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Abstract
A Newman polynomial is a polynomial in one variable whose coefficients are 0 or 1,

and the length of a Newman polynomial is the number of coefficients that are 1.

Several authors have asked about the highest minimum modulus of a length n
Newman polynomial on the unit circle, but there remains a large gap between what

has been conjectured and what has been proved. In this paper, we prove that for

each n > 2, there is a length n Newman polynomial with no roots on the unit circle.

1. Introduction and Main Result

A Newman polynomial of length n is any polynomial of the form

α(z) = za1 + za2 + · · · + zan

where a1 < · · · < an are distinct nonnegative integers. We let S denote the unit

circle in the complex plane. Many authors have asked questions about roots or

reducibility of Newman polynomials [4, 6, 7, 8, 9] and Newman polynomials with

high minimum modulus on S [1, 2, 5].

It has been conjectured that there exist Newman polynomials of length n whose

minimum modulus on S increases with n. More precisely, for any nonnegative

integers a1 < · · · < an, define

M(a1, . . . , an) = min
z∈S

|za1 + · · · + zan |

and then define

µ(n) = maxM(a1, . . . , an),

where the maximum is taken over the (infinitely many) sets of n distinct nonnegative

integers. We then state the following conjecture.
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Conjecture 1. (i) We have limn→∞ µ(n) = ∞. (Perhaps µ(n) ∼ nc.) (ii) There

exists N such that µ(n) > 1 for all n ≥ N . (Perhaps N = 6.)

Note that (i) implies (ii). Conjecture 1 occurs at the end of [1] in slightly different

language. Statement (ii) seems difficult to prove, despite appearing much weaker

than (i). Brute-force searches show that µ(n) > 1 for 6 ≤ n ≤ 20. That is, for each

n from 6 to 20, there is a Newman polynomial α of length n such that |α(z)| > 1

for all z ∈ S. See the end of this paper.

The main purpose of this paper is to prove the following weaker version of Con-

jecture 1. (For brevity, “nonvanishing” will always mean “not vanishing on S”.)

Theorem 2. For all n > 2, there is a nonvanishing Newman polynomial of length n.
(In other words, we have µ(n) > 0 for all n > 2.)

To prove Theorem 2, we will rely on several lemmas. The first two are straight-

forward.

Lemma 3. If there are nonvanishing Newman polynomials of length n and length m,
then there is a nonvanishing Newman polynomial of length nm.

Proof. Suppose α(z) = za1 + · · · + zan is a nonvanishing Newman polynomial of

length n, and suppose β(z) = zb1 + · · ·+zbm is a nonvanishing Newman polynomial

of length m. Then for any k, β(zk) is nonvanishing. If k is large enough, then the

product α(z)β(zk) = (za1 + · · ·+ zan)(zkb1 + · · ·+ zkbm) will have the property that

the nm exponents ai + kbj are all distinct, and is hence a Newman polynomial of

length nm.

Our next lemma is equivalent to Lemma 1 in [3], Lemma 1 in [4], and Lemma 4

in [8]. We therefore state it without proof.

Lemma 4. Suppose z1, z2, z3, z4 are complex numbers of modulus 1 such that z1 +

z2 + z3 + z4 = 0. Then at least one of the three statements

z1 + z2 = 0 and z3 + z4 = 0,

z1 + z3 = 0 and z2 + z4 = 0,

z1 + z4 = 0 and z2 + z3 = 0

must be true.

Next, we introduce some notation. We will use interval notation for sets of

integers:

[a, b] = {a, a + 1, . . . , b− 1, b}.
For any integers n > 2 and 0 < k < n, we define

αn,k = αn,k(z) =

�

a∈[0,n]\{k}

za
and βn = βn(z) =

�

a∈[0,n−2]∪{n+2}

za,
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which are Newman polynomials of length n. Given an integer n, we will say n is of

“type A” if αn,k is nonvanishing for some k, and we will say n is of “type B” if βn

is nonvanishing.

We will prove Theorem 2 in the following way. We will exhibit a specific nonva-

nishing Newman polynomial of length 6, and we will show that if n > 2 and n �= 6,

then n is either of type A or B, or can be written as a product of integers of type

A or B.

Lemma 5. The polynomial α(z) = 1 + z + z2 + z4 + z5 + z8 is a nonvanishing
Newman polynomial of length 6.

Proof. The proof is a calculation. First note that α(1) = 6 and α(−1) = 2, so

α does not vanish at ±1. Since zeros of α occur in conjugate pairs, it suffices to

show α does not vanish on the upper half-circle. So suppose α(eiθ) = 0 for some

θ ∈ (0,π). We then have

R(θ) := Reα(eiθ
) = 1 + cos θ + cos 2θ + cos 4θ + cos 5θ + cos 8θ,

J(θ) := Imα(eiθ
) = sin θ + sin 2θ + sin 4θ + sin 5θ + sin 8θ.

We want to show R(θ) and J(θ) cannot both be 0, which is equivalent to showing

R(θ) and J(θ)/ sin θ cannot both be 0. To do this, we rewrite R(θ) and J(θ)/ sin θ
using Chebyshev polynomials:

R(θ) = 1 + T1(x) + T2(x) + T4(x) + T5(x) + T8(x),

J1(θ) :=
J(θ)

sin θ
= 1 + U1(x) + U3(x) + U4(x) + U7(x),

where x = cos θ, and Tn and Un denote Chebyshev polynomials of the first and

second kind respectively. We then have

R(θ) = (1) + (x) + (2x2 − 1) + (8x4 − 8x2
+ 1)

+ (16x5 − 20x3
+ 5x) + (128x8 − 256x6

+ 160x4 − 32x2
+ 1)

= 128x8 − 256x6
+ 16x5

+ 168x4 − 20x3 − 38x2
+ 6x + 2 =: p(x),

J1(θ) = (1) + (2x) + (8x3 − 4x) + (16x4 − 12x2
+ 1)

+ (128x7 − 192x5
+ 80x3 − 8x)

= 128x7 − 192x5
+ 16x4

+ 88x3 − 12x2 − 10x + 2 =: q(x).

Applying the Euclidean algorithm, one can show that the polynomials p(x) and

q(x) are relatively prime. It follows that there are no real numbers x such that p(x)

and q(x) are both zero, so R(θ) and J1(θ) cannot both be 0.

We now give some notation and another straightforward lemma. For any positive

integer n, we let ν2(n) be the largest k such that 2k divides n.
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Lemma 6. If ν2(a) �= ν2(b), then there does not exist a complex number z satisfying
both za = −1 and zb = −1.

Proof. Suppose za = −1 = zb, and write a = 2v(2t + 1) and b = 2w(2u + 1) where

v = ν2(a) and w = ν2(b). Suppose v < w (the other case is similar). Then

+1 = (−1)
2w−v(2u+1)

= (za
)
2w−v(2u+1)

= z2w(2t+1)(2u+1)
= (zb

)
2t+1

= (−1)
2t+1

= −1.

Next, we show that “most” integers are of type A.

Lemma 7. For n > 2, if n+2 is not a power of 2, then there exists k such that the
polynomial αn,k defined earlier is a nonvanishing Newman polynomial of length n.

Proof. If n + 2 is not a power of 2, then n + 2 = 2v(2t + 1) for integers v ≥ 0 and

t ≥ 1. We will choose k = 2vt− 1, so 0 < k < n. Now consider

α(z) = αn,k(z) = 1 + z + z2
+ · · · + zn − zk

=
zn+1 − 1

z − 1
− zk,

(z − 1)α(z) = zn+1 − 1− zk+1
+ zk.

Suppose that z ∈ S is a zero of α. Then z �= 1. Since zn+1 − 1 − zk+1 + zk = 0,

we have the following three cases by Lemma 4. We will show that each of the three

cases leads to a contradiction.

Case 1. We have zn+1−1 = 0 and −zk+1+zk = 0. Then −zk(z−1) = 0, implying

z = 1, a contradiction.

Case 2. We have zn+1− zk+1 = 0 and −1+ zk = 0. Then zk+1(zn−k− 1) = 0 and

zk − 1 = 0, implying zk = 1 and zn−k = 1. Then also 1 = zn−k/zk = zn−2k and

therefore zt(n−2k) = 1t = 1. This implies 1 = zt(n−2k)/zk = zt(n−2k)−k. But now

observe that

t(n− 2k)− k = t
�
2

v
(2t + 1)− 2− 2(2

vt− 1)
�
− (2

vt− 1)

= t
�
2

v
2t + 2

v − 2− 2
v
2t + 2

�
− 2

vt + 1

= t2v − 2
vt + 1 = 1.

Thus z1 = 1, a contradiction.

Case 3. We have zn+1 + zk = 0 and −1− zk+1 = 0. Then zk(zn−k+1 +1) = 0 and

zk+1 + 1 = 0, implying zn−k+1 = −1 and zk+1 = −1. By Lemma 6, we will obtain

the desired contradiction if ν2(n− k + 1) �= ν2(k + 1). Now observe

n− k + 1 = (2
v
(2t + 1)− 2)− (2

vt− 1) + 1

= 2
v
2t + 2

v − 2− 2
vt + 1 + 1

= 2
vt + 2

v
= 2

v
(t + 1)
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and k + 1 = 2v · t. Since t and t + 1 are of opposite parity, we have ν2(2
vt) �=

ν2(2
v(t + 1)). This completes Case 3.

Lemma 7 says that if n > 2 is not of the form 2m − 2, then n is of type A. The

values of n that remain to be dealt with are those n of the form 2m − 2.

Lemma 8. If n = 2m−2 where m−1 is a composite number, then n can be written
as the product of two integers of type A.

Proof. First note that if m − 1 = 4, then n = 2m − 2 = 30 = 3 · 10, and both 3

and 10 are of type A. Now suppose m − 1 is a composite integer greater than 4.

Then m − 1 = ab where at least one of a, b is greater than 2. Without loss of

generality, a > 2. Now consider 2m−1 − 1 = 2ab − 1 = (2a − 1)k, where k =

2a(b−1) + 2a(b−2) + · · · + 2a + 1 > 1. Since m − 1 ≥ 3 and a ≥ 3, it follows that

both 2m−1 − 1 and 2a − 1 are congruent to 7 mod 8. This further implies that

k ≡ 1 mod 8. We can then write n = 2(2m−1 − 1) = (2a − 1) · 2k, where the two

factors 2a − 1 and 2k are both greater than 2, and are congruent (mod 8) to 7 and

2 respectively. Thus neither factor is congruent to 6 mod 8, so neither factor is 2

less than a power of 2, so both factors are of type A.

Lemma 9. If n = 2m − 2 where m− 1 is an odd integer greater than 1, then n is
of type B.

Proof. If n = 2m − 2 where m − 1 > 1 is odd, then m > 2 is even, so say m = 2k
where k > 1. Now consider

α(z) = βn(z) = 1 + z + z2
+ · · · + zn−2

+ zn+2
=

zn−1 − 1

z − 1
+ zn+2,

(z − 1)α(z) = zn−1 − 1 + zn+3 − zn+2.

Suppose that z ∈ S is a zero of α. Then z �= 1. Since zn−1 − 1 + zn+3 − zn+2 = 0,

we have the following three cases by Lemma 4. We will show that each of the three

cases leads to a contradiction.

Case 1. We have zn−1 − 1 = 0 and zn+3 − zn+2 = 0. Then zn+2(z − 1) = 0,

implying z = 1, a contradiction.

Case 2. We have zn−1 + zn+3 = 0 and −1 − zn+2 = 0. Then zn−1(1 + z4) = 0

and 1 + zn+2 = 0, implying z4 = −1 and zn+2 = −1. By Lemma 6, we will obtain

the desired contradiction if ν2(4) �= ν2(n + 2). But this follows because n + 2 = 2m

where m ≥ 4.

Case 3. We have zn−1− zn+2 = 0 and −1+ zn+3 = 0. Then zn−1(1− z3) = 0 and

zn+3 − 1 = 0, implying z3 = 1 and zn+3 = 1. Now note that

n + 3 = 2
m

+ 1 = 2
2k

+ 1 = 4
k

+ 1
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which is congruent (mod 3) to 1k +1 = 2. Therefore n+3 = 3�− 1 for some �. But

then 1 = 1�/1 = z3�/zn+3 = z is the desired contradiction.

To recap, Lemma 7 takes care of those n > 2 that are not of the form 2m−2. Then

Lemmas 8 and 9 take care of all n of the form 2m − 2 except when m− 1 ∈ {1, 2},
i.e., m ∈ {2, 3}. But n = 22 − 2 = 2 is ignored, and n = 23 − 2 = 6 is taken care of

by Lemma 5. Thus we have proved Theorem 2.

2. Further Remarks

We have proved that µ(n) > 0 for all n > 2. We suspect that more is true, and

in fact, we suspect that µ(n) approaches infinity with n. Even the conjecture that

µ(n) > 1 for all sufficiently large n remains unproved.

Using fairly straightforward brute-force search, we can show that µ(n) > 1 for

6 ≤ n ≤ 20. In the table below, for each n ∈ {6, . . . , 20}, we give a set A of

n nonnegative integers such that the polynomial α(z) =
�

a∈A za is a length n
Newman polynomial satisfying |α(z)| > 1 on S. We remain ignorant of how to

prove that such polynomials exist for all sufficiently large n.

n A
6 {0, 1, 4, 5, 10, 12}
7 {0, 1, 5, 7, 9, 16, 19}
8 {0, 2, 4, 5, 6, 7, 10, 13}
9 {0, 1, 2, 3, 4, 7, 8, 10, 12}

10 {0, 1, 2, 3, 4, 6, 8, 9, 12, 13}
11 {0, 2, 3, 4, 5, 6, 8, 10, 11, 12, 15}
12 {0, 1, 2, 3, 5, 6, 7, 8, 12, 14, 15, 16}
13 {0, 1, 2, 3, 4, 6, 8, 9, 10, 11, 14, 15, 18}
14 {0, 1, 2, 3, 4, 5, 7, 9, 11, 12, 13, 16, 17, 19}
15 {0, 1, 2, 3, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, 19}
16 {0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 12, 13, 14, 17, 20, 21}
17 {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 14, 15, 16, 20, 21, 22}
18 {0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 12, 13, 14, 15, 17, 19, 20, 21}
19 {0, 1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 13, 15, 16, 18, 20, 21, 22, 24}
20 {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 15, 16, 17, 19, 21, 23, 24, 25}
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