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Abstract
We present a versatile construction allowing one to obtain pairs of integer sets
with infinite symmetric di↵erence, infinite intersection, and identical representation
functions.

Let N0 denote the set of all non-negative integers. To every subset A ✓ N0 corre-
sponds its representation function RA defined by

RA(n) := |{(a0, a00) 2 A⇥A : n = a0 + a00, a0 < a00}|;

that is, RA(n) is the number of unordered representations of the integer n as a sum
of two distinct elements of A.

Answering a question of Sárközy, Dombi [4] constructed sets A,B ✓ N0 with
infinite symmetric di↵erence such that RA = RB. The result of Dombi was fur-
ther extended and developed in [3] (where a di↵erent representation function was
considered) and [5] (a simple common proof of the results from [4] and [3] using
generating functions); other related results can be found in [1, 2, 6, 8].

The two sets constructed by Dombi actually partition the ground set N0, which
makes one wonder whether one can find A,B ✓ N0 with RA = RB so that not
only the symmetric di↵erence of A and B, but also their intersection is infinite.
Tang and Yu [9] proved that if A [B = N0 and RA(n) = RB(n) for all su�ciently
large integers n, then at least one cannot have A \ B = 4N0 (here and below kN0

denotes the dilate of the set N0 by the factor k). They further conjectured that,
indeed, under the same assumptions, the intersection A \ B cannot be an infinite
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arithmetic progression, unless A = B = N0. The main goal of this note is to resolve
the conjecture of Tang and Yu in the negative by constructing an infinite family
of pairs of sets A,B ✓ N0 with RA = RB such that A [ B = N0, while A \ B
is an infinite arithmetic progression properly contained in N0. Our method also
allows one to easily construct sets A,B ✓ N0 with RA = RB such that both their
symmetric di↵erence and intersection are infinite, while their union is arbitrarily
sparse and the intersection is not an arithmetic progression.

For sets A,B ✓ N0 and integer m, let A � B := {a � b : (a, b) 2 A ⇥ B} and
m + A := {m + a : a 2 A}.

The following basic lemma is in the heart of our construction.

Lemma 1. Suppose that A0, B0 ✓ N0 satisfy RA0 = RB0 , and that m is a non-
negative integer with m /2 (A0 �B0) [ (B0 �A0). Then, letting

A1 := A0 [ (m + B0) and B1 := B0 [ (m + A0),

we have RA1 = RB1 and furthermore

i) A1 [B1 = (A0 [B0) [ (m + A0 [B0);

ii) A1 \B1 ◆ (A0 \B0) [ (m + A0 \B0), the union being disjoint.

Moreover, if m /2 (A0 �A0) [ (B0 �B0), then also in i) the union is disjoint, and
in ii) the inclusion is in fact an equality. In particular, if A0[B0 = [0,m�1], then
A1 [ B1 = [0, 2m � 1], and if A0 and B0 indeed partition the interval [0,m � 1],
then A1 and B1 partition the interval [0, 2m� 1].

Proof. Since the assumption m /2 A0�B0 ensures that A0 is disjoint from m + B0,
for any integer n we have

RA1(n) = RA0(n) + RB0(n� 2m) + |{(a0, b0) 2 A0 ⇥B0 : a0 + b0 = n�m}|.

Similarly,

RB1(n) = RB0(n) + RA0(n� 2m) + |{(a0, b0) 2 A0 ⇥B0 : a0 + b0 = n�m}|,

and in view of RA0 = RB0 , this gives RA1 = RB1 . The remaining assertions are
straightforward to verify.

Given subsets A0, B0 ✓ N0 and a sequence (mi)i2N0 with mi 2 N0 for each
i 2 N0, define subsequently

Ai := Ai�1 [ (mi�1 + Bi�1) and Bi := Bi�1 [ (mi�1 + Ai�1), i = 1, 2, . . . (1)

and let
A :=

[
i2N0

Ai, B :=
[

i2N0

Bi. (2)
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As an immediate corollary of Lemma 1, if RA0 = RB0 and mi /2 (Ai�Bi)[(Bi�Ai)
for each i 2 N0, then RA = RB.

The special case A0 = {0}, B0 = {1}, mi = 2i+1 yields the partition of Dombi
(which, we remark, was originally expressed in completely di↵erent terms). Below
we analyze yet another special case obtained by fixing arbitrarily an integer l � 1
and choosing A0 := {0}, B0 := {1}, and

mi :=

8><
>:

2i+1, 0  i  2l � 2,
22l � 1, i = 2l � 1,
2i+1 � 2i�2l, i � 2l.

(3)

We notice that RA0 = RB0 in a trivial way (both functions are identically equal
to 0), and that A0 and B0 partition the interval [0,m0 � 1]. Applying Lemma 1
inductively 2l�2 times, we conclude that in fact for each i  2l�2, the sets Ai and Bi

partition the interval [0, 2mi�1�1] = [0,mi�1], and consequently mi /2 (Ai�Bi)[
(Bi�Ai) and mi /2 (Ai�Ai)[ (Bi�Bi). In particular, A2l�2 and B2l�2 partition
[0,m2l�2 � 1], and therefore A2l�1 and B2l�1 partition [0, 2m2l�2 � 1] = [0,m2l�1].
In addition, it is easily seen that A2l�1 contains both 0 and m2l�1, whence m2l�1 2
A2l�1�A2l�1, but m2l�1 /2 B2l�1�B2l�1 and m2l�1 /2 (A2l�1�B2l�1)[ (B2l�1�
A2l�1). From Lemma 1 i) it follows now that A2l[B2l = [0, 2m2l�1] = [0,m2l�1],
while

A2l \B2l =
⇣
A2l�1 \ (m2l�1 + A2l�1)

⌘
[

⇣
B2l�1 \ (m2l�1 + B2l�1)

⌘
= {m2l�1}.

Applying again Lemma 1 we then conclude that for each i � 2l,

Ai [Bi = [0,mi � 1]

(implying mi /2 (Ai �Bi) [ (Bi �Ai) [ (Ai �Ai) [ (Bi �Bi)) and

Ai \Bi = m2l�1 + {0,m2l, 2m2l, . . . , (2i�2l � 1)m2l}.

As a result, with A and B defined by (2), we have A [ B = N0 while the inter-
section of A and B is the infinite arithmetic progression m2l�1 + m2lN0. Moreover,
the condition mi /2 (Ai �Bi) [ (Bi �Ai), which we have verified above to hold for
each i � 0, results in RA = RB.

We thus have proved the following result.

Theorem 1. Let l be a positive integer, and suppose that the sets A,B ✓ N0 are
obtained as in (1)–(2) starting from A0 = {0} and B0 = {1}, with (mi) defined
by (3). Then RA = RB, while A [B = N0 and A \B = (22l � 1) + (22l+1 � 1)N0.

We notice that for any fixed integers r � 22l � 1 and m � 22l+1 � 1, having (3)
appropriately modified (namely, setting mi = 2i�2lm for i � 2l) and translating A
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and B, one can replace the progression (22l � 1) + (22l+1 � 1)N0 in the statement
of Theorem 1 with the progression r +mN0; however, the relation A[B = N0 will
not hold true any longer unless r = 22l � 1 and m = 22l+1 � 1. This suggests the
following question.

Problem 1. Given that RA = RB, A [ B = N0, and A \ B = r + mN0 with
integer r � 0 and m � 2, must there exist an integer l � 1 such that r = 22l � 1,
m = 22l+1 � 1, and A,B are as in Theorem 1?

The finite version of this question is as follows.

Problem 2. Given that RA = RB, A [ B = [0,m � 1], and A \ B = {r} with
integers r � 0 and m � 2, must there exist an integer l � 1 such that r = 22l � 1,
m = 22l+1�1, A = A2l, and B = B2l, with A2l nd B2l as in the proof of Theorem 1?

We conclude our note with yet another natural problem.

Problem 3. Do there exist sets A,B ✓ N0 with the infinite symmetric di↵er-
ence and with RA = RB which cannot be obtained by a repeated application of
Lemma 1?
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