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Abstract
In this paper, we present closed forms for finite reciprocal sums that involve gen-
eralized Fibonacci numbers. In each case, the denominator of the summand is a
product of generalized Fibonacci numbers with at least one squared term.

1. Introduction

In [2], [3], [4], and [5], we consider finite reciprocal sums involving generalized
Fibonacci numbers. Indeed we give closed forms, in terms of rational numbers, for
these sums. In the aforementioned papers, the denominator of the summand of each
finite sum consists of a product of generalized Fibonacci numbers. In this paper,
the denominator of the summand of each finite sum that we consider is a product
of generalized Fibonacci numbers with at least one squared term.

Closed forms for reciprocal sums in which the denominator of the summand is
a product that contains squares of Fibonacci (Lucas) numbers seem to be rare in
the literature. For instances of such sums in which the upper limit of summation is
infinite, we refer the reader to Brousseau[1], formulas 6, 7, 12, and 15. Formula 20
of Brousseau does not make sense due to a vanishing denominator. At the end of
Section 2, we indicate that formulas 6, 7, 12, and 15 of Brousseau follow from two
of our results.

We begin by introducing the three pairs of integer sequences that feature in this
paper. Let a � 0 and b � 0 be integers with (a, b) 6= (0, 0). For p a positive integer,
we define, for all integers n, the sequences {Wn} and

�
Wn

 
by

Wn = pWn�1 + Wn�2, W0 = a, W1 = b,
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and
Wn = Wn�1 + Wn+1.

For (a, b, p) = (0, 1, 1), we have {Wn}={Fn}, and
�
Wn

 
={Ln}, which are the

Fibonacci and Lucas numbers, respectively. Retaining the parameter p, and taking
(a, b) = (0, 1), we write {Wn}={Un}, and

�
Wn

 
={Vn}, which are integer sequences

that generalize the Fibonacci and Lucas numbers, respectively.
Let ↵ and � denote the two distinct real roots of x2�px�1 = 0. Set A = b�a�

and B = b�a↵. Then the closed forms (the Binet forms) for {Wn} and
�
Wn

 
are,

respectively,

Wn =
A↵n �B�n

↵� �
,

and
Wn = A↵n + B�n.

Set � = p2 + 4. We require also the constant eW = AB = b2 � pab� a2. In this
regard, note that eU = 1, and eV = ��.

Throughout this paper, d � 1, k � 1, m � 0, and n � 2 are assumed to be
integers. In Section 2, we give a closed form for the finite sum

S2(d, k,m, n) =
n�1X
i=1

(�1)kiUk(2i+d)+2m

U2
ki+mU2

k(i+d)+m

,

with an accompanying dual result.
All of the finite sums considered in this paper are evaluated in terms of rational

numbers. Furthermore, each finite sum is categorized according to the number of
distinct terms in the denominator of its summand. For instance, S2 has two distinct
terms in the denominator of its summand. The scope of this paper is limited as
follows: each finite sum that is considered has at most five distinct factors in the
denominator of its summand. Furthermore, as stated earlier, each finite sum has at
least one squared term in the denominator of its summand. Not all the results that
we have discovered are presented. Instead, we have chosen to present a selection
that demonstrates the kind of results that are possible.

There are two finite sums that feature throughout. For integers 0  l1 < l2,
these finite sums are

�W (k,m, n, l1, l2) =
(�1)k+m

eW Uk

l2�1X
i=l1

 
W 2

k(i+n�1)+m

W 2
k(i+n)+m

�
W 2

k(i+1)+m

W 2
k(i+2)+m

!
,

and

 W (k,m, n, l1, l2) =
l2�1X
i=l1

(�1)ki

Wk(i+2)+mWk(i+n)+m
.
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If, for instance, in the definition of �W (k,m, n, l1, l2) we replace each occurrence of
W by U , we denote the resulting sum by �U (k,m, n, l1, l2).

We suppress certain arguments from quantities when there is no danger of con-
fusion. For instance, S2(n) will denote S2(d, k,m, n) when we want n to vary, and
the other parameters to remain fixed.

We now give two identities, involving �W and  W , that are required for the
proofs of all the theorems in this paper. We state these identities as lemmas in
which, for instance (with the notation agreed upon in the previous paragraph),
�W (n) means �W (k,m, n, l1, l2).

Lemma 1. With �W as defined above,

�W (n + 1)� �W (n) =
(�1)k+m

eW Uk

 
W 2

k(n+l2�1)+m

W 2
k(n+l2)+m

�
W 2

k(n+l1�1)+m

W 2
k(n+l1)+m

!
.

Lemma 2. With  W as defined above,

Uk(n�1) W (n + 1)� Uk(n�2) W (n) =
(�1)k(n+l1)Uk(l2�l1)

Wk(n+l1)+mWk(n+l2)+m
.

In Lemma 1, the right side arises from a simple telescoping sum. Lemma 2 is
proved in [3, Sec. 9], where it occurs as Lemma 1.

The method of proof that can be employed to prove each of our results is me-
chanical and transparent. We demonstrate this method of proof in Section 3, where
we use it to prove Theorem 2.

2. A Closed Form for S2 and a Dual Result

We remind the reader that, throughout this paper, d � 1, k � 1, m � 0, and n � 2
are taken to be integers.

Theorem 1. With S2 as defined in Section 1,

UkUdk (S2(n)� S2(2)) = (�1)k+1�U (k,m, n, 0, d)
+ VkUk(n�2) U (k,m, n, 0, d). (1)

Theorem 1 has a dual result that we conveniently state as follows: redefine S2

by replacing each occurrence of U in the denominator of the summand by V . Then
(1) remains valid provided we multiply the left side by �, and replace �U and  U

by �V and  V , respectively.
Formula 6 of Brousseau [1], to which we refer in the introduction, is an infinite

sum. Before proceeding, we remark that, in this formula, the numerator of the sum-
mand should be (�1)n+r�1F2n�1. Shifting the range of summation, and expressing
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Brousseau’s formula in the notation of the present paper, we see that Brousseau
essentially obtains a closed form for

1X
i=1

(�1)iF2i+2r+1

F 2
i F 2

i+2r+1

. (2)

But (2) is obtained by considering {Un}={Fn}, and letting n ! 1 in the finite
sum S2(2r + 1, 1, 0, n).

Likewise, Brousseau’s formulas 12 and 15 follow easily from the closed form for
S2(d, k,m, n) that we give in Theorem 1. We leave the reader the simple task of
verifying that Brousseau’s formula 7 follows from the dual result of Theorem 1.

3. The Summand Has Three Distinct Factors in the Denominator

In this section, we present two theorems. Furthermore, as stated in the introduction,
we demonstrate our method of proof by proving the first of these theorems.

Define

S0
3(d, k,m, n) =

n�1X
i=1

W k(i+d)+m

W 2
ki+mWk(i+d)+mW 2

k(i+2d)+m

,

and

S1
3(d, k,m, n) =

n�1X
i=1

(�1)kiVk(i+d)+mV2k(i+d)+2m

U2
ki+mUk(i+d)+mU2

k(i+2d)+m

.

In this section, we give the closed forms for S0
3 and S1

3 . We remark that, when
conducting our research, our preference was to discover closed forms for finite sums
involving the more general sequences {Wn} and

�
Wn

 
. When such closed forms

were not forthcoming, we turned our attention to discovering closed forms for finite
sums involving the sequences {Un} and {Vn}.

To assist us in presenting the closed form for S0
3 succinctly, we define, for 0 

i  3, the quantities ai = ai(d, k,m) as

a0 = eW UkU3
dkU2dk,

a1 = (�1)k+m+1Udk,

a2 = U(d�1)k,

a3 = (�1)kU(d+1)k.

We can now state our next theorem.
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Theorem 2. With S0
3 as defined above,

a0

�
S0

3(n)� S0
3(2)

�
= a1

1X
i=0

�W (k,m, n, id, (i + 1)d)

+ 2(�1)k+mUk(n�2)

1X
i=0

ai+2 W (k,m, n, id, (i + 1)d). (3)

Proof. Since ↵� = �1, we write the Binet forms for the various sequences thus:

Un =
�
↵n + (�1)n+1↵�n

�
/
p
�,

Vn = ↵n + (�1)n↵�n,

Wn =
��

b + a↵�1
�
↵n + (�1)n+1 (b� a↵)↵�n

�
/
p
�,

Wn =
�
b + a↵�1

�
↵n + (�1)n (b� a↵)↵�n.

These closed forms are valid for all integers n. We note also that p = ↵�↵�1, and
recall that eW = b2 � pab� a2.

We require the following two identities:

Wk(n+2d)+mWk(n�1)+m�Wk(n+2d�1)+mWkn+m = eW (�1)k(n+1)+m+1UkU2dk, (4)

and

U(d�1)kWk(n+2d)+m + (�1)k(d+1)U(d+1)kWkn+m = U2dkWk(n+d�1)+m. (5)

Since (4) and (5) can be proved routinely with the use of the Binet forms, we leave
this task to the interested reader.

As we have already stated, n � 2 is taken to be an integer. In the statement
of Theorem 2, denote the quantities on the left and right sides of (3) by L(n) and
R(n), respectively. The expression for L(n + 1)� L(n) is

L(n + 1)� L(n) =
eW UkU3

dkU2dkW k(n+d)+m

W 2
kn+mWk(n+d)+mW 2

k(n+2d)+m

. (6)

With the use of Lemmas 1 and 2, we find, after some simplification, that

R(n + 1)�R(n) =
Udk

eW Uk

 
W 2

k(n�1)+m

W 2
kn+m

�
W 2

k(n+2d�1)+m

W 2
k(n+2d)+m

!

+
2(�1)k(n+1)+mUdk

Wk(n+d)+m

 
U(d�1)k

Wkn+m
+

(�1)k(d+1)U(d+1)k

Wk(n+2d)+m

!
. (7)

Next, we express the right side of (7) with the same denominator as the right
side of (6), while making use of (4) and (5) to simplify the resulting expressions.
We then see that

R(n + 1)�R(n) =
c1c2 + c3

W 2
kn+mWk(n+d)+mW 2

k(n+2d)+m

,
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where the ci = ci(d, k,m, n) are defined as

c1 = (�1)k(n+1)+m+1UdkU2dkWk(n+d)+m,

c2 = Wk(n+2d)+mWk(n�1)+m + Wk(n+2d�1)+mWkn+m,

c3 = 2(�1)k(n+1)+mUdkU2dkWk(n+d�1)+mWkn+mWk(n+2d)+m.

Our aim is to prove that

R(n + 1)�R(n) = L(n + 1)� L(n), (8)

which is equivalent to proving that

c1c2 + c3 � eW UkU3
dkU2dkW k(n+d)+m = 0. (9)

Upon substituting the Binet forms, we find that the left side of (9) can be expressed
in factored form, and that one of the factors is (�1)2(kn+m) � 1. This establishes
(8). Furthermore, R(2) = L(2) = 0, and this completes the proof of Theorem 2.

In the proof above, the key identity is (9). Likewise, the proof of each theorem in
this paper hinges around the proof of a key identity that is analogous to (9), and each
such identity can be proved by substitution of the appropriate closed forms. The
method is mechanical, and is not dependent upon and special identities. However,
the use of a computer algebra system (in our case Mathematica 8) is essential.

To assist us in presenting the closed form for S1
3 succinctly, we define, for 0 

i  3, the quantities bi = bi(d, k) as

b0 = UkU4
dkVdk,

b1 = (�1)k+1UdkV2dk,

b2 = (�1)dk
�
(�1)dkU3dkVk � 3UkVdk � 2(�1)kU(d�1)k

�
,

b3 = (�1)dk
�
(�1)dkU3dkVk + UkVdk � 2(�1)kU(d�1)k

�
.

We then have the theorem that follows.

Theorem 3. With S1
3 as defined above,

b0

�
S1

3(n)� S1
3(2)

�
= b1

1X
i=0

�U (k,m, n, id, (i + 1)d)

+ Uk(n�2)

1X
i=0

bi+2 U (k,m, n, id, (i + 1)d).

The only so-called dual result that we could find for Theorem 3 is Theorem 1.
Specifically, in the summand of S1

3 , replace each occurrence of V by U . Then the
summand that results is the summand of S2 with d replaced by 2d.
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At this point we give an example. Let d = 2, k = 1, and m = 0. Then, for
Wn = Ln, (3) becomes

375
n�1X
i=1

Fi+2

L2
i Li+2L2

i+4

=
229331
77616

+ 5Fn�2

✓
2

3Ln
� 1

2Ln+1
� 4

7Ln+2
+

4
11Ln+3

◆

�
✓

L2
n�1

L2
n

+
L2

n

L2
n+1

+
L2

n+1

L2
n+2

+
L2

n+2

L2
n+3

◆
.

4. The Summand Has Four Distinct Factors in the Denominator

We have discovered closed forms for each of the following:

S0
4(d, k,m, n) =

n�1X
i=1

(�1)kiUk(2i+3d)+2m

U2
ki+mU2

k(i+d)+mU2
k(i+2d)+mU2

k(i+3d)+m

,

S1
4(d, k,m, n) =

n�1X
i=1

(�1)kiU3
k(2i+3d)+2m

U2
ki+mU2

k(i+d)+mU2
k(i+2d)+mU2

k(i+3d)+m

,

S2
4(d, k,m, n) =

n�1X
i=1

Uk(4i+6d)+4m

U2
ki+mU2

k(i+d)+mU2
k(i+2d)+mU2

k(i+3d)+m

,

and

S3
4(d, k,m, n) =

n�1X
i=1

(�1)kiUk(6i+9d)+6m

U2
ki+mU2

k(i+d)+mU2
k(i+2d)+mU2

k(i+3d)+m

.

In order to keep the presentation to a reasonable length, we present only the
closed forms for S0

4 and S1
4 . Also, to keep our notation simple, we redefine the ai

of Section 3. Accordingly, for 0  i  6, define the quantities ai = ai(d, k) by

a0 = UkUdkU3
2dkU2

3dk,

a1 = (�1)k+1U3dkVdk,

a2 = (�1)(d+1)k+1U3dkV 3
dk,

a3 = a1,

a4 = 3(�1)kU(d�1)kVdk

�
V2dk + (�1)dk

�
� U3dkV(d+1)k,

a5 = (�1)dkU3dkVkV 3
dk,

a6 = U(d+1)kVdk

�
3V2dk + 2(�1)dk

�
+ (�1)k+1U(2d�1)kV2dk.

We then have
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Theorem 4. With S0
4 as defined above,

a0

�
S0

4(n)� S0
4(2)

�
=

2X
i=0

ai+1�U (k,m, n, id, (i + 1)d)

+ Uk(n�2)

2X
i=0

ai+4 U (k,m, n, id, (i + 1)d). (10)

Theorem 4 has the following dual result: redefine S0
4 by replacing each occurrence

of U in the denominator of the summand by V . Then (10) remains valid provided
we multiply the left side by�3, and replace �U and  U by �V and  V , respectively.

To present the closed form for S1
4 , we define, for 0  i  6, the quantities

bi = bi(d, k) as

b0 = UkUdkU3
2dk,

b1 = (�1)k+1U3dkVdk,

b2 = (�1)k+1U2dkV 2
dk,

b3 = b1,

b4 = UdkVkV3dk + 4(�1)(d+1)kUdkV(d�1)k � 10Uk,

b5 = U2dkVkV 2
dk,

b6 = UdkVkV3dk + 4(�1)dkUdkV(d+1)k + 10Uk.

We then have the following theorem.

Theorem 5. With S1
4 as defined above,

b0

�
S1

4(n)� S1
4(2)

�
=

2X
i=0

bi+1�U (k,m, n, id, (i + 1)d)

+ Uk(n�2)

2X
i=0

bi+4 U (k,m, n, id, (i + 1)d).

Theorem 5 has a dual result that is obtained by making precisely the same
changes as those described for the dual result of Theorem 4. Interestingly, the same
can be said for the dual result that arises from the closed form for S3

4 . However, in
the case of S2

4 we multiply by ��3 instead of �3.
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5. The Summand Has Five Distinct Factors in the Denominator

In this section, the finite sums for which we have managed to find closed forms fall
into three categories. The first category consists of the four sums

S0
5(d, k,m, n) =

n�1X
i=1

(�1)kiW
7
k(i+2d)+m

W 2
ki+mW 2

k(i+d)+mWk(i+2d)+mW 2
k(i+3d)+mW 2

k(i+4d)+m

,

S1
5(d, k,m, n) =

n�1X
i=1

W
5
k(i+2d)+m

W 2
ki+mW 2

k(i+d)+mWk(i+2d)+mW 2
k(i+3d)+mW 2

k(i+4d)+m

,

S2
5(d, k,m, n) =

n�1X
i=1

(�1)kiW
3
k(i+2d)+m

W 2
ki+mW 2

k(i+d)+mWk(i+2d)+mW 2
k(i+3d)+mW 2

k(i+4d)+m

,

and

S3
5(d, k,m, n) =

n�1X
i=1

W k(i+2d)+m

W 2
ki+mW 2

k(i+d)+mWk(i+2d)+mW 2
k(i+3d)+mW 2

k(i+4d)+m

.

The second category consists of the three sums

S4
5(d, k,m, n) =

n�1X
i=1

(�1)kiV7k(i+2d)+7m

U2
ki+mU2

k(i+d)+mUk(i+2d)+mU2
k(i+3d)+mU2

k(i+4d)+m

,

S5
5(d, k,m, n) =

n�1X
i=1

V5k(i+2d)+5m

U2
ki+mU2

k(i+d)+mUk(i+2d)+mU2
k(i+3d)+mU2

k(i+4d)+m

,

and

S6
5(d, k,m, n) =

n�1X
i=1

(�1)kiV3k(i+2d)+3m

U2
ki+mU2

k(i+d)+mUk(i+2d)+mU2
k(i+3d)+mU2

k(i+4d)+m

.

Furthermore, for each of S4
5 , S5

5 , and S6
5 , we have found the corresponding dual

results where, in each summand, U is replaced by V , and V is replaced by U . We
were unable to find closed forms for the analogous sums that involve the sequences
Wn and Wn.

The third category consists of the two sums

S7
5(d, k,m, n) =

n�1X
i=1

W k(i+d)+mW k(i+2d)+mW k(i+3d)+m

W 2
ki+mWk(i+d)+mWk(i+2d)+mWk(i+3d)+mW 2

k(i+4d)+m

,

and

S8
5(d, k,m, n) =

n�1X
i=1

W ki+mW k(i+2d)+mW k(i+4d)+m

Wki+mW 2
k(i+d)+mWk(i+2d)+mW 2

k(i+3d)+mWk(i+4d)+m
.
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Since the closed forms for the above sums are rather lengthy, we present only the
closed form for S0

5 . Accordingly, for 0  i  8, define the quantities ai = ai(d, k) as

a0 = UkUdkU4
2dkU3

3dk,

a1 = (�1)k+1U4dkV 4
2dk

�
V2dk + (�1)dk

�
,

a2 = a1 + (�1)(d+1)k+1U3dkV 9
dk,

a3 = a2,

a4 = a1,

a5 = (�1)k+1Vka1 � 2(�1)dkUkV 4
2dk

⇣�
V2dk + 3(�1)dk

�2 � 3
⌘

,

a6 = (�1)k+1Vka2 � 64Uk

�
V2dk + (�1)dk

�3
,

a7 = (�1)k+1Vka2 + 64Uk

�
V2dk + (�1)dk

�3
,

a8 = (�1)k+1Vka1 + 2(�1)dkUkV 4
2dk

⇣�
V2dk + 3(�1)dk

�2 � 3
⌘

.

We then have

Theorem 6. With S0
5 as defined above,

a0

�
S0

5(n)� S0
5(2)

�
=

3X
i=0

ai+1�W (k,m, n, id, (i + 1)d)

+ Uk(n�2)

3X
i=0

ai+5 W (k,m, n, id, (i + 1)d). (11)

We conclude this section with an example. Let d = 1, k = 1, and m = 0. Then,
for Wn = Fn, (11) becomes

n�1X
i=1

40(�1)iL7
i+2

F 2
i F 2

i+1Fi+2F 2
i+3F

2
i+4

= 3529 + 2Fn�2

✓
35

Fn+1
+

830
Fn+2

� 486
Fn+3

◆

� 10
✓

243F 2
n�1

F 2
n

+
242F 2

n

F 2
n+1

+
242F 2

n+1

F 2
n+2

+
243F 2

n+2

F 2
n+3

◆
.

6. Concluding Comments

Numerical evidence suggests that results, analogous to those presented here, exist
for finite sums in which the denominator of the summand has six or more distinct
factors. Such results become more unwieldy as the number of factors in the denom-
inator of the summand increases. It is for this reason that we have limited the scope
of this paper. We trust that our presentation has given the reader an appreciation
of the kinds of results that are possible.
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