ARITHMETIC OF 3^{t}-CORE PARTITION FUNCTIONS

Haobo Dai
School of Science, Anhui University of Science and Technology, Huainan, China
dedekindbest@hotmail.com

Received: 11/7/13, Revised: 1/24/15, Accepted: 2/23/15, Published: 3/5/15

Abstract

Let $t \geq 1$ be an integer and $a_{3^{t}}(n)$ be the number of 3^{t}-cores of n. We prove a class of congruences for $a_{3^{t}}(n) \bmod 3$ by Hecke nilpotence.

1. Introduction

If t is a positive integer, let $a_{t}(n)$ be the the number of t-cores of n, that is, the number of partitions of n with no hooks of length divisible by t. Then, as shown by Garvan, Kim and Stanton [4], the generating function for $a_{t}(n)$ is given by the following infinite product:

$$
\begin{equation*}
\sum_{n=0}^{\infty} a_{t}(n) q^{n}=\prod_{n=1}^{\infty} \frac{\left(1-q^{n t}\right)^{t}}{\left(1-q^{n}\right)} \tag{1.1}
\end{equation*}
$$

Some congruence properties were established for small t. See for example [5, 6, 9].
For t a power of 2, Hirschhorn and Sellers [5] made the following conjecture:
Conjecture 1. If t and n are positive integers with $t \geq 2$, then for $k=0,2$,

$$
a_{2^{t}}\left(\frac{3^{2^{t-1}-1}(24 n+8 k+7)-\frac{4^{t}-1}{3}}{8}\right) \equiv 0(\bmod 2) .
$$

Using Hecke nilpotence [13], Boylan [2] made some progress on the above conjecture. In 2012, Nicolas and Serre [11] determined the structure of Hecke rings modulo 2 and sharpened the degree of nilpotence of the mod 2 Hecke algebras. In [3], Chen confirmed Hirschhorn and Sellers's conjecture with the help of Nicolas and Serre's result.

Recently, motivated by the work of Nicolas and Serre [11], Bellaïche and Khare [1] studied the structure of the Hecke algebras of modular forms modulo p for all primes p, extending the results of Nicolas and Serre for $p=2$. In particular, in the appendix of [1], Bellaïche and Khare explicitly determined the upper bound of the degree of nilpotence of Hecke algebras modulo 3. It is obvious that we can use their results to study 3^{t}-core partition functions.

Theorem 1. Let l be an integer such that $l \geq \frac{4^{t}-1}{3}$. Then for any distinct primes $\ell_{1}, \ldots, \ell_{l}$ which are congruent to $2(\bmod 3)$, we have

$$
a_{3^{t}}\left(\frac{\ell_{1} \cdots \ell_{l} n-\frac{9^{t}-1}{8}}{3}\right) \equiv 0(\bmod 3)
$$

for all n coprime to $\ell_{1} \cdots \ell_{l}$.
The paper is laid out as follows. In Section 2, we recall the results on nilpotence of Hecke algebras for $p=3$. In Section 3, we prove Theorem 1. In Section 4, we give a result on $a_{3^{t}}(n)$ modulo powers of 3 . Throughout the paper, we put $a_{t}(\alpha)=0$ if $\alpha \notin \mathbb{N}$.

2. Hecke Nilpotence

The proof of Theorem 1 relies on Hecke nilpotence of modular forms. We recall some facts on modular forms (see [8] for more). For integers $k>0$, we denote by \mathcal{S}_{k} the space of cusp forms of weight k with integer coefficients on $S L_{2}(\mathbb{Z})$. Moreover, let $\mathcal{S}_{k}(\bmod p)$ denote the modular forms in \mathcal{S}_{k} with integer coefficients, reduced modulo p, where p is a prime number. Throughout this paper, $p=3$. As usual, Ramanujan's Δ function is

$$
\Delta(z)=\eta(z)^{24}=q \prod_{n=1}^{\infty}\left(1-q^{n}\right)^{24}=\sum_{n=1}^{\infty} \tau(n) q^{n} \in \mathcal{S}_{12}
$$

where $q=e^{2 \pi i z}$, and z is on the upper half of the complex plane. Let ℓ be a prime $\neq p$. If $f(z)=\sum_{n=0}^{\infty} a(n) q^{n} \in \mathcal{S}_{k}$, then the action of the Hecke operator $T_{\ell, k}$ on $f(z)(\bmod p)$ is defined by

$$
f(z) \mid T_{\ell, k}=\sum_{n=1}^{\infty} c(n) q^{n}
$$

where

$$
c(n)= \begin{cases}a(\ell n), & \text { if } \ell \nmid n \tag{1}\\ a(\ell n)+\ell^{k-1} a(n / \ell), & \text { if } \ell \mid n\end{cases}
$$

Based on the work Bellaïche and Khare [1], it is known that the action of Hecke algebras on the spaces of modular forms modulo 3 is locally nilpotent. Let

$$
T_{\ell}^{\prime}= \begin{cases}T_{\ell}, & \text { if } \ell \equiv 2(\bmod 3) \\ 1+T_{\ell}, & \text { if } \ell \equiv 1(\bmod 3)\end{cases}
$$

If $f(z) \in \mathcal{S}_{k}$, then there is a positive integer i with the property that

$$
f(z)\left|T_{\ell_{1}}^{\prime}\right| T_{\ell_{2}}^{\prime} \cdots \mid T_{\ell_{i}}^{\prime} \equiv 0(\bmod 3)
$$

for every collection of primes $\ell_{1}, \ldots, \ell_{i}$, where $\ell_{j} \neq p$ for $j=1, \ldots, i$. Suppose that $f(z) \not \equiv 0(\bmod p)$. We say that $f(z)$ has degree of nilpotence i if there exist primes $\ell_{1}, \ldots, \ell_{i-1}$ such that $\ell_{j} \neq 3$ for $j=1, \ldots, i-1$ for which

$$
f(z)\left|T_{\ell_{1}}^{\prime}\right| T_{\ell_{2}}^{\prime} \cdots \mid T_{\ell_{i-1}}^{\prime} \not \equiv 0(\bmod 3)
$$

and every collection of primes p_{1}, \ldots, p_{i}, such that $p_{j} \neq 3$ for $j=1, \ldots, i$ for which

$$
\begin{equation*}
f(z)\left|T_{p_{1}}^{\prime}\right| T_{p_{2}}^{\prime} \cdots \mid T_{p_{i}}^{\prime} \equiv 0(\bmod 3) \tag{2.2}
\end{equation*}
$$

We denote by $g_{k}(3)$ the degree of nilpotnece of $\Delta^{k}(z)(\bmod 3)$. To obtain congruences for $a_{3^{t}}(n)$, we need the upper bound for $g_{k}(3)$.

Theorem 2 (Bellaïche and Khare [1]). For any positive integer $k=\sum_{i=0}^{r} a_{i} 3^{i}$, with $a_{i} \in\{0,1,2\}, a_{r} \neq 0$, we have $g_{k}(3) \leq \sum_{i=0}^{r} a_{i} 2^{i}$.
Corollary 1. If $k=\frac{9^{t}-1}{8}$, we have $g_{\frac{9^{t}-1}{8}}(3) \leq \frac{4^{t}-1}{3}$.
Proof. This is a consequence of Theorem 2 since $k=\frac{9^{t}-1}{8}=1+3^{2}+\cdots+3^{2 t-2}$.

3. Proof of Theorem 1

We now prove Theorem 1.
Proof of Theorem 1. By the definition of $a_{t}(n)$, we have

$$
\sum_{n=0}^{\infty} a_{3^{t}}(n) q^{n}=\prod_{n=1}^{\infty} \frac{\left(1-q^{3^{t} n}\right)^{3^{t}}}{\left(1-q^{n}\right)} \equiv \prod_{n=1}^{\infty}\left(1-q^{n}\right)^{9^{t}-1}(\bmod 3)
$$

From the definition of $\Delta(z)$, it follows that:

$$
\begin{equation*}
\sum_{n=0}^{\infty} a_{3^{t}}\left(\frac{n-\frac{9^{t}-1}{8}}{3}\right) q^{n} \equiv \sum_{n=0}^{\infty} a_{3^{t}}(n) q^{3 n+\frac{9^{t}-1}{8}} \equiv \Delta^{\frac{9^{t}-1}{8}}(z)(\bmod 3) \tag{3.1}
\end{equation*}
$$

Now by (2.1), the definition of T_{ℓ}^{\prime} and Corollary 1, the proof of Theorem 1 is immediate.

Example 1. If $t=1$, then $g_{1}(3)=1$. Theorem 1 asserts that for primes $\ell \equiv$ $2(\bmod 3)$, then

$$
a_{3}\left(\frac{\ell n-1}{3}\right) \equiv 0(\bmod 3)
$$

for all n coprime to ℓ. In particular, if $\ell \neq 2$, we choose $n=3 \ell m+2$, then

$$
\begin{equation*}
a_{3}\left(\ell^{2} m+\frac{2 \ell-1}{3}\right) \equiv 0(\bmod 3) \tag{3.2}
\end{equation*}
$$

for all $m \geq 0$. For $\ell=2$, we can choose $n=6 m+5$, then

$$
\begin{equation*}
a_{3}(4 m+3) \equiv 0 \quad(\bmod 3) \tag{3.3}
\end{equation*}
$$

for all $m \geq 0$. In fact, in [7, Cor. 9], we know that $a_{3}(n)$ are zero in (3.2) and (3.3). So our results are trivial.

Example 2. If $t=2$, then $g_{10}(3)=5$. If $\ell_{i} \equiv 2(\bmod 3)$ for distinct primes ℓ_{i}, then we have

$$
a_{9}\left(\frac{\ell_{1} \ell_{2} \ell_{3} \ell_{4} \ell_{5} n-10}{3}\right) \equiv 0(\bmod 3)
$$

for all n coprime to $\ell_{1} \ell_{2} \ell_{3} \ell_{4} \ell_{5}$. Suppose we choose $\ell_{1}=2, \ell_{2}=5, \ell_{3}=11, \ell_{4}=$ $17, \ell_{5}=23$, then we know

$$
a_{9}\left(\frac{43010 n-10}{3}\right) \equiv 0(\bmod 3)
$$

for all n such that $(43010, n)=1$. Actually, since $\ell_{4}=17 \equiv 8(\bmod 9)$, from Theorem 24 and Lemma 35 in [1] we know that $g_{3}\left(T_{17}^{\prime} f\right) \leq g_{3}(f)-2$. So we have

$$
a_{9}\left(\frac{1870 n-10}{3}\right) \equiv 0(\bmod 3)
$$

for all n coprime to 1870 .

4. Further Remarks

In [10], Moon and Taguchi proved the following theorem.
Theorem 3. Let $k \geq 1$ be a positive integer. Let $\varepsilon:\left(\mathbb{Z} / 3^{a} \cdot 4 \mathbb{Z}\right)^{\times} \rightarrow \mathbb{C}^{\times}$be a Dirichlet character. Then there exist integers $c \geq 0$ and $e \geq 1$, depending on k, a and ε such that for any modular form $f(z)=\sum_{n=0}^{\infty} a(n) q^{n} \in \mathcal{M}_{k}\left(\Gamma_{0}\left(3^{a} \cdot 4\right), \varepsilon ; \mathbb{Z}\right)$, any integer $j \geq 1$, and any $c+$ ej primes $p_{1}, p_{2}, \ldots, p_{c+e j} \equiv-1(\bmod 12)$, we have

$$
f(z)\left|T_{p_{1}}\right| T_{p_{2}}|\cdots| T_{p_{c+e j}} \equiv 0\left(\bmod 3^{j}\right)
$$

Furthermore, if the primes $p_{1}, p_{2}, \ldots, p_{c+e j}$ are distinct, then for any positive integer m coprime to $p_{1}, p_{2}, \ldots, p_{c+e j}$, we have

$$
a\left(p_{1} p_{2} \cdots p_{c+e j} m\right) \equiv 0\left(\bmod 3^{j}\right)
$$

Since it is easy to see that [12, Theorem 1.64]

$$
\sum_{n=0}^{\infty} a_{3^{t}}(n) q^{3 n+\frac{9^{t}-1}{8}}=\frac{\eta\left(3^{t+1} z\right)^{3^{t}}}{\eta(3 z)}
$$

belongs to $\mathcal{M}_{\frac{3^{t}-1}{2}}\left(\Gamma_{0}\left(3^{t+1}\right), \chi\right)$ where $\chi(d)=\left(\frac{(-1)^{\frac{3^{t}-1}{2}} 3^{t}}{d}\right)$, we have the following theorem.

Theorem 4. There exist integers $c \geq 0$ and $e \geq 1$, depending on t such that for any positive integer j and any distinct $c+e j$ primes $p_{1}, p_{2}, \ldots, p_{c+e j} \equiv-1(\bmod 12)$, we have

$$
a_{3^{t}}\left(\frac{p_{1} p_{2} \cdots p_{c+e j} n-\frac{9^{t}-1}{8}}{3}\right) \equiv 0\left(\bmod 3^{j}\right)
$$

for any positive integer n coprime to $p_{1}, p_{2}, \ldots, p_{c+e j}$.

Acknowledgments. The author would like to thank the referee for helpful comments and suggestions.

References

[1] J. Bellaïche and C. Khare, Hecke algebras of modular forms mudolo p, Composito Math., to appear.
[2] M. Boylan, Congruences for 2^{t}-core partition functions, J. Number Theory 92 (2002), 131138.
[3] S. C. Chen, Congruences for t-core partition functions, J. Number Theory 133 (2013), 40364046.
[4] F. Garvan, D. kim and D. Santon, Cranks and t-cores, Invent. Math. 101 (1990), 1-17.
[5] M. Hirschhorn and J. S. Sellers, Some parity results for 16-cores, Ramanujan J. 3 (1999), 281-296.
[6] M. Hirschhorn and J. S. Sellers, Some amazing facts about 4-cores, J. Number Theory 60 (1996), 51-69.
[7] M. Hirschhorn and J. S. Sellers, Elementary proofs of various facts about 3-cores, Bull. Aust. Math. Soc. 79 (2009), no. 3, 507-512.
[8] N. Koblitz, Introduction to elliptic curves and modular forms, Springer-Verlag, New York, Graduate Texts in Mathematics, No. 97, 1984
[9] L. W. Kolitsch and J. A. Sellers, Elementary proofs of infinitely many congruences for 8cores, Ramanujan J. 3 (1999), 221-226.
[10] H. Moon and Y. Taguchi, l-adic properties of certain modular forms. Proc. Japan Acad. Ser. A Math. Sci. 82 (2006), no. 7, 83-86.
[11] J. L. Nicolas and J. P. Serre, Formes modularies modulo 2: L'ordre de nilpotence des opérateurs, C.R.Acad.Sci.Paris, Ser.I 350 (2012), 343-348.
[12] K. Ono, The web of modularity: arithmetic of the coefficients of modular forms and q-series, CBMS Regional Conference Series in Mathematics, 102, American Math. Soc., Providence, RI, 2004.
[13] J. P. Serre, Divisibilité de certaines fonctions arithmétique, L'Ens. Math. 22 (1976), 227-260.

