zb ∈ Newm3(N)

∣∣∣ {a, b} ≡27 {9, 18}
}

...

so we have

|NewmUR3(N)|
|Newm3(N)| =

|A1|
|Newm3(N)| +

|A2|
|Newm3(N)| +

|A3|
|Newm3(N)| + · · ·

By Lemma 8, we have
|Ak|

|Newm3(N)| =
|Bk|

|Perm3(N)| ,

where
Bk =

{
(a, b) ∈ Perm3(N)

∣∣∣ {a, b} ≡3k {3k−1, 2·3k−1}
}
.
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Each set Bk is the disjoint union of the sets

Ck =
{
(a, b) ∈ Perm3(N)

∣∣∣ (a, b) ≡3k (3k−1, 2·3k−1)
}
,

Dk =
{
(a, b) ∈ Perm3(N)

∣∣∣ (a, b) ≡3k (2·3k−1, 3k−1)
}
.

We conclude that
|NewmUR3(N)|
|Newm3(N)| =

|C1|
|Perm3(N)| +

|D1|
|Perm3(N)| +

|C2|
|Perm3(N)| +

|D2|
|Perm3(N)| + · · ·

By Lemma 9, when N →∞, the terms of this series approach

1
32

+
1
32

+
1
92

+
1
92

+
1

272
+

1
272

+ · · · =
1
4
.

Similarly, the set NewmUR4(N) is the disjoint union of the sets

E1 =
{
1 + za + zb + zc ∈ Newm4(N)

∣∣∣ {a, b, c} ≡2 {0, 1, 1}
}

E2 =
{
1 + za + zb + zc ∈ Newm4(N)

∣∣∣ {a, b, c} ≡4 {0, 2, 2}
}

E3 =
{
1 + za + zb + zc ∈ Newm4(N)

∣∣∣ {a, b, c} ≡8 {0, 4, 4}
}

...

so we have

|NewmUR4(N)|
|Newm4(N)| =

|E1|
|Newm4(N)| +

|E2|
|Newm4(N)| +

|E3|
|Newm4(N)| + · · ·

By Lemma 8, we have
|Ek|

|Newm4(N)| =
|Fk|

|Perm4(N)| ,

where
Fk =

{
(a, b, c) ∈ Perm4(N)

∣∣∣ {a, b, c} ≡2k {0, 2k−1, 2k−1}
}
.

Each set Fk is the disjoint union of the sets

Gk =
{
(a, b, c) ∈ Perm4(N)

∣∣∣ (a, b, c) ≡2k (0, 2k−1, 2k−1)
}
,

Hk =
{
(a, b, c) ∈ Perm4(N)

∣∣∣ (a, b, c) ≡2k (2k−1, 0, 2k−1)
}
,

Ik =
{
(a, b, c) ∈ Perm4(N)

∣∣∣ (a, b, c) ≡2k (2k−1, 2k−1, 0)
}
.

We conclude that
|NewmUR4(N)|
|Newm4(N)| =

|G1| + |H1| + |I1|
|Perm4(N)| +

|G2| + |H2| + |I2|
|Perm4(N)| + · · · .
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By Lemma 9, when N →∞, the terms of this series approach
3
23

+
3
43

+
3
83

+ · · · =
3
7
. !

Corollary 11. We have

ProbRed3(∞) = lim
N→∞

|NewmRed3(N)|
|Newm3(N)| =

1
4
,

ProbRed4(∞) = lim
N→∞

|NewmRed4(N)|
|Newm4(N)| =

3
7
.

Proof. The second claim follows immediately from Theorem 10 and from result 4
in Theorem 7. As for the first claim, note that because of result 2 in Theorem 7, it
would suffice to prove

lim
N→∞

|Cycl3(N)|
|Newm3(N)| = 0,

where Cycl3(N) is the set of polynomials in Newm3(N) that are cyclotomic. But
the polynomials in Cycl3(N) are the polynomials of the form

1 + z3k−1
+ z2·3k−1

,

where 2 · 3k−1 ≤ N , so k ≤ 1 + log3(N/2). That is, we have |Cycl3(N)| ∼ log3 N ,
whereas |Newm3(N)| ∼ N2/2. The result follows. !

5. The Length 5 Case

It is conceivable that there is no simple necessary and sufficient condition for a poly-
nomial in Newm5(∞) to be UR. However, we can exhibit some particular families
of polynomials in Newm5(∞) that are UR.

We define

AN =
{
P (z) ∈ Newm5(N)

∣∣∣ P (z) is reciprocal
}

=
{
1 + zm−k + zm + zm+k + z2m

∣∣∣ 2 ≤ m ≤
⌊N

2

⌋
, 1 ≤ k ≤ m− 1

}
.

and then define A =
⋃

N AN . Such polynomials are always UR. (See, for example,
Corollary 2 in [4] or Corollary 5 in [7].)

Notice that A is a “small” set. We have |AN | = O(N2) because there are at
most N/2 ways to choose m and at most N/2 ways to choose k. It follows that
|AN | / |Newm5(N)| approaches 0 as N →∞.
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We also define B1, B2, B3, . . . to be the sets of polynomials 1 + za + zb + zc + zd

in Newm5(∞) that satisfy, respectively, the conditions

{0, a, b, c, d} ≡5 {0, 1, 2, 3, 4}
{0, a, b, c, d} ≡25 {0, 5, 10, 15, 20}
{0, a, b, c, d} ≡125 {0, 25, 50, 75, 100}

...

Each polynomial in Bk is UR because it vanishes at e5k .
We also define C6, C12, C18, C24, C36, . . . (the subscripts are of the form 2k3!)

to be the sets of polynomials 1 + za + zb + zc + zd in Newm5(∞) that satisfy,
respectively, the conditions

{0, a, b, c, d} ≡6

(
some coset of {0, 3}

)
∪

(
some coset of {0, 2, 4}

)

{0, a, b, c, d} ≡12

(
some coset of {0, 6}

)
∪

(
some coset of {0, 4, 8}

)

{0, a, b, c, d} ≡18

(
some coset of {0, 9}

)
∪

(
some coset of {0, 6, 12}

)

{0, a, b, c, d} ≡24

(
some coset of {0, 12}

)
∪

(
some coset of {0, 8, 16}

)

{0, a, b, c, d} ≡36

(
some coset of {0, 18}

)
∪

(
some coset of {0, 12, 24}

)

...

Each polynomial in C2k3! is UR because it vanishes at e2k3! .
We thus have A ∪

(
B1 ∪B2 ∪ · · ·

)
∪

(
C6 ∪ C12 ∪ · · ·

)
⊆ NewmUR5(∞).

For brevity, define B = B1 ∪B2 ∪ · · · and C = C6 ∪ C12 ∪ · · · . Also for brevity,
if S is any subset of Newm5(∞), we refer to

lim
N→∞

|S ∩Newm5(N)|
|Newm5(N)|

as the “probability” that a length 5 Newman polynomial is in S, or even more
briefly, the “measure” of S.

Since A ∪ B ∪ C ⊆ NewmUR5(∞), a lower bound for ProbUR5(∞) will be the
measure of A∪B∪C. The remarks after the definition of A show that the measure
of A is 0. Therefore we are interested in the measure of B ∪ C.

It is possible to prove that the measure of B ∪ C is

(measure of B) + (measure of C)− (measure of B ∩ C)

=
1
26

+
109
1820

− 1
26

· 109
1820

=
909
9464

≈ 0.096.

We give a sketch of the proof later.
At this point, we assemble a few facts and conjectures.
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Conjecture 12. NewmUR5(∞) = A ∪B ∪ C.

Conjecture 13. If P (z) ∈ NewmUR5(∞) has a cyclotomic factor, then P (z) ∈
B ∪ C.

Proposition 14. If Conjecture 6 and Conjecture 13 are both true, then Conjec-
ture 12 is true.

Proof. Suppose P (z) ∈ NewmUR5(∞). Either P (z) is reducible, or P (z) is irre-
ducible. If the former, then Conjecture 6 implies P (z) has a cyclotomic factor, and
then Conjecture 13 implies P (z) ∈ B∪C. If the latter, then Lemma 1 implies P (z)
is reciprocal, so P (z) ∈ A. !

Proposition 15. For any k, we have ProbURk(∞) ≤ ProbRedk(∞).

Proof. We sketch a proof. It suffices to show NewmURk(∞) is “almost” a subset of
NewmRedk(∞), in the sense that “most” UR Newman polynomials are reducible.
But this follows because a UR Newman polynomial that is irreducible must be
reciprocal by Lemma 1. And the set of reciprocal Newman polynomials of length k
has essentially k/2 “degrees of freedom” as in the remarks after the definition of
the set A. !

Note that there are reducible Newman polynomials that are not UR, such as

1 + z + z3 + z4 + z5 + z7 + z9 + z10 + z12 = (1 + z + z3)(1 + z4 + z9).

It is thus conceivable that ProbURk(∞) < ProbRedk(∞) for some k.
We close by sketching a proof of the following result.

Proposition 16. If B and C are as defined earlier, then the “measure” of B ∪ C
is 909/9464. Therefore ProbUR5(∞) ≥ 909/9464.

Proof. We sketch a proof. Note that the conditions defining the Bi

{a, b, c, d} ≡5 {1, 2, 3, 4}
{a, b, c, d} ≡25 {5, 10, 15, 20}
{a, b, c, d} ≡125 {25, 50, 75, 100}.

...

are pairwise disjoint. Therefore the measure of B is the sum of the measures of the
Bi, as in the proof of Theorem 10. We also claim that the conditions defining the
Cj are pairwise disjoint. This is less obvious; we sketch the proof of that later.
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We also claim that for each i and j, the condition defining Bi is “independent”
from the condition defining Cj (as far as asymptotics are concerned). We omit a
precise definition of this; the key is that if P1 and P2 are two properties of the form

{a1, . . . , ak} ≡m1 {u1, . . . , uk},
{a1, . . . , ak} ≡m2 {v1, . . . , vk},

where m1,m2 are relatively prime, then P1 and P2 are “independent” in an asymp-
totic sense. (The asymptotic probability of P1 is 1/mk

1 , the asymptotic probability
of P2 is 1/mk

2 , and the event P1 ∩P2 is a unique congruence modulo m1m2 by the
Chinese Remainder Theorem, so P1 ∩ P2 has asymptotic probability 1/(m1m2)k.)

To prove that the conditions defining C6, C12, . . . are pairwise disjoint, we intro-
duce a definition.

A mod 6m “bicoset” is any multiset that contains 0 and is of the form
(
some coset of {0, 3m}

)
∪

(
some coset of {0, 2m, 4m}

)

or equivalently, of the form

{0, 3m,w,w + 2m,w + 4m} or {w,w + 3m, 0, 2m, 4m}.

One can show that if k ≥ 1 and ( ≥ 1, then the three conditions

{0, a, b, c, d} is congruent to some mod 6m bicoset
{0, a, b, c, d} is congruent to some mod 6m2k bicoset
{0, a, b, c, d} is congruent to some mod 6m3! bicoset

are pairwise disjoint. We omit some details, but this follows because a mod 6m2k

bicoset has the form

{0, 3m2k, x, x + 2m2k, x + 4m2k} or {x, x + 3m2k, 0, 2m2k, 4m2k}

which, when taken modulo 6m, becomes

{0, 0, x, x + 2m,x + 4m} or {x, x, 0, 2m, 4m}

and a mod 6m3! bicoset has the form

{0, 3m3!, y, y + 2m3!, y + 4m3!} or {y, y + 3m3!, 0, 2m3!, 4m3!}

which, modulo 6m, becomes

{0, 3m, y, y, y} or {y, y + 3m, 0, 0, 0}.

A case by case analysis then verifies our disjointness claim.
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Now, the “measure” of B ∪ C is
(
“measure” of B

)
+

(
“measure” of C

)
−

(
“measure” of B ∩ C

)
.

But the “independence” property implies that the measure of B∩C is the product of
the measure of B and the measure of C. Now because of the disjointness properties
previously observed, the remaining step is to find the measures/probabilities of the
individual Bi and Cj and then sum them.

That task is easier for the Bi. Informally, the probability of belonging to B1 is
the probability that {a, b, c, d} ≡5 {1, 2, 3, 4}, which is the probability that (a, b, c, d)
is congruent (mod 5) to one of the 24 permutations of (1, 2, 3, 4), which is 24/54.
Similarly, the probability of belonging to B2 is 24/254, and so on. So the measure
of B is

24
54

+
24
254

+
24

1254
+ · · · =

1
26

.

The Cj are more subtle. The event of belonging to C6 is the event that a, b, c, d
satisfy one of the following:

{0, a, b, c, d} ≡6 {0, 3, 0, 2, 4} if and only if {a, b, c, d} ≡6 {0, 2, 3, 4}
{0, a, b, c, d} ≡6 {0, 3, 1, 3, 5} if and only if {a, b, c, d} ≡6 {1, 3, 3, 5}∗
{0, a, b, c, d} ≡6 {1, 4, 0, 2, 4} if and only if {a, b, c, d} ≡6 {1, 2, 4, 4}∗
{0, a, b, c, d} ≡6 {2, 5, 0, 2, 4} if and only if {a, b, c, d} ≡6 {2, 2, 4, 5}∗

(multisets with repeated elements are labeled with stars for convenience). The event
of belonging to C12 is the event that a, b, c, d satisfy one of the following:

{0, a, b, c, d} ≡12 {0, 6, 0, 4, 8} if and only if {a, b, c, d} ≡12 {0, 4, 6, 8}
{0, a, b, c, d} ≡12 {0, 6, 1, 5, 9} if and only if {a, b, c, d} ≡12 {1, 5, 6, 9}
{0, a, b, c, d} ≡12 {0, 6, 2, 6, 10} if and only if {a, b, c, d} ≡12 {2, 6, 6, 10}∗
{0, a, b, c, d} ≡12 {0, 6, 3, 7, 11} if and only if {a, b, c, d} ≡12 {3, 6, 7, 11}
{0, a, b, c, d} ≡12 {1, 7, 0, 4, 8} if and only if {a, b, c, d} ≡12 {1, 4, 7, 8}
{0, a, b, c, d} ≡12 {2, 8, 0, 4, 8} if and only if {a, b, c, d} ≡12 {2, 4, 8, 8}∗
{0, a, b, c, d} ≡12 {3, 9, 0, 4, 8} if and only if {a, b, c, d} ≡12 {3, 4, 8, 9}
{0, a, b, c, d} ≡12 {4, 10, 0, 4, 8} if and only if {a, b, c, d} ≡12 {4, 4, 8, 10}∗
{0, a, b, c, d} ≡12 {5, 11, 0, 4, 8} if and only if {a, b, c, d} ≡12 {4, 5, 8, 11}

(where again stars simply indicate that elements are repeated). In general, the
event of belonging to C6m is the event that {a, b, c, d} is congruent modulo 6m to
one of a list of 3m + 2m− 1 different multisets. Of those 5m− 1 multisets, exactly
3 will be of the form {s, s, t, u} (each of those can be permuted in 12 ways) and the
remaining 5m− 4 will be of the form {s, t, u, v} (each of those can be permuted in
24 ways).
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It follows that the probability of belonging to C6m is

3×12 + (5m−4)×24
(6m)4

=
5
54

· 1
m3

− 5
108

· 1
m4

.

It remains to sum this over all m of the form 2k3! where k ≥ 0, ( ≥ 0. But this can
be done with the help of the identities

(
1 +

1
23

+
1
43

+
1
83

+ · · ·
)(

1 +
1
33

+
1
93

+
1

273
+ · · ·

)
=

8
7
· 27
26

=
108
91

,

(
1 +

1
24

+
1
44

+
1
84

+ · · ·
)(

1 +
1
34

+
1
94

+
1

274
+ · · ·

)
=

16
15

· 81
80

=
27
25

.

The measure of C is thus
5
54

· 108
91

− 5
108

· 27
25

=
109
1820

.

So the measure of B ∪ C is
1
26

+
109
1820

− 1
26

· 109
1820

=
909
9464

≈ 0.096. !

It is perhaps worth mentioning that if we write a computer program that, for
a large value of N , generates a large number of pseudorandom polynomials in
Newm5(N) and keeps track of the proportion that are UR, the results are con-
sistent with a proportion around 0.096.

Acknowledgment The author acknowledges the helpful comments of Michael Fi-
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