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Abstract
Let sq(n) denote the sum of the digits in the g-ary expansion of a nonnegative
integer n, and let p1(x), p2(x) be polynomials in Z[z] with distinct positive degrees.
If p1(n) > 1 and pa(n) > 1 for all positive integers n, then for any € > 0, we give
lower bounds of the number of n < N such that sq(p1(n))/sq(p2(n)) < €.

1. Introduction

For any integer g > 2, let nonnegative integer

k

n= Zai(n)qi, a;(n) €{0,1,...,¢q—1}.

=0

E
Denote by sq4(n) = Y a;(n) the sum of digits of n in base ¢. The study of the sum of
i=0
digits mainly focuses on the sum of digits of some special sequences of integers, the

average sum of the digits of integers, the asymptotic formula of the weighted sum-
of-digits function, and the ratio of the sum of digits of polynomial values. For the
study of the sum of digits of some special sequences of integers, several researchers
investigated the properties of s, of primes [14], polynomials [5, 7, 9, 11, 15, 16, 19],
Fibonacci numbers [21] and Bernoulli numbers [2]. For the study of the average sum
of the digits of integers, one may refer to [1, 4, 6, 17]. For the study of the asymptotic
formula of the weighted sum-of-digits function, one may refer to [12, 18]. For the
study of the ratio of the sum of digits of polynomial values, several researchers
investigated the problems and a lot of academic achievements have been achieved.
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In 1978, Stolarsky [20] showed that

2
lim inf s2(n”) =0
n—oo SQ(TL)
and conjectured that
h
liminf 207 _ g

n—oe s3(n)
for any integer h > 2.
In 2011, Hare, Laishram and Stoll [10] proved that for any integer ¢ > 2 and for

t .
any polynomial p(z) = > ¢;z* € Z[z] with ¢t > 2 and ¢, > 0,
i=0

lim inf L(p(n))

=0.
wh sy ()

In 2014, Madritsch and Stoll [13] proved that

(Sq(p1(n))>
$q(p2(n)) n>1
is dense in RT, where pi(x), pa2(x) are polynomials in Z[z] of distinct positive

degrees with p;(N), po(N) C N.
In this paper, we always assume that

h !
pi(z) = Zaixi € Zlz], pa(x)= Zbixi € Z[z]
=0 =0

with h > 1,1>1, ap > 0 and b; > 0.
By employing the methods in [10] and [20], the following theorems are proved.
Theorem 1. Let degp; > degps. If p1(n) > 1 and pa(n) > 1 for any positive

integer n, then for any € > 0, there exists a positive constant Cy, dependent only
on e, q, p1(x) and pa(x), such that

HnSN:M<6H > ¢y N®
sq(p2(n))
for all sufficiently large integers N, where o = e(2h(l + 3)(h(l +3) + 1) +¢)7 L.

Theorem 2. Let degp; < degps. If p1(n) > 1 and pa(n) > 1 for any positive
integer n, then for any € > 0, there exists a positive constant Cs, dependent only
on e, q, p1(z) and pa(x), such that

HnSN: wnid <ol > caon

for all sufficiently large integers N.
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2. Preliminary Lemmas

Let [a,b] denote the interval of integers n such that a < n < b. For convenience,
we write f(s) =< g(s) (s € ) if f(s) and g(s) are positive for all s € S and
c19(s) < f(s) < cag(s) for all s € S, where ¢; and ¢y are two positive constants.

Lemma 1. (See [10, Proposition 2.1]) For any integers a, b, k with 1 < b < ¢"
and a, k> 1, we have
Sq(aqk +0) = s4(a) + sq(b),

sqlaq® —b) =s,(a—1)+ (¢ — 1)k — s,(b—1).
Lemma 2. Let n be a positive integer. Then for any integer ¢ > 2, we have
s4(n) < (q—1)(1 +log, n).
Proof. Let n = ayqt + - - - + a1q + o with
o €{0,1,...,q—1}, i=0,1,....t, a; #0.
Then

t

sg(n) =Y i <(g—=1)(t+1) < (g—1)(1 +]log, n).
1=0

O

Lemma 3. (See [8, Bose-Chowla Theorem] or [3] ) Let d > 2 be an integer, and
let M be a power of a prime. Then there exist integers yi,Ysa, - .-, Ynm+1 with 1 <
Y1 <ya < < YM41 = M?® such that all sums

Y Y+ Y5, 1< <je<--<ja<M+1
are distinct.
Lemma 4. Let ! be a positive integer, and let
142

3 _ gl +3

tm(z) =m+ma —a* — 23 — .. + ma't? + mat

be a polynomial in Z[x]. For any positive integer i, let

(bm(@))' = 3 ™.

Then
(a) for all positive integers m and i, we have

jal"™ ] < (m+ 1), 0<j < (1+3)i.
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(b) there exists a positive constant cy, dependent only on I, such that for any
integer m with m > co and any integer i with 1 <1 <1,

(im) _ i e ;
a; " = m" if and only if j € OSLIgSi([O,z] + (I +2)k),

and

. (i,m) o o i—1 oo .
a; """ = m"" if and only if j 6ogk%—1([z+l’l+l]+(l+2)k)'

(c) for any integer i with i > 1, there exists a positive constant c¢1, dependent
only on i, such that for any integer m with m > ¢y,

"™ < mi, 0< < (1+3)i.
Proof. (a) Let
fm(x)=m+ma+ 2>+ 23+ + 27 matt? £ malts3

and
1+3)i

( . .
(@)= 3 8™,
j=0

Since
(143)1

|a§z,m)| < b(~27m), Z b;lam) = (4m + l)z,
7=0

it follows that _
jal"™] < (4m + 1),

(b) We will complete the proof by induction on i. It is easy to see that Lemma
4 (b) is true for i = 1,2. Suppose that Lemma 4 (b) is true for an integer ¢ with
2 <i<l. Let

(1+3)i+1
(@) (m+ma) = 3 P™a,
j=0
‘ +3)+1) ‘
(@) (a2 4 mat*) = 3 dlimad,
Jj=l+2
and
) (I+3)iti+1 '
(tm(l‘))l(—xQ — Jjg . — .I‘H_l) — Z e§1,m)x].
j=2

By the induction hypothesis, for all sufficiently large integers m, it is easy to get
that
(i;m) _ _i+1 op - .
c; """ =m""" if and only if j € ongng'([O’Z + 1]+ (1 +2)k),
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_ (j,m) o i oo .
c;”" = m" if and only if j eogkng‘ 1([z—&—?,l—i—l]—|—(l—|—2)k:),

(t,;m) _ i1 - e s .
d;"" = m""" if and only if j € 1§k%i+1([0’ i+ 1]+ (I +2)k),

~d{"™ = m" if and only if j V(2041 + (1 +2)k),
and '
—el™ =ml, 2 << (I 3)i+I+ L

Therefore, for all sufficiently large integers m, we have

(i+1,m) _  i+1 e .
a; =m'"" if and only if j € OSkLéH_l([O,Z + 1]+ (1 +2)k),

and
(i+1,m)

a; m* if and only if j € OS%Si([l + 2,0+ 1]+ (14 2)k)
(¢) From the proof of Lemma 4 (b), we see that Lemma 4 (¢) is true for i = [+ 1.
A proof is similar to the proof of Lemma 4 (b) by induction on ¢ > [ + 1. This
completes the proof of Lemma 4. O

3. Proof of Theorem 1

Proof. Let t,,(z) and a{"™ (0 < j < (I +3)i) be as in Lemma 4, af’™ = 1

a"™ =0 (j > (1 +3)i) and let

piltm(@) = > f™al,

9

0<i<h(1+3)
paltm(z) = Y g™,
0<i<I(1+3)
and
A = max{|ao|, la1], - .., |an|, [bo|, b1, - . -, |ba]}-
Then
h .
=Y a0 << h(i+3) M)
1=0
and l
g™ =3 bl 0<j<i(+3). (2)
=0

Since 12 + 20 — 1> (I + 3)(I — 1), we have

alTy =0, i<l-1.
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By (2) and Lemma 4 (b), noting that 2 +21 — 1 = [+ 1+ (I +2)(I — 1), there exists
a positive constant mg, dependent only on ps(x), such that

m lm
gl(2+)2l 1 blaz(2+2)z—1 <0 (3)

for all integers m > myp. Since h > [, it follows from Lemma 4 (b) and Lemma 4
(c) that there exists a positive constant mll, dependent only on h, such that
o) — ok
a; =m

and

a{"™ = 0o(m") (i <h-1)

for all integers m > m/l. So there exists a positive constant mlll, dependent only on
p1(x), such that
S0, 0<j<h(l+3)

for all integers m > m). Thus, by Lemma 4 (a) and (1), there exists a positive
constant mq, dependent only on p;(z) and pa(z) with m; > [, such that

0< ™ <A Y (m+1) <226Bm)t, 0<j<h(l+3) (4)
0<i<h
and
9 <A DT (Am D) <2MGm), 0< < +3) (5)
0<i<l

for all integers m > m;. By Lemma 4 (b) and (2), there exists a positive constant
msa, dependent only on ps(x), such that g(m) > 0 and ggm) > 0 for all integers
m > mgo. For all integers m with m > mg, by (3), at least one coeflicient of
pa2(tm(x)) is negative. For m > max{mg, ma}, let j be the least positive integer with
g;m) < 0. Then 2 < j <2 +20— 1. If m > max{mg, m1} and ¢*=2 > (2A(5m)")2,
then, by Lemma 1 and (5), we have

5q(p2(tm(q"))) (6)

(m) (m) k+g(m)q2k+ +gl((7l23)qkl(l+3))

54(90
sq(96™) + 5q(g\™ + g5 q" + -+ gLy 1T
(93

> sqgm)+g )k+ —&—g((m))’fl(l‘*‘?’) 8
>

> sq(g§m) + gj(.’qu R gl((ﬂl%ls)qkz(l+3)_jk)
> (g Dk —sy(~g" ~ 1)

> (q— 1k~ (g 1)(log,(—g\™ — 1) +1)

> (g= Dk = (g = 1)(log,(2A(5m)") +1)

> %(q - 1)k
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If ¢* > 2m, then, by the definition of t,,(z), we have
mq(l+3)k < tm(qk) < qu(l+3)k < q(l+4)k. (7)

If ¢* > 2\(5m)! and m > m;, then, by (4) and Lemma 1, we have

sq(p1(tm(d"))) ()
= (m) (m) gk m) F (m)  kh(l1+3)
= sl H AT +fh(l+3)q )
) 7

= sq(f§™) + sg(F™) + -+ sg(frrhay)
< (h(I+3)+D)(g—-1(1+ logq(2)\(5m) ).

Let m3 = max{mg, m1,mo,l}. For any integers m and k with m > mg3 and
k > [2log,(2A(5m)") + 2], by (6) and (8), we have

5o () _ 2(h(L+3) + 1)(1 + log, (2A(5m)"))
sq(pa(n) = g ! ©)

where n = t,,,(¢").
Without loss of generality, we can assume that 0 < ¢ < 1. Let m be an integer
with m > mg,

km) = 2(h(l+3)—l—l)(l:—logq(Z)\(Bm)h))) ‘1,

and n(m) = t,,(¢™). Then k(m) > [2 logq(Q)\(5m)l) +2]. By (9), we have

sq(P1(n(m)))

so(pa(n(m)) ~ (10)

Now we prove that all n(m

) (m > mg) are distinct. Suppose that m” > m’ > ms.
Then k(m”) > k(m'). If k(m") = k(m

") "), then
(') = )+ (" = m')(1+ g0 4 DR D) i),

If k(m") > k(m’), then

1+3)k(m”") q(l+3)(k(m”)—k(m/))

n(m//) m//q(
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By the definitions of t,,(z) and k(m), we have

n(m) = tm(qk(m)) < 2mgH3)k(m)
< omgHDCMAE) T +1) (2(14+3) (h(I43)+1)e " log, (2A(5m)")
= 2mgUtQAEEFTH1) (9) (5)h) 23 (R(I+3)+1)!
< mq3(1+3)(h(l+3)+1)e_1(10)\m)2h(l+3)(h(l+3)+1)e‘1
< (10)\qm)2h(l+3)(h(l+3)+1)671+1.
Hence, if

ms gmgCiNa, (11)
then n(m) < N, where C; = (10Aq) !, and

a=e2h(1+3)(h(1+3)+1)+¢e) L.

Since mg is positive constant dependent only on p;(z) and p2(x), by (11), there
exists a positive constant C, dependent only on &, ¢, p1(z) and pa(x) such that

{2 <<
e <mcive)

v

Z C;Nq — ms
> (O1N¢

for all sufficiently large integers N. This completes the proof of Theorem 1. O

4. Proof of Theorem 2

Proof. We follow the proof of Hare, Laishram and Stoll [10]. Let b be a positive
h !
integer, p1(x +b) = Y w;z® and pa(x +b) = > v;z'. Then all

i=0 =0

-y
u; = Z ak—i—i( _;Z)bk, 0<i<h

0<k<h—i

and

vV = Z bk_i_i(ij)bk, OSZSZ

0<k<l—i

are positive integers for all sufficiently large integers b. Without loss of generality,
we may assume that all the coefficients of p; (x) and ps(x) are positive integers. Let
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A =max{ag, a1,...,ap,bo,b1,...,b}. Let M be a prime, d =1 and y1,y2, ..., Ym+1
be as in Lemma 3. Let

M+1
=1
and
M .
BT = Y
0<j<IM!
Then
p2(TM($)) = Z bi(l‘yl T T xyM+1)i (12)
0<i<l
= b ;!{L'hlyl+h‘2y2+“'+hM+1yM+1'
' hl'hQ'hM+1'

0<i<l  hi+ho+-+hpp1=i
By Lemma 3, for any fixed integer ¢ with 0 <4 <[, we have all sums
hiyr + hayz + - + havr1ym+

with
hi+he+---+hyir =14, h; 20, 1<j<M+1

are distinct. Then for any nonnegative integer i < [M*, we have

0 < qZ(M) < Z bij! < A+ 1)L (13)
0<y<l
By (12), we have
’{O§j§lMl:q](»M)>0H (14)
< ¥ > 1

0<i<l hy+ho+ - +hasy1=i
< ¥ M+ _ (M+1+1)
- M M+1
0<i<l

Let n = Ty(q*) and ko = [log,(A(I + 1))] + 1. Then for any integer k > ko, we
have ¢® > A(I + 1)!. Since all coefficients of

xh1y1+h2y2+“'+hM+1yM+1

with
hi+he+---+hypr =1, h; 20, 1<j<M+1

are positive integers and all sums

hiyi + hoyo + - + har1yYmr+1
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with
h1+h2+"‘+hM+1:l, hjZO, 1<j<M+1

are distinct, by Lemma 1, we have

(15)

sq(p2(n)) > M “).

1 =
("
hi+ho+-+hp 1=l
By (13) and Lemma 2, for any nonnegative integer i < [M!, we have
(M) _ !
s (4%7) < (g = 1)(1+log, A1 + 1)), (16)
By (14), (16), and Lemma 1, noting that ¢¥ > \(l + 1)!, we have

Sq(p2(n))

|
V)
Q

/N
S
g
-
N—

< > (@@ (logq§M)+1)

0< <M
qJ(_M)>O

< (g — 1)1 +log, (A(I + 1)'))(

M+1+1
M+1

As a similar argument for p; (z), we have

sa(p1(n)) < (q — 1)(1+log,(A(h + 1)1)) <MA}1Y 1)

By (15) and (17), we have

se(pi(n)) _ (¢—1D( +log,(A(h + D) (M)
sq(p2(n))  — (MMH)
(g — 1)IY(1 +log,(A(h + 1))
- hY(M + 1)i=h ’

(18)

where n = Ty (q").
For any € > 0 and for any integer k > kg, by (18), there exists a prime M such
that
salpr(n) _
sq(p2(n))

for all integers n = Thy, (¢%). By n = Tay, (¢¥) < *Mo+1) | we see that, if

p< - 108N
(M} +1)logq
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then n < N. Since Ty, (¢%) (k > ko) are distinct, there exists a positive constant
Cs, dependent only on €, ¢, p1(x) and pa(z) such that

s S <)

log N
st i)
(M +1)loggq
> (CylogN
for all sufficiently large integers N. This completes the proof of Theorem 2. O
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