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Abstract
Let t > 1 be an integer and a3¢(n) be the number of 3¢-cores of n. We prove a class
of congruences for as:(n) mod 3 by Hecke nilpotence.

1. Introduction

If ¢ is a positive integer, let a;(n) be the the number of t-cores of n, that is, the
number of partitions of n with no hooks of length divisible by ¢. Then, as shown
by Garvan, Kim and Stanton [4], the generating function for a;(n) is given by the
following infinite product:
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Some congruence properties were established for small ¢. See for example [5, 6, 9].

For ¢ a power of 2, Hirschhorn and Sellers [5] made the following conjecture:

Conjecture 1. Ift and n are positive integers with t > 2, then for k= 0,2,

327 1 (24n 4 8k + 7) — £
a2f,< ( n+8 +7) 3 = 0(mod 2).

Using Hecke nilpotence [13], Boylan [2] made some progress on the above con-
jecture. In 2012, Nicolas and Serre [11] determined the structure of Hecke rings
modulo 2 and sharpened the degree of nilpotence of the mod 2 Hecke algebras. In
[3], Chen confirmed Hirschhorn and Sellers’s conjecture with the help of Nicolas
and Serre’s result.

Recently, motivated by the work of Nicolas and Serre [11], Bellaiche and Khare
[1] studied the structure of the Hecke algebras of modular forms modulo p for all
primes p, extending the results of Nicolas and Serre for p = 2. In particular, in the
appendix of [1], Bellaiche and Khare explicitly determined the upper bound of the
degree of nilpotence of Hecke algebras modulo 3. It is obvious that we can use their
results to study 3!-core partition functions.
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Theorem 1. Let ] be an integer such that [ > 4t3—_1, Then for any distinct primes
l1,..., 4, which are congruent to 2(mod 3), we have
Oyl — 21
ast <1lfg> = 0(mod 3)

for all n coprime to £y ---¢;.

The paper is laid out as follows. In Section 2, we recall the results on nilpotence
of Hecke algebras for p = 3. In Section 3, we prove Theorem 1. In Section 4, we give
a result on as:(n) modulo powers of 3. Throughout the paper, we put a;(a) = 0 if
a ¢ N.

2. Hecke Nilpotence

The proof of Theorem 1 relies on Hecke nilpotence of modular forms. We recall
some facts on modular forms (see [8] for more). For integers k > 0, we denote by Si,
the space of cusp forms of weight k& with integer coefficients on SLy(Z). Moreover,
let Sp(modp) denote the modular forms in Sj with integer coefficients, reduced
modulo p, where p is a prime number. Throughout this paper, p = 3. As usual,
Ramanujan’s A function is

A(z) =n(z)** =q [[(1 = ¢")* =D r(n)g" € S,

where ¢ = 2™, and z is on the upper half of the complex plane. Let £ be a prime

#p. If f(z) = > "ga(n)q" € Sk, then the action of the Hecke operator Ty ; on
f(2)(mod p) is defined by

oo

FENTer =Y e(n)g",

n=1

where

a(fn) + 0*~Ya(n/0), if ¢|n. (1)

Based on the work Bellaiche and Khare [1], it is known that the action of Hecke
algebras on the spaces of modular forms modulo 3 is locally nilpotent. Let

o) = {a(zn), if 04 n,

;| Ty, if £ = 2(mod 3),
CT 14Ty, if £=1(mod3).

If f(z) € Sk, then there is a positive integer ¢ with the property that

FIT;, Ty, -+ Ty, = 0(mod 3)
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for every collection of primes ¢1,...,¢;, where £; # p for 7 =1,...,7. Suppose that
f(z) # 0(mod p). We say that f(z) has degree of nilpotence i if there exist primes
ly,...,4;_q such that ¢; # 3 for j =1,...,i— 1 for which

FT, Ty, -+ |T7,_, # 0(mod 3)
and every collection of primes p, ..., p;, such that p; # 3 for j =1,...,7 for which
f)| T, |T,, -+ |T;, = 0(mod 3). (2.2)

We denote by gi(3) the degree of nilpotnece of A*(z)(mod 3). To obtain congru-
ences for agt(n), we need the upper bound for gi(3).

Theorem 2 (Bellaiche and Khare [1]). For any positive integer k = ;_; a;3",
with a; € {0,1,2},a, # 0, we have gi(3) < Y7_,a;2°

Corollary 1. If k = o _1, we have got_; (3) < 4t3_1'
8

Proof. This is a consequence of Theorem 2 since k = Lg_l =14+32+.--43%2. 0O

3. Proof of Theorem 1

We now prove Theorem 1.

Proof of Theorem 1. By the definition of a;(n), we have

Za3t(n H 11_3(] EH 1—¢")? 7! (mod3).
n=0

From the definition of A(z), it follows that:

9'—1 t_q ot 1
Zay <7> Zay )@ = ATF (2) (mod 3). (3.1)

Now by (2.1), the definition of T; and Corollary 1, the proof of Theorem 1 is
immediate. O

Example 1. If ¢ = 1, then ¢;(3) = 1. Theorem 1 asserts that for primes { =

2(mod 3), then
-1
as (Eng ) = 0(mod 3)

for all n coprime to ¢. In particular, if ¢ # 2, we choose n = 3¢m + 2, then

(Fm + %T> = 0 (mod 3) (3.2)



INTEGERS: 15 (2015) 4

for all m > 0. For ¢ = 2, we can choose n = 6m + 5, then
az(4m+3) =0 (mod3) (3.3)

for all m > 0. In fact, in [7, Cor. 9], we know that az(n) are zero in (3.2) and (3.3).
So our results are trivial.

Example 2. If ¢t = 2, then ¢19(3) = 5. If £; = 2(mod 3) for distinct primes ¢;, then
we have l10o03040 10

a (%) — O(mod3)
for all n coprime to ¢102030405. Suppose we choose 1 = 2,0; = 5,03 = 11,44 =
17,45 = 23, then we know

43010n — 10
ag 73

) = 0(mod 3)
for all n such that (43010,n) = 1. Actually, since ¢4 = 17 = 8(mod9), from

Theorem 24 and Lemma 35 in [1] we know that g3(77,f) < g3(f) — 2. So we have

< 1870n — 10
ag |\ ———

. ) = 0(mod 3)

for all n coprime to 1870.

4. Further Remarks

In [10], Moon and Taguchi proved the following theorem.

Theorem 3. Let k > 1 be a positive integer. Let € : (Z/3% - 4Z)* — C* be a
Dirichlet character. Then there exist integers ¢ > 0 and e > 1, depending on k, a
and £ such that for any modular form f(z) =3 .~ ja(n)q™ € My(Lo(3* - 4),&;Z),

any integer j > 1, and any ¢+ ej primes p1,pa, - .., Petej = —1(mod 12), we have
f(z)|TP1 |Tp2‘ T |Tpc+rij = O(mOd 3])
Furthermore, if the primes p1,p2, .. .,Dctej are distinct, then for any positive integer

m coprime to p1,D2, ..., Petej, We have
a(p1p2 -+ Petejm) = 0(mod 37).
Since it is easy to see that [12, Theorem 1.64]

n(3t+1z)3‘

ad . ot —1
ast(n) @t =
nz:% n(3z)
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3t-1 ,
belongs to M s, (['g(3t11), x) where x(d) = <(_1)+3>, we have the following
2

theorem.

Theorem 4. There exist integers ¢ > 0 and e > 1, depending on t such that for

any positive integer j and any distinct c+ej primes p1,p2, . .., Dete; = —1(mod 12),
we have
P1D2 " " PetejT — 2ol ;
age 3 ! 8 = 0(mod 3)
for any positive integer n coprime to p1,p2, ..., Dete;-
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