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Abstract
In 1949 and 1950, two papers by M. David on modifications of the Jacobi algo-
rithm appeared. In a recent paper of Schweiger some comments were made on the
periodicity problem. Here a proof of convergence (with one notable exception) is
given. The underlying map of the algorithm is ergodic and admits an absolutely
continuous invariant measure.

1. Introduction

This paper is a continuation of [6]. We first describe briefly one of David’s algorithms
([2], [3]) in the framework of Schweiger’s book ([5]). Let x1, x2 2 R such that
0 < x1  1, 0  x2  1. Then we define

b + 1 =
l 1
x1

m
, a =

jx2

x1

k

and the map T by

T (x1, x2) = (y1, y2) =
⇣x2

x1
� a,� 1

x1
+ b + 1

⌘

which is equivalent to
0
@ 1

y1

y2

1
A =

0
@ 0 1 0

0 �a 1
�1 b + 1 0

1
A
0
@ 1

x1

x2

1
A .

Then we find 0  a  b, 1  b, and the equation a = b implies y1 + y2  1.
If x1 + x2 = 1 then y1 + y2 = 1. The restriction of T to this line is just continued
fraction algorithm for t = x1. Therefore we exclude from our considerations all
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points on this line and all points with Tn(x1, x2)1 = 0 for some n � 1.
The inverse branches of the algorithm are given by the matrices

�(a, b) =

0
@ b + 1 0 �1

1 0 0
a 1 0

1
A =

0
B@

B(1)
0 �B(�1)

0 �B(0)
0

B(1)
1 �B(�1)

1 �B(0)
1

B(1)
2 �B(�1)

2 �B(0)
2

1
CA .

Matrix multiplication gives the recursion relations

B(n)
j = (bn + 1)B(n�1)

j � anB(n�2)
j �B(n�3)

j ,

an = a(Tn�1(x1, x2)), bn = b(Tn�1(x1, x2)), j = 0, 1, 2, n � 2.

In [6] the problem of periodicity of this algorithm was discussed. Here we show
that the algorithm is convergent with one obvious exception. The main problem is
related to the fact that not all of the entries of the matrices �(a, b) are non-negative.
We further prove the basic ingredients for an ergodic theory of the map T .

2. Proof of Convergence

The characteristic polynomial of the periodic expansion

(x1, x2) =

 
0
1

!

is
�(�) = �3 � 2�2 + 1

which shows �(1) = 0. The two points (�, �2) and (1, 1) which correspond to the
eigenvalues � = � and �0 = 1 are invariant. Here � > 1 is the number of the Golden
Section; it satisfies �2 = � + 1 and �� = 1. Therefore the whole segment between
(�, �2) and (1, 1) is invariant. The algorithm cannot be convergent at all points.

We first observe the following facts. Let

B� = {(x1, x2) 2 B : x1 + x2  1}

and
B+ = {(x1, x2) 2 B : x1 + x2 � 1}.

• As already mentioned, the line x1 +x2 = 1 is invariant under the map T . The
restriction of T to this line is equivalent to the continued fraction map. Note
that qs = B(s)

0 �B(s�1)
0 obeys the usual relation qs = bsqs�1 +qs�2. Therefore

we will not consider these points further.
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• If a1(x) = b1(x) then

y1 + y2 =
⇣x2

x1
� b
⌘

+
⇣
b + 1� 1

x1

⌘
=

x1 + x2 � 1
x1

< 1.

Therefore, y = Tx 2 B�.

• If a1(x) = b1(x)� 1 and x 2 B� then

y1 + y2 =
x2 + 2x1 � 1

x1
< 1.

Then again y = Tx 2 B�.

• If a1(x) = b1(x)� 1 then

|y1 + y2 � 1| =
|x1 + x2 � 1|

x1
.

If x1  1
2 then |y1 +y2�1| � 2|x1 +x2�1| . If ag(x) = bg(x)�1 for all g � 1

then bg � 2 can appear only finitely often. Therefore, in this case, ag(x) = 0
and bg(x) = 1 for g � g0(x).

These considerations imply that the orbit of all points x which are not eventually
excluded by the foregoing considerations will hit a cylinder with 2  b and a  b�2
infinitely often.

Theorem 1: If (an(x), bn(x)) = (a, b) with a  b � 2, 2  b, infinitely often then
the algorithm is convergent.

Proof. : We first state an important property of this algorithm.
Let

nY
j=1

�(aj , bj) =

0
B@

B(n)
0 �B(n�2)

0 �B(n�1)
0

B(n)
1 �B(n�2)

1 �B(n�1)
1

B(n)
2 �B(n�2)

2 �B(n�1)
2

1
CA .

Then the relations

B(n)
i B(n�1)

0 �B(n�1)
i B(n)

0 � 0, B(n)
i B(n�2)

0 �B(n�2)
i B(n)

0 � 0

hold for i = 1, 2 and n � 1.
Therefore the sequences B(n)

1

B(n)
0

and B(n)
2

B(n)
0

both are increasing. We denote their limit

by x = (x1, x2). Now let x = (x1, x2) be a point with an infinite expansion by this
algorithm. Note that the points x and x have the same expansion.
If T gx = y then

x1 =
B(g)

1 � y1B
(g�2)
1 � y2B

(g�1)
1

B(g)
0 � y1B

(g�2)
0 � y2B

(g�1)
0



4

x2 =
B(g)

2 � y1B
(g�2)
2 � y2B

(g�1)
2

B(g)
0 � y1B

(g�2)
0 � y2B

(g�1)
0

.

This implies
B(g)

1

B(g)
0

< x1

and
B(g)

2

B(g)
0

< x2.

Therefore, x1  x1 and x2  x2.

Since x = (x1, x2) is the limit of the sequence
⇣

B(n)
1

B(n)
0

, B(n)
2

B(n)
0

⌘
for any " > 0 there is a

number g0 such that for all g � g0

0 < x1 �
B(g)

1

B(g)
0

< "

and

0 < x2 �
B(g)

1

B(g)
0

< ".

In the following we restrict to the first coordinate. Then

x1 �
B(g)

1

B(g)
0

=
y1(B

(g)
1 B(g�2)

0 �B(g�2)
1 B(g)

0 ) + y2(B
(g)
1 B(g�1)

0 �B(g�1)
1 B(g)

0 )

B(g)
0 (B(g)

0 � y1B
(g�2)
0 � y2B

(g�1)
0 )

.

In a similar way we have

x1 �
B(g)

1

B(g)
0

=
y1(B

(g)
1 B(g�2)

0 �B(g�2)
1 B(g)

0 ) + y2(B
(g)
1 B(g�1)

0 �B(g�1)
1 B(g)

0 )

B(g)
0 (B(g)

0 � y1B
(g�2)
0 � y2B

(g�1)
0 )

.

Now we consider the quotient

x1 � B(g)
1

B(g)
0

x1 � B(g)
1

B(g)
0

=
B(g)

0 � y1B
(g�2)
0 � y2B

(g�1)
0

B(g)
0 � y1B

(g�2)
0 � y2B

(g�1)
0

⇥ y1(B
(g)
1 B(g�2)

0 �B(g�2)
1 B(g)

0 ) + y2(B
(g)
1 B(g�1)

0 �B(g�1)
1 B(g)

0 )

y1(B
(g)
1 B(g�2)

0 �B(g�2)
1 B(g)

0 ) + y2(B
(g)
1 B(g�1)

0 �B(g�1)
1 B(g)

0 )
.

Assume z = Ty and z = Ty such that

y1 =
1

b + 1� z2
, y2 =

a + z1

b + 1� z2
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and
y1 =

1
b + 1� z2

, y2 =
a + z1

b + 1� z2

then clearly
y1

y1
 b + 1

b
 2.

If a � 1 then in a similar way we also get

y2

y2
 (a + 1)(b + 1)

ab
 4.

If a = 0 we have
y2

y2
 z1(b + 1)

z1b
 4.

This shows that the second factor of the product is bounded by 4.

Now we consider the first factor. Let bg+1 � 2 and ag+1  bg+1 � 2. Then we will
show that

B(g)
0 � y1B

(g�2)
0 � y2B

(g�1)
0

B(g)
0 � y1B

(g�2)
0 � y2B

(g�1)
0

 4.

We write z = Ty and z = Ty. Then

B(g)
0 � y1B

(g�2)
0 � y2B

(g�1)
0

B(g)
0 � y1B

(g�2)
0 � y2B

(g�1)
0

=
bg+1 + 1� z2

bg+1 + 1� z2
⇥ (bg+1 + 1� z2)B

(g)
0 � (ag+1 + z1)B

(g�1)
0 �B(g�2)

0

(bg+1 + 1� z2)B
(g)
0 � (ag+1 + z1)B

(g�1)
0 �B(g�2)

0

.

The first factor is bounded by 2. If we assume that the second factor is also bounded
by 2 then we have to estimate the expression

(bg+1 + 1 + z2 � 2z2)B
(g)
0 � (ag+1 + 2z1 � z1)B

(g�1)
0 �B(g�2)

0

from below. Since the points x and x have the same expansion we use

2z1 � z1  2� �

and
z2 � 2z2 � �1� �.

We can assume ag+1 = bg+1 � 2 and the lower bound reduces to

(bg+1 � �)B(g)
0 � (bg+1 � �)B(g�1)

0 �B(g�2)
0 .
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Since the points (z1, z2) and (z1, z2) have the same expansion, it is easy to show
that

2z1 � z1  2� �

and
z2 � 2z2 � �1� �.

Here we used the invariant segment between (�, �2) and (1, 1) as the “worst case”.
If ag < bg then for all x 2 B the inequality B(g) � x2B(g�1) � x1B(g�2) � 0 holds
and the proof would be complete.
If ag = bg then we know that ag�1 < bg�1 = d. We insert

B(g)
0 = (d + 1)B(g�1)

0 � (d� 1)B(g�2)
0 �B(g�3)

0

into the expression and obtain

(dbg+1�d� +2�)B(g�1)
0 � (dbg+1�d��bg+1 +� +1)B(g�2)

0 � (bg+1��)B(g�3)
0 � 0.

Note that bg+1 � 2.
This shows

0 < x1 �
B(g)

1

B(g)
0

< 16".

3. Ergodic Theory of the Map

Theorem 2 The underlying map is ergodic and admits an invariant density.

Proof. Well-known techniques (here I will refer to [5] and to [4]) can be used if we
show that the algorithm satisfies a Rényi condition. We first define a cylinder of
rank g as the set

B((a1, b1), ..., (ag, bg)) = {x : (a1(x), b1(x)) = (a1, b1), ..., (ag(x), bg(x)) = (ag, bg)}.

The proof of convergence implies that for almost all points x 2 B, the nested
sequence of cylinders which contain the point x shrinks to this point. If we neglect
a set of measure 0, we have to show the existence of a constant C � 1 such that for all
points y and z with y 2 T gB((a1, b1), ..., (ag, bg)) and z 2 T gB((a1, b1), ..., (ag, bg))
the condition

B(g)
0 � y1B

(g�1)
0 � y2B

(g�2)
0

B(g)
0 � z1B

(g�1)
0 � z2B

(g�2)
0

 C
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is satisfied.
We first show that if ag�1(x) < bg�1(x) and ag  bg � 2, bg � 2 then the estimate

B(g)
0

B(g)
0 � y2B

(g�1)
0 � y1B

(g�2)
0

 3

holds. This inequality amounts to prove

0  2B(g)
0 � 3y2B

(g�1)
0 � 3y1B

(g�2)
0 .

We insert
B(g)

0 = (b + 1)B(g�1)
0 � aB(g�2)

0 �B(g�3)
0

and obtain

0  (2b + 2� 3y2)B
(g�1)
0 � (2a + 3y1)B

(g�2)
0 � 2B(g�3)

0 .

We insert (y1, y2) = (1, 1) and obtain

0  (2b� 1)B(g�1)
0 � (2a + 3)B(g�2)

0 � 2B(g)
0 .

Since a = ag  bg � 2 = b� 2, the inequalities 2a + 3  2b� 1 and 2  2b� 1 are
true and therefore the original inequality is correct.

We now have to show that this combination will appear infinitely often in the
expansion of almost all points. We introduce the set

⇤g = {(x1, x2) : a2j�1(x)  b2j�1(x)� 2; a2j(x) = b2j(x) for 1  j  g}.

We will show
�(
\
g

⇤g) = 0.

We first note0
@ d + 1 0 �1

1 0 0
a 1 0

1
A
0
@ b + 1 0 �1

1 0 0
b 1 0

1
A =

0
@ db + d + 1 �1 �(d + 1)

b + 1 0 �1
ab + a + 1 0 �a

1
A .

Letting x = T 2y, the chain rule gives the estimate

1

(B(2g)
0 � x1B

(2g�2)
0 � x2B

(2g�1)
0 )3

=
1

(B(2g�2)
0 � y1B

(2g�4)
0 � y2B

(2g�3)
0 )3(b2g�1b2g + b2g�1 + 1� x1 � (b2g�1 + 1)x2)3
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 1

(B(2g�2)
0 � y1B

(2g�4)
0 � y2B

(2g�3)
0 )3(b2g�1b2g)3

.

By induction we obtain

1

(B(2g)
0 � x1B

(2g�2)
0 � x2B

(2g�1)
0 )3

 1
(b1b3...b2g�1)3(b2b4...b2g)3

.

Then we obtain

�(⇤g) 
1
2
(
1X
b

1X
d=2

d�2X
a=0

1
b3d3

)g.

Since
1X

b=1

1X
d=2

d�2X
a=0

1
b3d3


1X

b=1

1X
d=2

1
b3d2

< 1,

the proof is complete.
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