
#A52 INTEGERS 16 (2016)

A CONGRUENCE FOR THE FERMAT QUOTIENT MODULO p3
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Abstract
For a prime p > 3 and the Fermat quotient qp(2) = (2p�1 � 1)/p, Z.H. Sun proved
that

p�1X
k=1

2k

k
+ 2qp(2) ⌘ � 7

12
p2Bp�3 (mod p3),

where Bn is the n-th Bernoulli number. In this note, we give an elementary proof
of this congruence.

1. Introduction

Fermat quotients, integers of the form (ap�1 � 1)/p for integers a relatively prime
to a prime p, have been of interest since the time of Eisenstein and Glaisher in the
nineteenth century. Glaisher, in [1], proved that for a prime p � 3,

qp(2) ⌘ �1
2

p�1X
k=1

2k

k
(mod p).

Z.H. Sun, in [7] (See Theorem 4.1), used Mirimano↵ polynomials to generalize
Glaisher’s congruence as follows:

p�1X
k=1

2k

k
+ 2qp(2) ⌘ � 7

12
p2Bp�3 (mod p3). (1)
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In this paper we give an elementary proof of the preceding congruence by using
the following identity:

nX
k=1

(1� x)k

k
=

nX
k=1

✓
n

k

◆
(�1)k

k
(xk � 1), (2)

which holds for any positive integer n and any real number x. This identity appears
as an exercise in [5] ; W. Kohnen [4] used it to derive a simple congruence modulo
a prime p.

We shall also require some elementary properties of both Bernoulli numbers and
harmonic numbers. Recall that Bernoulli numbers Bn, which are defined in terms
of the relation

B0 = 1,
m�1X
i=0

✓
m

i

◆
Bi = 0 for all m � 2,

satisfy the congruence

1k + 2k + ... + (p� 1)k ⌘ pBk (mod p2) (3)

for an odd prime p and positive even integer k such that (p� 1) - k; see Corollary
to Proposition 15.2.2 in [3].

Harmonic numbers Hn, and more generally Hn,m, are defined respectively as

H0 = 0, Hn =
nX

i=1

1
i

,

and

Hn,m =
nX

i=1

1
im

for any positive integers n and m. For a prime p > 3, one has the following well-
known congruences:

Hp�1 ⌘ 0 (mod p2) and Hp�1,2 ⌘ 0 (mod p), (4)

the first of which is known as Wolstenholme’s congruence. In Lemma 2 of the
following section, generalizations of these two congruences, modulo p2 and p3, are
established.

2. Preliminary Results

In this section, we present preliminary results, mostly congruences involving har-
monic numbers, which will be required for our proof of Sun’s generalization of
Glaisher’s congruence.
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Lemma 1. For an odd prime p and for any integer k = 1, 2, ..., p� 1, we have
✓

p� 1
k

◆
⌘ (�1)k

✓
1� pHk + p2

X
1i<jk

1
ij

◆
(mod p3) (5)

⌘ (�1)k
�
1� pHk + (p2/2)(H2

k �Hk,2)
�

(mod p3). (6)

Proof. See Lemma 2.9 in [7].

Congruences in the next lemma are special cases of certain general congruences
obtained by Z.H. Sun in [6]. We provide direct proofs of these using elementary
ideas.

Lemma 2. For a prime p > 3,

p�1
2X

k=1

1
k3
⌘ �2Bp�3 (mod p), (7)

p�1X
k=1

1
k2
⌘ 2

3
pBp�3 (mod p2), (8)

p�1
2X

k=1

1
k2
⌘ 7

3
pBp�3 (mod p2), (9)

p�1X
k=1

1
k
⌘ �1

3
p2Bp�3 (mod p3). (10)

Proof. For any j 2 S = {1, 2, ..., p� 1}, one has 2j = pqj + rj , where

qj =
j2j

p

k
=

(
0 if 1  j  (p� 1)/2
1 if (p + 1)/2  j  p� 1

.

Observe that, as 2j ⌘ rj (mod p), for any positive integer k,

(2j)k ⌘ rk
j + kpqj(2j)k�1 (mod p2).

It is also clear that rj varies from 1 to p � 1 in S as j does. Therefore, we see
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that

p�1X
j=1

2kjk ⌘
p�1X
j=1

jk + kp
p�1X
j=1

qj(2j)k�1 (mod p2)

⌘
p�1X
j=1

jk + pk2k�1
p�1X

j=(p+1)/2

jk�1 (mod p2)

⌘
p�1X
j=1

jk + pk2k�1
(p�1)/2X

j=1

(p� j)k�1 (mod p2)

⌘
p�1X
j=1

jk + pk2k�1(�1)k�1
(p�1)/2X

j=1

jk�1 (mod p2).

The last of the preceding congruences can be rewritten as

(2k � 1)
p�1X
j=1

jk ⌘ pk2k�1(�1)k�1
(p�1)/2X

j=1

jk�1 (mod p2), (11)

which we shall now simplify for k = p�3. Since k = p�3 is even and (p�1) - p�3,
congruence (3) for Bernoulli numbers implies that

p�1X
j=1

jp�3 ⌘ pBp�3 (mod p2).

On the other hand, for an integer a prime to p, ap�1�k can be considered an inverse
of ak modulo p. An easy calculation then shows that

2p�3 � 1 ⌘ �3
4

(mod p).

Similarly, the right-hand side of congruence (11), for k = p � 3, can be shown to
equal

3
8
p

(p�1)/2X
j=1

1
j3

(mod p2).

Thus, congruence (11) reduces, for k = p� 3, to

�2pBp�3 ⌘ p

(p�1)/2X
j=1

1
j3

(mod p2),

which is the first congruence of the lemma.
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Next, for any j 2 S with 2j = pqj + rj , where qj and rj are as in the beginning
of the proof, simple calculations show that

1
(2j)2

=
1

(pqj + rj)2
⌘ 1

r2
j + 2pqjrj

(mod p2)

⌘ 1
r2
j

�
1� 2pqj/rj

�
(mod p2).

Since rj runs through the set S as j does, it follows, from the preceding relation
and the definition of qj , that

1
4

p�1X
j=1

1
j2
⌘

p�1X
j=1

1
j2
� 2p

p�1X
j=(p+1)/2

1
(2j)3

(mod p2).

This implies that

�3
4

p�1X
j=1

1
j2
⌘ p

4

(p�1)/2X
j=1

1
j3

(mod p2).

Therefore, by congruence (7), we obtain
p�1X
j=1

1
j2
⌘ 2

3
pBp�3 (mod p2),

which is congruence (8) of the lemma.
Next, we observe that

p�1X
j=(p+1)/2

1
j2

=
(p�1)/2X

j=1

1
(p� j)2

⌘
(p�1)/2X

j=1

1
j2

�
1� 2p/j

� (mod p2)

⌘
(p�1)/2X

j=1

1
j2

�
1 + 2p/j

�
(mod p2). (12)

Since
p�1X
j=1

1
j2

=
(p�1)/2X

j=1

1
j2

+
p�1X

j=(p+1)/2

1
j2

,

whose left-hand side is congruent to 2
3pBp�3 modulo p2 by congruence (8), it follows

from (12) that

2
3
pBp�3 ⌘ 2

(p�1)/2X
j=1

1
j2

+ 2p
(p�1)/2X

j=1

1
j3

(mod p2)

⌘ 2
(p�1)/2X

j=1

1
j2
� 4pBp�3 (mod p2).
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It is clear that the preceding congruence implies congruence (9) of the lemma.
To prove the last congruence (10) of the lemma, we begin by noting that

p�1X
j=1

1
p� j

= �
p�1X
j=1

1
j
�
1� p/j

�

⌘ �
p�1X
j=1

1
j

�
1 + p/j + p2/j2

�
(mod p3)

⌘ �
p�1X
j=1

1
j
� p

p�1X
j=1

1
j2
� p2

p�1X
j=1

1
j3

(mod p3).

Thus
p�1X
j=1

1
j
⌘ �

p�1X
j=1

1
j
� p

p�1X
j=1

1
j2
� p2

p�1X
j=1

1
j3

(mod p3). (13)

Since

p�1X
j=1

1
j3
⌘ 0 (mod p),

we obtain the required congruence from (13) by using congruence (8).

We shall also need the following result.

Lemma 3. For any prime p > 3, we have

p�1X
k=1

Hk�1

k2
⌘ Bp�3 (mod p) (14)

and

p�1X
k=1
k odd

Hk�1

k2
⌘ 3

8
Bp�3 (mod p). (15)

Proof. Putting x = 0 and n = p in the identity

nX
k=1

(1� x)k

k
=

nX
k=1

✓
n

k

◆
(�1)k

k
(xk � 1),

one obtains
pX

k=1

1
k

=
pX

k=1

✓
p

k

◆
(�1)k

�
�1

k

�
,
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which readily yields the following:
p�1X
k=1

1
k

= �
p�1X
k=1

1
k

p

k

✓
p� 1
k � 1

◆
(�1)k.

It then follows, by Lemma 1, that
p�1X
k=1

1
k
⌘ p

p�1X
k=1

1
k2

�
1� pHk�1

�
(mod p3).

Therefore, by congruences (8) and (10) of Lemma 2, we obtain

�1
3
p2Bp�3 ⌘

2
3
p2Bp�3 � p2

p�1X
k=1

Hk�1

k2
(mod p3),

which implies the first congruence of this lemma.
Next, as

Hp�(k+1) = Hp�1 �
kX

j=1

1
p� j

⌘
kX

j=1

1
j
⌘ Hk (mod p),

one obtains easily the following congruence:
p�1X
k=1

k even

Hk�1

k2
=

p�1X
k=1
k odd

Hp�k�1

(p� k)2
⌘

p�1X
k=1
k odd

Hk

k2
=

p�1X
k=1
k odd

Hk�1

k2
+

p�1X
k=1
k odd

1
k3

(mod p).

The preceding can be rewritten as
p�1X
k=1

Hk�1

k2
⌘ 2

p�1X
k=1
k odd

Hk�1

k2
+

p�1X
k=1
k odd

1
k3

(mod p). (16)

However
p�1X
k=1
k odd

1
k3

⌘ �
p�1X
k=1

k even

1
k3

(mod p)

⌘ �1
8

(p�1)/2X
k=1

1
k3

(mod p)

⌘ 1
4
Bp�3 (mod p)

by congruence (7) of Lemma 2. It then follows from (16) that
p�1X
k=1

Hk�1

k2
⌘ 2

p�1X
k=1
k odd

Hk�1

k2
+

1
4
Bp�3 (mod p),

which implies the second congruence of the lemma.
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3. Proof of the Main Result

We are now ready to prove the main result.

Theorem 1. For a prime p > 3 and the Fermat quotient qp(2),

p�1X
k=1

2k

k
+ 2qp(2) ⌘ � 7

12
p2Bp�3 (mod p3).

Proof. Putting x = �1 and n = p in the identity

nX
k=1

(1� x)k

k
=

nX
k=1

✓
n

k

◆
(�1)k

k
(xk � 1)

and then rearranging the terms, one obtains

p�1X
k=1

2k

k
+ 2qp(2) =

p�1X
k=1

✓
p

k

◆
(�1)k (�1)k � 1

k

= p
p�1X
k=1

✓
p� 1
k � 1

◆
(�1)k (�1)k � 1

k2
.

The preceding relation, with the help of Lemma 1, can be expressed as the
following congruence:

p�1X
k=1

2k

k
+ 2qp(2) ⌘� p

p�1X
k=1

�
1� pHk�1

� (�1)k � 1
k2

(mod p3)

⌘ 2p
p�1X
k=1
k odd

1
k2
� 2p2

p�1X
k=1
k odd

Hk�1

k2
(mod p3). (17)

We next evaluate the sum in the first term on the right-hand side of (17).

p�1X
k=1
k odd

1
k2

=
p�1X
k=1

k even

1
(p� k)2

⌘
p�1X
k=1

k even

1
k2

�
1 + 2p/k

�
(mod p2)

⌘
p�1X
k=1

k even

1
k2

+ 2p
p�1X
k=1

k even

1
k3

(mod p2)

⌘ 1
4

(p�1)/2X
k=1

1
k2

+
p

4

(p�1)/2X
k=1

1
k3

(mod p2),

which, because of congruences (7) and (9) of Lemma 2, implies that
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p�1X
k=1
k odd

1
k2

⌘ 7
12

pBp�3 �
1
2
pBp�3 (mod p2)

⌘ 1
12

pBp�3 (mod p2).

Therefore congruence (17) simplifies to

p�1X
k=1

2k

k
+ 2qp(2) ⌘ 1

6
p2Bp�3 � 2p2

p�1X
k=1
k odd

Hk�1

k2
(mod p3).

It then follows, by the congruence in (15), that

p�1X
k=1

2k

k
+ 2qp(2) ⌘ 1

6
p2Bp�3 �

3
4
p2Bp�3 (mod p3)

⌘ � 7
12

p2Bp�3 (mod p3).

The proof of the theorem is complete.

It is worth noting that Glaisher’s century-old congruence modulo p for the Fermat
quotient qp(2) actually holds modulo p2.
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