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Abstract
The partition function Q(n), which denotes the number of partitions of a positive
integer n into distinct parts, has been the subject of a dozen papers. In this paper,
we study this kind of partition with the additional constraint that the parts are
bounded by a fixed integer. We denote the number of partitions of an integer n
into distinct parts, each ≤ k, by Qk(n). We find a sharp upper bound for Qk(n),
and more, an infinite series lower bound for the partition function Q(n). In the last
section, we exhibit a group of interesting identities involving Qk(n) that arise from
a combinatorial problem.

1. Introduction

Let Q(n) be the number of ways of partitioning a positive integer n into distinct
summands. The generating function for this kind of partition is

Q(x) =
∞∑

n=0

Q(n)xn =
∞∏

j=1

(1 + xj) . (1)

Euler noted that he could easily convert Q(x) to something else, which is in fact
another generating function:

Q(x) =
∞∏

j=1

(1 + xj) =
∏∞

j=1(1− x2j)
∏∞

j=1(1− xj)
=

∞∏

j=1

1
1− x2j−1

.

The last product is the generating function for partitioning an integer into odd
summands. Consequently, he concluded that there was a bijection between the set
of partitions of a positive integer n into distinct parts, and set of partitions of n

1The author is currently a guest researcher of the School of Mathematics at the Institute for
Research in Fundamental Sciences (IPM).



INTEGERS: 12 (2012) 2

into odd parts. To read a brief history of Euler work concerning this bijection see,
[9].

If σo(n) denotes the odd divisor function, i.e., the sum of odd divisors of n, then
the partition function Q(n) satisfies the recurrence equation (see [1], p. 826)

Q(n) =
1
n

n−1∑

k=0

Q(k)σo(n− k), n > 0 . (2)

It is easily seen that σo(n) = σ(n) − 1
2σ(n

2 ) = σ(n)/(2a(n)+1 − 1), where σ(n) is
the sum of divisors of n, and a(n) is the power of 2 in the decomposition of n into
prime factors. Therefore, we are able to modify our recurrence equation as follows:

Q(n) =
1
n

n∑

k=1

σ(k)
2a(k)+1 − 1

Q(n− k), n > 0 . (3)

An investigation in the table of amounts of Q(n) for large numbers demonstrates
that it has a considerably slower growth than the unrestricted partition function
P (n). To have a comparison with P (n), it is worthwhile to mention Rademacher
like series for Q(n) (see [5], [6] and [7]):

Q(n) =
1
2
√

2
∞∑

k=1

A2k−1(n)

{
d

dn′

[
J0

(
πi

2k − 1
,

√
1
3

(
n′ +

1
24

))]}

n=n′

,

where

Ak(n) =
k∑

h=1
(h,k)=1

eπi[s(h,k)−s(2h,k)]e−2πihn/k, s(h, k) =
k−1∑

r=1

r

k

(
hr

k
−

⌊
hr

k

⌋
− 1

2

)
.

Here s(h, k) is a Dedekind sum, and J0(x) is the zeroth order Bessel function of the
first kind. This series representation of Q(n) leads to an asymptotic formula for
Q(n):

Q(n) ∼ 1
4 · 31/4n3/4

eπ
√

n
3 , as n →∞ . (4)

Comparing this asymptotic formula with the one for P (n) demonstrates the slower
growth of Q(n) (see also [4], pp. 574-580). In Sections 2 and 3, we derive suitable
upper and lower bounds for the partition function Q(n).

It is well known that the general partition function P (n), n > 0, is convex (see
[8]). The convexity for the amounts of Q(n) takes place if n ≥ 4, which means that
the inequality Q(n) ≤ 1

2 {Q(n + 1) + Q(n− 1)} holds for n ≥ 4. A short proof of
this fact is presented in Section 3.

In this paper, we are mainly concerned to a restricted form of partition of an
integer into distinct parts. Let Qk(n) denote the number of partitions of a positive
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integer n into distinct parts, each ≤ k. This partition function has an interesting
combinatorial interpretation. If X = {1, 2, 3, · · · , k}, then Qk(n) is the number of
subsets of X for which the sum of the members is n. The partition function Qk(n)
has the generating function

Qk(x) =
k∏

j=1

(1 + xj) =
θ∑

n=0

Qk(n)xn, θ =
k(k + 1)

2
. (5)

We know that Qk(x) is a symmetric unimodal polynomial. It means that its co-
efficients goes up to somewhere, (for Qk(x) the climax occurs at (k(k+1)

4 )) then
symmetrically goes down. The symmetry of the coefficients is almost evident, but
proving the unimodal property of Qk(x) is difficult. To my knowledge there is not a
known combinatorial proof for this fact, but there is a non-elementary proof based
on semi-simple Lie Algebras. The interested reader might have a look at [10] to
see a proof of the unimodal property for Qk(x) (For further discussion on the uni-
modal property and Lie algebras see, [12]). Since Q(n) = Qk(n) for each k > n,
the unimodal property of Qk(x) leads to the monotonicity of the partition function
Q(n).

Let Pk(n) denote the number of partitions of an integer n into parts, each ≤ k,
and let Pk(x) be its generating function. The relation between Qk(n) and Pk(n)
can be stated by means of the identity

Pk(x) =
1

∏k
j=1(1− xj)

=
∏k

j=1(1 + xj)
∏k

j=1(1− x2j)
= Pk(x2)Qk(x) ,

which leads to a recurrence equation relating Pk(n) to Qk(n):

Pk(n) =
(n

2 )∑

i=0

Qk(n− 2i)Pk(i) . (6)

2. An Elementary Upper Bound for Qk(n)

Pribitkin [11] has introduced a remarkable elementary method to obtain a sharp
upper bound for the partition function Pk(n). With modification of his method,
we are able to find a sharp upper bound for Qk(n). As in [11], we employ the
dilogarithm function Li2(x) =

∑∞
m=1

xm

m2 , where |x| < 1. It is clear that Li2(1) =
π2

6 . We also will need the simple fact ex − e−x > 2x for x > 0, that has appeared
in [11]. The main result of this section is stated in the next theorem.

Theorem 1. Let k,n be positive integers, n ≤ (k(k+1)
4 ). Then we have the following

inequality:

Qk(n) <
A(k, n)√

n
eπ
√

n/3− 1
π

√
3nLi2(e

−πα/
√

3n) ,
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where A(k, n) = 2
√

n
k2+k−4n+2 + π

2
√

3
, α = *k/2+.

Proof. If 0 < x < 1, we have

Qk(x) =
k∏

j=1

(1 + xj) <
1

(1− x)(1− x3) · · · (1− x2α−1)
.

After taking logarithm, we observe that

log(Qk(x)) < −
α∑

j=1

log(1− x2j−1) =
α∑

j=1

∞∑

m=1

x(2j−1)m

m

=
∞∑

m=1

1
m

α∑

j=1

x(2j−1)m

=
∞∑

m=1

1
m

xm

1− x2m
(1− x2αm) .

Now we let x = e−u, u > 0, to find that

log(Qk(e−u)) <
∞∑

m=1

e−mu(1− e−2αmu)
m(1− e−2mu)

=
∞∑

m=1

1− e−2αmu

m(emu − e−mu)

<
1
2u

∞∑

m=1

1− e−2αmu

m2

=
1
2u

(
π2

6
− Li2(e−2αu)

)
.

We exploit the unimodal and symmetry properties of Qk(x) to obtain that for
all 0 < x < 1, and n ≤ k(k+1)

4 ,

Qk(x) ≥ Qk(n)(xn + xn+1 + · · · + x
k(k+1)

2 −n) = Qk(n)xn 1− x
k(k+1)

2 −2n+1

1− x
.

Therefore, we realize that

log(Qk(n)) < nu + log(1− e−u)− log(1− e−( k(k+1)
2 −2n+1)u)

+
1
2u

(
π2

6
− Li2(e−2αu)

)

< nu + log(u)− log(1− e−( k(k+1)
2 −2n+1)u)

+
1
2u

(
π2

6
− Li2(e−2αu)

)
.
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Here we have applied the simple estimation 1 − e−x < x, that is valid for x > 0.
Now we let u = 1

λ
√

n
, λ > 0, and estimate the best λ. Substitute u by u = 1

λ
√

n
in

the right hand side of the inequality to find that

Qk(n) <
e( 1

λ + π2λ
12 )

√
n

λ
√

n

e−
1
2 λ
√

nLi2(e
−2αu)

(1− e−( k(k+1)
2 −2n+1) 1

λ
√

n )
.

Calculate the best possible λ to minimize the multiple of
√

n at the first expo-
nential term; it turns out that λ = 2

√
3

π and u = π
2
√

3n
. Hence we conclude that

Qk(n) <
πeπ

√
n/3

2
√

3n
e−

1
π

√
3nLi2(e

−π α√
3n )

(1− e−( k(k+1)
2 −2n+1) π

2
√

3n )
. (7)

Note that for x ≥ 0, 1+x ≤ ex, or e−x ≤ 1/(1+x). Subtracting both sides from
1, gives us the estimate

x

1 + x
≤ 1− e−x;

the proof is now complete when we apply this inequality to the right hand side of
(7) for x = (k(k+1)

2 − 2n + 1) π
2
√

3n
.

Fix n and let k →∞; since A(k, n) tends to π
2
√

3
, and e−

1
π

√
3nLi2(e

−πα/
√

3n) tends
to 1, we are able to determine a very nice upper bound for Q(n).

Corollary 2. Let Q(n) denote the number of unrestricted partitions into distinct
parts. Then, we have

Q(n) <
πeπ

√
n/3

2
√

3n
.

Remark. It is clear that for all feasible amounts of k, n, the value of e−π α√
3n is

small enough to make Li2(x) > x a good estimation; hence we conclude that

Qk(n) <
A(k, n)√

n
e(π/

√
3−e

−π α√
3n
√

3/π)
√

n .

3. Simple Lower Bounds for Q(n)

Analytic methods, like the saddle point method (see [4], pp. 541-608) are excellent
for asymptotic estimations or finding upper bounds, but they seem poor to derive
lower bounds. Likewise, the dilogarithm scheme is not applicable to find a lower
bound for Qk(n). However, we are able to find a lower bound for Q(n) by applying
other methods. First, we take a detour and prove the convexity of Q(n).
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Lemma 3. If n > 3, then Q(n) ≤ 1
2 {Q(n + 1) + Q(n− 1)}.

Assuming n > 3, we need to show that Q(n + 1) − Q(n) ≥ Q(n) − Q(n − 1).
Consider a partition of n into distinct parts and increase the greatest summand
by 1; we obtain a partition of n + 1 into distinct parts in which the two greatest
summands differ by at least 2. Conversely, we can delete a 1 from the greatest
summand of such partition and obtain a partition of n with distinct parts (for
single part partitions of n, n + 1 there is a similar correspondence).

Therefore, there is a bijection between the entire set of partitions of n into dis-
tinct summands, and set of distinct part partitions of n + 1 for which the greatest
summand is at least 2 more than the previous one (this set includes the single part
partition of n+1). Hence, we find that Q(n+1)−Q(n) is the cardinality of the set
of all partitions of n + 1 into (more than 1) distinct summands with the greatest
summand exactly 1 more than the previous summand. Denote this set by Y , and
the analogous set pertaining to n by X.

Decompose X into two disjoint sets, one consisting of those partitions that con-
tain 1, say X1, and the other one including all partitions without 1 in their sum-
mands, say X2. Partition Y in a similar way, and assume that (1,λ1, · · · , k1 −
1, k1) ∈ X1, (λ′1, · · · , k2 − 1, k2) ∈ X2 (note that since n > 3, k1, k2 > 2). Define
the two mappings σ1,σ2 in the following way:

σ1 : X1 → Y2, σ1[(1,λ1, · · · , k1 − 1, k1)] = (λ1, · · · , k1, k1 + 1) ,

σ2 : X2 → Y1, σ2[(λ′1, · · · , k2 − 1, k2)] = (1,λ′1, · · · , k2 − 1, k2) .

It is quite straightforward to see that σ1 is an injection from X1 into Y2, and σ2 is
a bijection between X2, Y1. Therefore, |X1| ≤ |Y2|, |X2| = |Y1|, and we conclude
that |X| ≤ |Y |.

The recurrence equation (3) together with the convexity of Q(n) leads us to the
following lower bound.

Theorem 4. If n > 0, then Q(n) satisfies the following inequality:

Q(n) > e−
7
12

∞∑

k=1

(7/12)k

k!

(
n + k − 1

n

)
.

Proof. Starting with the equation (3), we divide the right hand sum into parts, each
consisting of four consecutive terms with the first one index in the form 4t + 1. If
k = 4t + 1 > 1, then we have

3∑

j=0

σo(k + j)Q(n− k − j) ≥ (k + 1)Q(n− k) +
k + 2

3
Q(n− k − 1)

+ (k + 3)Q(n− k − 2) + Q(n− k − 3)

≥ 7
12

3∑

j=0

(k + j)Q(n− k − j) .
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To acquire the last inequality, we have applied the monotonicity of Q(n), n ≥ 0 (the
last inequality also holds for the last part which may have less than 4 terms).

For k = 1, we could write that
4∑

j=1

σo(j)Q(n− j) = Q(n− 1) + Q(n− 2) + 4Q(n− 3) + Q(n− 4)

>
7
12

4∑

j=1

jQ(n− j) +
1
3
Q(n− 1) .

Here, we have exploited the monotonicity of Q(n) and the fact Q(n−1)+Q(n−3) >
2Q(n− 2), valid for n > 5. Thus, we conclude that

Q(n) ≥ 1
3n

Q(n− 1) +
7

12n

n∑

k=1

kQ(n− k), n > 5 .

Now, we define the function t(n) by the recurrence equation

t(n) =
7

12n

n∑

k=1

kt(n− k), t(0) = 1 .

A direct computation shows that Q(i) ≥ t(i), 1 ≤ i ≤ 5. Hence, Q(i) ≥ t(i), i ≥ 0.
Let T (x) be the generating function of t(n). It is easily seen that T (x) satisfies the
equation

T (x)
∞∑

i=0

(i + 1)xi =
12
7

T ′(x) .

After solving this differential equation, it turns out that

T (x) = T0e
7

12−12x = T0

∞∑

k=0

(7/12)k

k!
(1− x)−k .

Since t(0) = 1, the constant T0 is equal to e−
7
12 . Thus, we have the following

formula for t(n), n > 0:

t(n) = e−
7
12

∞∑

k=1

(7/12)k

k!

(
n + k − 1

n

)
,

now the proof is complete.

Let qk(n) denote the number of partitions of an integer n into exactly k dis-
tinct parts (note that qk(n) is quite different from Qk−1(n − k)). Clearly, Q(n) =
∑a

k=1 qk(n), a =
⌊

1
2 (−1 +

√
8n + 1)

⌋
. It is easily verified that qk(n) = pk

(
n−

(k
2

))
.

Since
pk(n) ≥ 1

k!

(
n− 1
k − 1

)
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(see [2], pp. 56-57), we obtain a finite sum lower bound for Q(n):

Q(n) =
a∑

k=1

pk

(
n−

(k
2

))
≥

a∑

k=1

1
k!

(
n−

(k
2

)
− 1

k − 1

)
. (8)

Remark. To improve the lower bound series in Section 3, one may sort terms
of the recurrence identity concerning Q(n), modulo 8 or even 16; also a similar
argument could be done to derive a lower bound for the partition function P (n).
The first lower bound series is a quickly convergent satisfying lower bound. The
second lower bound sum, although not as straightforward as the first one, is sharp.
In fact, empirical evidence shows that if n is greater than 350000, then the amount
of the lower bound series is greater than e0.84π

√
n/3/n3/4, and for n > 12500, the

amount of the second lower bound is greater than e0.93π
√

n/3/n3/4.

4. Identities Involving Prime Factors of the Bound Integer

In this section, we find a group of interesting identities which arise from a combi-
natorial problem. The key idea here is the uniqueness of a basis representation for
the cyclotomic field Q(ζp), when you look at it as a Q-vector space. We consider

(−x;x)k =
k∏

j=1

(1 + xj) =

k(k+1)
2∑

n=0

Qk(n)xn ,

and consider p as an odd prime factor of k. Let ζ be the primitive p-th root of unity,
i.e., ζ = e2πi/p. Let Q(ζ) be the field extension of ζ over Q. First, we calculate the
amount of (−ζ; ζ)k in Q(ζ). We have

(−ζ; ζ)k =
k∏

j=1

(1 + ζj) =




p−1∏

j=0

(1 + ζj)




k/p

.

Since ζ is a primitive root of unity we have

P (z) = zp − 1 =
p−1∏

j=0

(z − ζj) .

Let z = −1 in this equation to find that

p−1∏

j=0

(1 + ζj) = 2 .
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Therefore, we have (−ζ; ζ)k = 2k/p.

The polynomial
P (z)
z − 1

= 1 + z + z2 + · · · + zp−1

is a minimal polynomial for ζ over Q. So we conclude that the set

A =
{
1, ζ, ζ2, ζ3, · · · , ζp−2

}

constitutes a Q-basis for Q(ζ) as a Q-vector space. Thus,

(−ζ; ζ)k = 2k/p = 2k/p · 1 + 0 · ζ + 0 · ζ2 + · · · + 0 · ζp−2

is the basis representation of (−ζ; ζ)k in Q(ζ). On the other hand, let us assume
that

(−ζ; ζ)k =
k∏

j=1

(1 + ζj) = a0 + a1ζ + a2ζ
2 + · · · + ap−1ζ

p−1 .

In fact, we have expanded the product and reduced the powers modulo p. It is clear
that

ai =
αi∑

j=0

Qk(jp + i), where αi = (k(k + 1)/2p− i/p) . (9)

The expansion above could be written in the form

(a0 − ap−1) · 1 + (a1 − ap−1) · ζ + (a2 − ap−1) · ζ2 + · · · + (ap−2 − ap−1) · ζp−2,

as a representation over the basis A. Since the representation over a basis is unique,
we have the following system of equations:

a0 − ap−1 = 2k/p, ai − ap−1 = 0, 1 ≤ i ≤ p− 2 and
p−1∑

i=0

ai = 2k ,

which leads to the solution

a0 = 2k/p +
2k − 2k/p

p
, ai =

2k − 2k/p

p
for 1 ≤ i ≤ p− 1 .

So we have the following result:

Theorem 5. Let k be a positive integer and p an odd prime factor of it. Then, we
have the following identities:

α0∑

j=0

Qk(jp) = 2k/p +
2k − 2k/p

p
,

αi∑

j=0

Qk(jp + i) =
2k − 2k/p

p
for 1 ≤ i < p,

where αi = (k(k + 1)/2p− i/p).
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4.1. Application

Case 1. Let X = {1, 2, 3, · · · , k}, and consider p as an odd prime factor of k. We
are interested in the number of subsets of X for which the sum of the members is
congruent to i modulo p. In fact, Qk(i), Qk(p + i), Qk(p + 2i), · · · are equal to the
numbers of subsets of X for which the sum of the members are i, p + i, p + 2i, · · · ,
respectively. Looking at equation (9) makes it clear that each ai in the expansion
of

(−ζ; ζ)k =
k∏

j=1

(1 + ζj) = a0 + a1ζ + a2ζ
2 + · · · + ap−1ζ

p−1

describes the number of subsets of X for which the sum of the members is congruent
to i modulo p. So if we denote the sum of the members of S ⊆ X by σ(S), then we
have

#{S ⊆ X : σ(S) ≡ i (mod p)} =

{
2k/p + 2k−2k/p

p , i = 0
2k−2k/p

p , i /= 0
.

Case 2. In the case X = {1, 2, 3, · · · , k}, k = pt + 1, there would be a similar
argument for the coefficients ai of (−ζ; ζ)k. But in this case we have

(−ζ; ζ)k =




p−1∏

j=0

(1 + ζj)




t

(1 + ζ) = 2(k−1)/p + 2(k−1)/pζ .

So we have the following system of equations:

a0 − ap−1 = 2(k−1)/p, a1 − ap−1 = 2(k−1)/p,

ai − ap−1 = 0, 2 ≤ i ≤ p− 2, and
p−1∑

i=0

ai = 2k,

with the solutions

a0 = a1 =
2k + (p− 2)2(k−1)/p

p
, ai =

2k + 2(k+p−1)/p

p
for 2 ≤ i ≤ p− 1 .

Hence, we conclude that

#{S ⊆ X : σ(S) ≡ i (mod p)} =






2k+(p−2)2(k−1)/p

p , i = 0, 1

2k+2(k+p−1)/p

p , i /= 0, 1
.

Case 3. In the case X = {1, 2, 3, · · · , k}, k = pt− 1, we have

(−ζ; ζ)k =
k∏

j=1

(1 + ζj) =




p−1∏

j=0

(1 + ζj)




t−1

p−1∏

j=1

(1 + ζj) = 2(k−p+1)/p
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which by a similar argument finally leads us to the following answer:

#{S ⊆ X : σ(S) ≡ i (mod p)} =






2(k−p+1)/p + 2k−2(k−p+1)/p

p , i = 0

2k−2(k−p+1)/p

p , i /= 0
.

Remark. The problem can be solved for the cases k = pt ± (p− 1)/2 in a similar
way.

5. Concluding Remarks

Real Integral form of Qk(n). Consider Qk(z) az a complex variable generating
function of Qk(n). The fact that it has no singularities at z = 1 makes it possible
to find a real integral form of Qk(n). Since Qk(z) is analytic over C, we find that

Qk(n) =
1

2πi

∮

|z|=1

Qk(z)
zn+1

dz . (10)

Substituting z by eiθ, it follows that

Qk(n) =
2k−1

π

∫ 2π

0
cos

[
1
4
(k2 + k − 4n)θ

]


k∏

j=1

cos
jθ

2



 dθ . (11)

This formula enables us to study the behavior of Qk(n) for various amounts of k, n,
on the background of basic calculus.

Let qk(n, r) denote the number of partitions of n with exactly r distinct parts,
each ≤ k. If pk(n, r) denotes the number of partitions of n with exactly r parts,
each ≤ k, it is easily seen that qk(n, r) = pk−r+1

(
n−

(r
2

)
, r

)
, and pk(n, r) = p(k −

1, r, n− r), where p(k, r, n) is the coefficient of qn in the Gaussian polynomial
[
k + r

r

]

q

(see [2], pp. 33-36). Since Qk(n) is the sum of qk(n, r)’s, having a lower bound on
Gaussian polynomials coefficients leads to a finite sum lower bound for Qk(n).

In Section 4, if we had considered a factor m of k that was not necessarily prime,
then we would have had to deal with the cyclotomic polynomial

Φm(X) =
∏

ζ∈U ′
m

(X − ζ) , (12)

where U ′m is the subset of primitive m-th roots of unity in the set of complex
numbers (to learn more about cyclotomic fields see [3, pp. 140-148]. In this case,
there are difficulties with a basis representation; also we have more variables than
equations. However, it still is possible to obtain some new identities.
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