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Abstract
We investigate the average order of artithmetic functions of the form da(n)σb(n)φc(n)
where a, b, and c are real numbers. In the case when 2a ∈ N with 2a ≥ 4, we use
analytic methods to obtain the asymptotic estimate

∑

n≤x

da(n)σb(n)φc(n) = xb+c+1P (log x) +O
(
xb+c+ra+ε

)

for explicit 1
2 ≤ ra < 1 and where P is a polynomial. Using elementary techniques,

we establish a similar but slightly weaker result for 2a $∈ N.

1. Introduction

An arithmetic function is a sequence of complex numbers. These functions fre-
quently help reveal information about the integers. For example, the divisor func-
tion, d(n), counts the number of divisors of n. Other arithmetic functions include
Euler’s totient function, φ(n), which counts the number of positive integers less
than or equal to n that are relatively prime to n, and the sum-of-divisors function,
σ(n), which is the sum of all positive divisors of n.

In 1849, Dirichlet [3] proved that
∑

n≤x

d(n) = x log x+ (2γ − 1)x+O(xθ)



INTEGERS: 15 (2015) 2

where θ = 1
2 and γ is the Euler-Mascheroni constant. Over the following 154 years,

the upper bound for θ slowly improved. Theta has been shown to be as low as 131
416 ,

as established by Huxley [5] in 2003. Furthermore, Hardy and Landau [4] showed
in 1916 that θ ≥ 1

4 .

A related problem is of estimating the partial sums of powers of the divisor
function. In 1916, Ramanujan [9] provided (without proof) an estimate for positive
integer powers, contingent on the truth of the Riemann hypothesis, as well as an
unconditional estimate for noninteger powers. Seven years later, Wilson [10] gave
a proof of Ramanujan’s results in addition to establishing a unconditional estimate
for integer powers a ≥ 2,

∑

n≤x

da(n) = xP (log x) +O
(
x

2a−1
2a+2+ε

)
,

where P is a polynomial of degree 2a − 1. Asymptotic estimates for the partial
sums of powers of Euler’s totient function and the sum of divisors function have
been given in [2] and [8].

Although the average orders of single arithmetic functions are well-studied, the
aim of this paper is to look into combinations of arithmetic functions, specifically
da(n)σb(n)φc(n) for arbitrary a, b, and c. We will use both elementary and analytic
methods in order to estimate da(n)σb(n)φc(n) including estimating the Dirichlet
series and utilizing the zeta function. We begin with some preliminary results in
analytic number theory.

2. Preliminaries

Perron’s formula is critical for using complex analytic techniques to bound the
growth of multiplicative functions, by turning the partial summation of a multi-
plicative function into a line integral in the complex plane plus an error formula. It
is given in section 1.2.1 of [7] as

Lemma 1. Suppose F (s) =
∑∞

n=1
a(n)
ns converges absolutely for σ > 1 and |a(n)| ≤

A(n) where A(n) is monotonically increasing and
∑∞

n=1
|an|
nσ = O

(
1

(σ−1)α

)
with

α > 0 as σ → 1+. If b > 1 and x = N + 1
2 where N ∈ N, then for T ≥ 2,

∑

n≤x

a(n) =
1

2πi

∫ b+iT

b−iT
F (s)

xs

s
ds+O

(
xb

T (b− 1)α
+

xA(2x) log x

T

)
.

We must now discuss general divisor problems. If we allow σ, the real part of s,
to be fixed such that 1/2 < σ < 1, then we define m(σ) to be the supremum of all
numbers m such that ∫ T

1
|ζ(σ + it)|m dt ' T 1+ε (1)
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holds. We give the following result (theorem 8.4 from [6])

Lemma 2. Given (1), the following relations between σ and m(σ) hold:

m(σ) ≥ 4/(3− 4σ) for 1/2 < σ ≤ 5/8,
m(σ) ≥ 10/(5− 6σ) for 5/8 ≤ σ ≤ 35/54,
m(σ) ≥ 19/(6− 6σ) for 35/54 ≤ σ ≤ 41/60,
m(σ) ≥ 2112/(859− 948σ) for 41/60 ≤ σ ≤ 3/4,
m(σ) ≥ 12408/(4537− 4890σ) for 3/4 ≤ σ ≤ 5/6,
m(σ) ≥ 4324/(1031− 1044σ) for 5/6 ≤ σ ≤ 7/8,
m(σ) ≥ 98/(31− 32σ) for 7/8 ≤ σ ≤ 0.91591 . . . ,
m(σ) ≥ (24σ − 9)/(4σ − 1)(1− σ) for 0.91591 . . . ≤ σ ≤ 1− ε.

This theorem gives us ability to choose a power of zeta first, and then derive the
interval for σ for which our integral bound holds. We can use this relationship to
choose the best contour that will minimize the error term within Perron’s formula.

The generalized divisor function, dk(n), counts the number of ways in which n
can be written as a product of k nontrivial factors. This function has a number of
interesting and important properties which can be used in bounding powers of ζ(s).
This is because

∑∞
n=1 dk(n)n

−s = ζk(s). In order to understand how
∑

n≤x dk(n)
grows when k is a fixed integer, we will utilize the partial summation formula,

∑

n≤x

dk(n) =
1

2πi

∫ 1+ε+iT

1+ε−iT
ζk(w)xww−1dw +O(x1+εT−1) (T ≤ x),

and then discuss the order of the error term, ∆k, defined by,

∆k(x) =
∑

n≤x

dk(n)− Res
s=1

ζk(s)xss−1 = I1 + I2 + I3 +O(x1+εT−1)

where,

I1 =
1

2πi

∫ σ+iT

σ−iT
ζk(w)xww−1dw ' xσ + xσ

∫ T

1
|ζ(σ + iv)|k v−1dv

I2 + I3 '
∫ 1+ε

σ
xθ |ζ(θ + iT )|k T−1dθ ' max

σ$θ$1+ε
xθT kµ(θ)−1+ε.

Where µ(θ) is a function defined by equation (1.65) of [6] and has the properties
that µ(θ) ≤ 1

m(θ) and µ(θ) = 0 when θ > 1. Thus, results on the general divisor
problem are given by estimates for power moments of ζ(s). These results for ∆k(n)
are summarized by theorem 13.2 in [6]

Lemma 3. Let αk be the infimum of numbers αk such that ∆k(x) ' xαk+ε for any
ε > 0. Then,
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αk ≤ (3k − 4)/4k for (4 ≤ k ≤ 8),
α9 ≤ 35/54, α10 ≤ 41/60, α11 ≤ 7/10,
αk ≤ (k − 2)/(k + 2) for (12 ≤ k ≤ 25),
αk ≤ (k − 1)/(k + 4) for (26 ≤ k ≤ 50),
αk ≤ (31k − 98)/32k for (51 ≤ k ≤ 57),
αk ≤ (7k − 34)/7k for (k ≥ 58).

Thus far, the results have bounded dk when k is an integer, but these can be
extended to a general treatment of dz where z is a complex number. We get the
same formulation for the Dirichlet series of dz :

∞∑

n=1

dz(n)n
−s = ζz(s).

Because we raised zeta to a noninteger power, we must specify a branch of zeta,

ζz(s) = exp{z log ζ(s)} = exp



−z
∑

p

∞∑

j=1

j−1p−js



 (σ > 1).

With this we can now bound
∑

n≤x dz(n). We give the following result (theorem
14.9 from [6]).

Lemma 4. Let A > 0 be arbitrary but fixed, and let N ≥ 1 be an arbitrary but fixed
integer. If |z| ≤ A, then uniformly in z

Dz(x) =
∑

n≤x

dz(n) =
N∑

k=1

(ck(z)x log
z−k x) +O(x logRe z−N−1 x),

where ck(z) = Bk−1(z)/Γ(z − k + 1) and each Bk(z) is regular for |z| ≤ A.

3. Main Results

Define S(x) :=
∑

n≤x d
a(n)σb(n)φc(n). By analytic methods, we prove in Section

3.2 that

Theorem 1. If a, b, c ∈ R such that 2a ∈ N and b+ c > −ra, then for every ε > 0,

S(x) = xb+c+1P2a−1(log x) +O
(
xb+c+ra+ε

)
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where Pd is a degree d polynomial and ra is given by

ra =






3
4 − 2−a for 4 ≤ 2a ≤ 8
35
54 for 2a = 9
41
60 for 2a = 10
859
948 − 176

79 · 2−a for 11 ≤ 2a ≤ 14
4537
4890 − 2068

815 · 2−a for 15 ≤ 2a ≤ 26
1031
1044 − 1081

261 · 2−a for 27 ≤ 2a ≤ 36
31
32 − 49

16 · 2−a for 37 ≤ 2a ≤ 57
5
8 − 3 · 2−a + 2−3−a

√
576− 3 · 25+a + 9 · 22a for 2a ≥ 58.

(2)

Note that when 2a ≥ 58, ra satisfies .915... ≤ ra < 1.

In the second case of Section 3.3, we give an elementary proof of the above result,
though with a slightly weaker error term. In the first case of Section 3.3, we provide
an elementary proof of the following result.

Theorem 2. If a, b, c ∈ R such that b+ c > −1 and 2a $∈ N, then

S(x) = xb+c+1
N∑

j=1

bj(log x)
2a−j +O

(
xb+c+1(log x)2

a−N−1
)

where N ∈ N may be chosen arbitrarily.

In the special case of Section 3.3, we prove

Theorem 3. If a = 1 and b, c ∈ R with b + c > −θ where θ is of the Dirichlet
divisor problem, then

S(x) =
xb+c+1

b+ c+ 1

[( ∞∑

m=1

g(m)
mb+c+1

)(
log x+2γ − 1

b+ c+ 1

)
−

∞∑

m=1

g(m) logm
mb+c+1

]
+O(xb+c+θ).

Note that as of the time of this writing, θ has been shown to be as low as 131
416 by

Huxley [5].

3.1. Dirichlet Series

We begin by computing the Dirichlet series of daσbφc, which we will need in both
the analytic and elementary proofs.

Lemma 5. The Dirichlet series of daσbφc is analytic for Re(s) > b + c+ 1 and is
given by

∞∑

n=1

da(n)σb(n)φc(n)

ns
= ζ2

a

(s− b− c)H(s)

where H is analytic and bounded for Re(s) > b+ c+ 1
2 .
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Proof. Let F (s) :=
∑∞

n=1
da(n)σb(n)φc(n)

ns be the Dirichlet series of daσbφc. Each of
d, σ, and φ are multiplicative, so daσbφc is multiplicative as well. Thus we may
write F as a product over primes, F (s) =

∏
p fp(s). Then if s = β + it,

fp(s) =
∞∑

k=0

da(pk)σb(pk)φc(pk)

pks

= 1 +
2a(p+ 1)b(p− 1)c

ps
+

3a(p2 + p+ 1)b(p2 − p)c

p2s
+ . . .

= 1 +
2a

ps−b−c

(
1 +

1

p

)b (
1− 1

p

)c

+O
(
p2(b+c)−2β

)

= 1 +
2a

ps−b−c

(
1 +O

(
1

p

))
+O

(
p2(b+c)−2β

)

= 1 +
2a

ps−b−c
+O

(
pb+c−β−1 + p2(b+c)−2β

)
.

Consequently F is analytic when β > b+ c+ 1.

Now we write F as a power of zeta times a function that is analytic and bounded
on an extended half-plane. Observe that

ζ−2a(s− b− c)F (s)

=
∏

p

(
1− 1

ps−b−c

)2a (
1 +

2a

ps−b−c
+O

(
pb+c−β−1 + p2(b+c)−2β

))

=
∏

p

(
1− 2a

ps−b−c
+O

(
p2(b+c−β)

))(
1 +

2a

ps−b−c
+O

(
pb+c−β−1 + p2(b+c)−2β

))

=
∏

p

(
1 +O

(
p2(b+c−β)

)
+O

(
pb+c−β−1

))
.

Thus H(s) := ζ−2a(s− b− c)F (s) is analytic and bounded whenever β > b+ c+ 1
2 .

Note that by the definition of H , F (s) = ζ2
a

(s− b− c)H(s).

Remark 1. A more careful calculation shows that the Dirichlet series of daσbφc is
given by

F (s) = ζ2
a

(s− b− c)ζδ2 (2(s− b− c))ζδ3 (3(s− b − c)) · · · ζδk(k(s− b − c))G(s)

whereG(s) is analytic and bounded for Re(s) > b+c+ 1
k+1 and each δj is computable

with

δ2 = 3a − 1

2
(2a + 4a) ,

δ3 =
1

3
(8a − 2a) + 4a − 6a,

...



INTEGERS: 15 (2015) 7

We will neither use nor prove this extended result, but note that its proof follows
very similarly to the proof of Lemma 5.

3.2. Analytic Proof

Let f(n) := da(n)σb(n)φc(n) where 2a ∈ N with 2a ≥ 4. Assume also that b + c >
−ra where ra will be given later. Note that ra is dependent on a and satisfies
1
2 ≤ ra < 1. Let S(x) :=

∑x
n=1 f(n). We shall proceed using Lemma 1 (Perron’s

Formula).

By Lemma 5, the Dirichlet series of f , given by F (s) := ζ2
a
(s − b − c)H(s),

converges absolutely for Re(s) > b + c + 1. Thus if ν = s − b − c, we have that
F (ν) = ζ2

a
(ν)H(ν + b+ c) is also the Dirichlet series of f and converges absolutely

for Re(ν) > 1. Using well known bounds, we have f(n) ≤ Bnb+c+ε where B is
real constant depending on ε. By the Laurent series for ζ about its pole, we have
ζ(ν) = O

(
(ν − 1)−1

)
as ν → 1 so ζ2

a

(ν) = O
(
(ν − 1)−2a

)
as ν → 1. The function

H(ν + b + c) is bounded about ν = 1, so
∑∞

n=1
|f(n)|
nRe(ν) = ζ2

a
(ν)H(ν + b + c) =

O
(
(Re(ν) − 1)−2a

)
as Re(ν) → 1+.

By Lemma 1,

S(x) =
1

2πi

∫ 1+ε+iT

1+ε−iT
ζ2

a

(ν)H(ν + b+ c)
xν+b+c

ν + b+ c
dν

+O

(
x1+ε

T (ν − 1)2a
+

xB(2x)b+c+ε log x

T

)

=
1

2πi

∫ b+c+1+ε+iT

b+c+1+ε−iT
ζ2

a

(s− b− c)H(s)
xs

s
ds

+O

(
x1+ε

T
+

xb+c+1+ε

T

)
. (3)

We now estimate the integral in (3). To do so, let σ satisfy m(σ) ≥ 2a where the
m function is defined in (1). Then consider the closed contour Γ:

IV

I

II

III

Re(s)

Im(s)

O

Γ

b+c +1+εb+c +σ

T

−T
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I = [b+ c+ 1 + ε− iT, b+ c+ 1 + ε+ iT ],

II = [b+ c+ 1 + ε+ iT, b+ c+ σ + iT ],

III = [b+ c+ σ + iT, b+ c+ σ − iT ],

IV = [b+ c+ σ − iT, b+ c+ 1 + ε− iT ].

Where ε > 0 and T ∈ R satisfying T ≥ 2. Note that by its definition, σ satisfies
1
2 < σ < 1. Define

I1 =

∫

I
ζ2

a

(s− b− c)H(s)
xs

s
ds,

I2 =

∫

II
ζ2

a

(s− b− c)H(s)
xs

s
ds,

I3 =

∫

III
ζ2

a

(s− b− c)H(s)
xs

s
ds,

I4 =

∫

IV
ζ2

a

(s− b− c)H(s)
xs

s
ds.

Then we are interested in estimating I1. To do so, we proceed by the residue
theorem. The function ζ2

a
(s− b− c)H(s)x

s

s is analytic in Γ except at s = b+ c+1.
The residue of ζ2

a
(s − b − c)H(s)x

s

s at s = b + c + 1 is xb+c+1P2a−1(log x) where
Pd denotes a polynomial of degree d. Thus by the residue theorem,

1

2πi
I1 =

1

2πi

∫

Γ
ζ2

a

(s− b− c)H(s)
xs

s
ds− 1

2πi
(I2 + I3 + I4)

= xb+c+1P2a−1(log x)−
1

2πi
(I2 + I3 + I4) . (4)

In order to obtain an error term for I1, we now bound the integrals I2, I3, and I4.

We’ll start with I2 and I4. Recall that σ was defined so that m(σ) ≥ 2a. By the
the remarks made in Section 2, we have µ(σ) ≤ 1

m(σ) ≤ 2−a where µ is defined in
Section 2. Thus

I2 + I4 '
∫ 1+ε

σ

∣∣∣ζ2
a

(β + iT )H(b+ c+ β + iT )
∣∣∣

xb+c+β

|b+ c+ β + iT |dβ

' xb+c

∫ 1+ε

σ

∣∣∣ζ2
a

(β + iT )
∣∣∣
xβ

T
dβ

' xb+c max
σ≤β≤1+ε

xβT 2aµ(β)−1+ε

' xb+c
(
xσT 2aµ(σ)−1+ε + x1+εT 2aµ(1+ε)−1+ε

)

' xb+c
(
xσT ε + x1+εT−1+ε

)

' xb+c+1+ε

T
. (5)
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Now, we bound I3. We first split this integral to avoid issues of convergence near
s = 0. Then by integration by parts and Lemma 2, we have

I3 '
∫ T

1

∣∣∣ζ2
a

(σ + it)
∣∣∣

xb+c+σ

|b+ c+ σ + it|dt+
∫ 1

0

∣∣∣ζ2
a

(σ + it)
∣∣∣

xb+c+σ

|b+ c+ σ + it|dt

' xb+c+σ

∫ T

1

∣∣∣ζ2
a

(σ + it)
∣∣∣
1

t
dt

' xb+c+σ

T

∫ T

1

∣∣∣ζ2
a

(σ + it)
∣∣∣ dt

' xb+c+σT ε

' xb+c+σ+ε. (6)

Substituting (5) and (6) into (4),

1

2πi
I1 = xb+c+1P2a−1(log x) +O

(
xb+c+1+ε

T

)
+O

(
xb+c+σ+ε

)
. (7)

Now substituting (7) into (3),

S(x) = xb+c+1P2a−1(log x) +O
(
xb+c+σ+ε

)
+O

(
x1+ε

T
+

xb+c+1+ε

T

)
.

And letting T = x,

S(x) = xb+c+1P2a−1(log x) +O
(
xb+c+σ+ε

)
.

Recall that we chose σ so that m(σ) ≥ 2a. In order to get the least error term,
we want to choose the least σ such that m(σ) ≥ 2a. For this, Lemma 2 gives

σ =






1
2 + δ for a = 2
3
4 − 2−a for 5 ≤ 2a ≤ 8
35
54 for 2a = 9
41
60 for 2a = 10
859
948 − 176

79 · 2−a for 11 ≤ 2a ≤ 14
4537
4890 − 2068

815 · 2−a for 15 ≤ 2a ≤ 26
1031
1044 − 1081

261 · 2−a for 27 ≤ 2a ≤ 36
31
32 − 49

16 · 2−a for 37 ≤ 2a ≤ 57
5
8 − 3 · 2−a + 2−3−a

√
576− 3 · 25+a + 9 · 22a for 2a ≥ 58.

(8)

Where δ > 0 may be arbitrarily small for a = 2. Now ra may be chosen in
accordance with σ to give Theorem 1.
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3.3. Elementary Proof for General Case

Recall that by Lemma 5 the Dirichlet series of da(n)σb(n)φc(n) is

F (s) = ζ2
a

(s− b− c)H(s)

where H(s) is analytic and bounded when Re(s) > b + c+ 1
2 and b, c ∈ R.

Let

H(s) :=
∞∑

n=1

g(n)

ns

when Re(s) > b+ c+ 1
2 and

ζz(s) =
∞∑

n=1

dz(n)

ns

when Re(s) > 1. Therefore,

ζ2
a

(s− b− c) =
∞∑

n=1

d2a(n)

ns−b−c
=

∞∑

n=1

d2a(n)nb+c

ns
.

Letting k(n) := d2a(n)nb+c, we have

da(n)σb(n)φc(n) = (g ∗ k)(n).

Let
S(x) :=

∑

n≤x

da(n)σb(n)φc(n) =
∑

n≤x

(g ∗ k)(n).

Then,

S(x) =
∑

n≤x

∑

m|n

g(m)k
( n

m

)
=

∑

qm≤x

g(m)k(q) =
∑

m≤x

g(m)
∑

q≤ x
m

k(q)

=
∑

m≤x

g(m)K
( x

m

)
.

Case 1. b+ c > −1, 2a /∈ N.
We begin by splitting S(x) into S1(x) and S2(x) where N is an arbitrary but fixed
integer.

S(x) =
∑

m≤x

g(m)K
( x

m

)

=
∑

m≤(log x)4N

g(m)K
( x

m

)
+

∑

(log x)4N<m≤x

g(m)K
( x

m

)

= S1(x) + S2(x).
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From Lemma 4 and by partial summation, we have

K(x) =
∑

n≤x

k(n) =

∫ x

1
tb+cd




∑

n≤t

d2a(n)





= tb+c
∑

n≤t

d2a(n)

∣∣∣∣
x

1

−
∫ x

1

∑

n≤t

d2a(n)(b + c)tb+c−1dt

=




N∑

j=1

cj(log x)
2a−j



 xb+c+1 +O
(
xb+c+1(log x)2

a−N−1
)
. (9)

Substituting (9) into S1(x),

S1(x) =
∑

m≤(log x)4N

g(m)




N∑

j=1

cj
(
log

x

m

)2a−j




( x

m

)b+c+1

+O




∑

m≤(log x)4N

|g(m)|
( x

m

)b+c+1
(log x)2

a−N−1





= xb+c+1
N∑

j=1

cj
∑

m≤(log x)4N

g(m)

mb+c+1

(
log

x

m

)2a−j
+O

(
xb+c+1(log x)2

a−N−1
)
.

Note that

∑

m≤(log x)4N

g(m)

mb+c+1

(
log

x

m

)2a−j
=

∑

m≤(logx)4N

g(m)

mb+c+1
(log x)2

a−j
(
1− logm

log x

)2a−j

.

Using the Taylor expansion of
(
1− logm

log x

)2a−j
we have

∑

m≤(log x)4N

g(m)

mb+c+1
(log x)2

a−j
(
1− logm

log x

)2a−j

= (log x)2
a−j

∑

m≤(log x)4N

g(m)

mb+c+1

∞∑

h=0

aj,h

(
logm

log x

)h

= (log x)2
a−j(bj,0 + bj,1(log x)

−1 + bj,2(log x)
−2 + . . .).

Because H(s) is analytic and bounded for Re(s) > b+c+ 1
2 , the error term of S1(x)

becomes O(xb+c+1(log x)2
a−N−1).

Therefore,

S1(x) = xb+c+1
N∑

j=1

bj(log x)
2a−j +O

(
xb+c+1(log x)2

a−N−1
)
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where bj is a combination of logm and the constants aj,h and cj .

For S2(x) we trivially have

S2(x) '
∑

(log x)4N<m≤x

|g(m)|
( x

m

)b+c+1
(log x)2

a−1.

Thus by partial summation we have,

S2(x) ' xb+c+1(log x)2
a−1

∑

(log x)4N<m≤x

|g(m)|
mb+c+ 3

4

1

m
1
4

' xb+c+1(log x)2
a−N−1

∫ x

(log x)4N
t−

1
4 d




∑

(log x)4N<m≤x

|g(m)|
mb+c+ 3

4





' xb+c+1(log x)2
a−N−1

∞∑

m=1

|g(m)|
mb+c+ 3

4

︸ ︷︷ ︸
$1

' xb+c+1(log x)2
a−N−1.

Therefore, when 2a /∈ N,

S(x) = xb+c+1
N∑

j=1

bj(log x)
2a−j +O

(
xb+c+1(log x)2

a−N−1
)
.

Case 2. b+ c > −αk + ε > −1, 2a = k ∈ N, k $= 2, 3 where αk is defined by Lemma
3
Once again,

S(x) =
∑

m≤x

g(m)K
( x

m

)
.

From Lemma 3, we have

K(x) = xb+c+1Pk−1(log x) +O(xb+c+αk+ε).

We can then say

S(x) =
∑

m≤x

g(m)

[( x

m

)b+c+1
Pk−1

(
log

x

m

)
+O

(( x

m

)b+c+αk+ε
)]

= xb+c+1
∑

m≤x

g(m)

mb + c+ 1
Pk−1(log x− logm)

+O



xb+c+αk+ε
∑

m≤x

|g(m)|
mb+c+αk+ε



 .
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Then rearranging Pk−1(log x − logm) into a summation of log x and a polynomial
of logm of degree j we have,

S(x) = xb+c+1
∑

m≤x

g(m)

mb+c+1

k−1∑

j=0

(log x)jQj(logm) +O(xb+c+αk+ε)

= xb+c+1Tk−1(log x) +O(xb+c+αk+ε)

where Tk−1(t) is a polynomial of degree k − 1.

Special Case: a = 1.

Let f(s) :=
∑∞

n=1
d(n)σb(n)φc(n)

ns =
∏

p fp(s) for Re(s) > b+ c+ 1.
Expanding the product term by term and plugging in the values for d,σ, and φ at
prime powers we have

fp(s) = 1 +
2(p+ 1)b(p− 1)c

ps
+

3(p2 + p+ 1)b(p2 − p)c

p2s
+ . . .

= 1 +
2

ps−b−c

(
1 +

1

p

)b (
1− 1

p

)c

+
3

p2(s−b−c)

(
1 +

1

p
+

1

p2

)b (
1− 1

p

)c

+ · · ·

= 1 +
2

ps−b−c
+

3

p2(s−b−c)
+

4

p3(s−b−c)
+ . . .+O(pb+c−β−1)

=

(
1 +

2

ps−b−c
+

3

p2(s−b−c)
+ . . .

)(
1 +O(pb+c−β−1

)
.

Therefore,
f(s) = ζ2(s− b− c)H(s)

where H(s) is analytic and absolutely bounded when Re(s) > b+ c.

Now as before let d(n)σb(n)φc(n) = (k∗g)(n) where k(n) = d(n)nb+c, and notice
that

∑∞
n=1

|g(n)|
nσ converges when σ > b+ c.

By Abel summation, we have

K(x) :=
∑

n≤x

k(n) =
∑

n≤x

d(n)nb+c

= tb+c
∑

n≤x

d(n)

∣∣∣∣
x

1

−
∫ x

1




∑

n≤t

d(n)



 (b + c)tb+c−1dt

Recall
∑

n≤x d(n) = x(log x + 2γ − 1) + O(xθ) for some θ < 1
3 . Using this and

integration by parts K becomes

K(x) =
xb+c+1

b+ c+ 1

(
log x+ 2γ − 1

b+ c+ 1

)
+O(xb+c+θ + 1). (10)

In particular, the error is O(xb+c+θ) if b+ c > −θ.
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Letting S(x) :=
∑

n≤x d(n)σ
b(n)φc(n) =

∑
n≤x(k ∗ g)(n) and using convolution

as before, we have S(x) =
∑

m≤x g(m)K
(
x
m

)
. Substituting (10) into S(x) gives us

S(x) =
∑

m≤x

g(m)

[(
x
m

)b+c+1

b+ c+ 1

(
log

x

m
+ 2γ − 1

b+ c+ 1

)
+O

(( x

m

)b+c+θ
+ 1

)]
.

Extending the summations to infinity we have,

S(x) =
xb+c+1

b+ c+ 1

[( ∞∑

m=1

g(m)
mb+c+1

)(
log x+ 2γ − 1

b+ c+ 1

)
−

∞∑

m=1

g(m) logm
mb+c+1

]
+∆(x)

where

∆(x) '
∑

m≤x

|g(m)|
(( x

m

)b+c+θ
+ 1

)
+

∑

m>x

|g(m)|
( x

m

)b+c+1
log x

is the error term.
We can bound ∆ as follows:

∆(x) =
∑

m≤x

|g(m)|
(( x

m

)b+c+θ
+ 1

)
+

∑

m>x

|g(m)|
( x

m

)b+c+1

︸ ︷︷ ︸
$( x

m )b+c+ε
if m>x

log x

' xb+c+θ
∑

m≤x

|g(m)|
mb+c+θ

︸ ︷︷ ︸
$1

+
∑

m≤x

|g(m)|

︸ ︷︷ ︸
$xb+c+ε

∑
m≤x

|g(m)|
mb+c+ε

+xb+c+ε
∑

m>x

|g(m)|
mb+c+ε

︸ ︷︷ ︸
$1

' xb+c+θ.

Thus, for a = 1,

S(x) =
xb+c+1

b+ c+ 1

[( ∞∑

m=1

g(m)
mb+c+1

)(
log x+ 2γ − 1

b+ c+ 1

)
−

∞∑

m=1

g(m) logm
mb+c+1

]
+O(xb+c+θ)

as desired.
We now conclude with some remarks regarding the elementary approach.

Remark 2. The case for a = 1 is likely the only case that can be improved to an
error below O(xb+c+ 1

2 ) because it is the only case that can be factored into a power
of zeta and a function H(s) that is analytic for Re(s) > b + c. In other cases, the
zeta term contains a ζ(2(s − b − c)) and therefore the Re(s) > b + c + 1

2 barrier
cannot be broken.

Remark 3. We provide restrictions on b + c for formally simpler proofs. There
is little technical difficulty in extending the above results for other ranges of b+ c.
The following hold:
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1. If b+ c < −1 and a ∈ R, then

S(x) = C +O
(
xb+c+1 (log x)2

a−1
)

where C ∈ R is a constant.

2. If 2a ∈ N and −1 < b+ c ≤ αk, then

S(x) = xb+c+1P2a−1(x) + C + O
(
xb+c+αk+ε

)

where Pd is a degree d polynomial and αk’s are defined by Lemma 3.

3. (a) If b+ c = −1 and a ∈ R satisfies a ≥ 0, then

S(x) =
N∑

j=0

Aj (log x)
2a−j +B +O

(
(log x)2

a−N−1
)

where N = *2a+ and B,Aj ∈ R are a constants.

(b) If b+ c = −1 and 2a = k ∈ N, then

S(x) =
k∑

j=0

Aj (log x)
k−j +O

(
xαk−1+ε

)

where Aj ∈ R are constants and αk’s are defined by Lemma 3.
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