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A CONGRUENCE FOR THE FERMAT QUOTIENT MODULO p3
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Abstract
For a prime p > 3 and the Fermat quotient ¢,(2) = (2P~! —1)/p, Z.H. Sun proved
that

]CZ? 2qp(2) = *EP B (mod p°),

where B, is the n-th Bernoulli number. In this note, we give an elementary proof
of this congruence.

1. Introduction

Fermat quotients, integers of the form (a?~! — 1)/p for integers a relatively prime
to a prime p, have been of interest since the time of Eisenstein and Glaisher in the
nineteenth century. Glaisher, in [1], proved that for a prime p > 3,
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Z.H. Sun, in [7] (See Theorem 4.1), used Mirimanoff polynomials to generalize
Glaisher’s congruence as follows:
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+2¢,(2) = —EpQB _3 (mod pg). (1)
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In this paper we give an elementary proof of the preceding congruence by using
the following identity:

n k

- "L\ (—1)F

k=1 k=1

which holds for any positive integer n and any real number x. This identity appears
as an exercise in [5] ; W. Kohnen [4] used it to derive a simple congruence modulo
a prime p.

We shall also require some elementary properties of both Bernoulli numbers and
harmonic numbers. Recall that Bernoulli numbers B,,, which are defined in terms
of the relation

—

By =1, (m)Bi:O for all m > 2,
i—o \!
satisfy the congruence
" +2+ . +(p—-1)*=pB, (modp?) (3)

for an odd prime p and positive even integer k such that (p — 1) t k; see Corollary
to Proposition 15.2.2 in [3].
Harmonic numbers H,,, and more generally H,, ,,, are defined respectively as

1
HO = 07 Hn = Z )
and
"1
Hym= —
n,m Z Zm
i=1
for any positive integers n and m. For a prime p > 3, one has the following well-
known congruences:
H, 1=0 (modp?) and H, 1>=0 (mod p), (4)

the first of which is known as Wolstenholme’s congruence. In Lemma 2 of the
following section, generalizations of these two congruences, modulo p? and p3, are
established.

2. Preliminary Results

In this section, we present preliminary results, mostly congruences involving har-
monic numbers, which will be required for our proof of Sun’s generalization of
Glaisher’s congruence.
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Lemma 1. For an odd prime p and for any integer k =1,2,....p — 1, we have
PN = cor(topEmpt Y L) (med p) 9
k —_ ]
1<i<j<k
= (V"1 —pHy+ (p*/2)(Hf — Hi2)) (mod p°). (6)
Proof. See Lemma 2.9 in [7]. O

Congruences in the next lemma are special cases of certain general congruences
obtained by Z.H. Sun in [6]. We provide direct proofs of these using elementary
ideas.

Lemma 2. For a prime p > 3,

-1
2

1
Z &= —2B,_3 (mod p), (7
k=1
p—1

1 2

E = ngpffi (mOd p2)7 (8>
k=1
=, 1 7

72 = ngp—S (mod p2)a 9)
k=1
o1, s

=3P B,_s (mod p°). (10)
k=1

Proof. For any j € S ={1,2,...,p — 1}, one has 2j = pg; + r;, where

'_{ﬁJ_ 0 if1<j<(p—1)/2
I ey <i<p-t

Observe that, as 25 = r; (mod p), for any positive integer k,

(25)F = rf + kqu(Qj)kfl (mod p?).

It is also clear that r; varies from 1 to p — 1 in S as j does. Therefore, we see
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that

p—1 p—1 p—1
Zijk = ij + kquj(2j)k’1 (mod p?)
j=1 j=1 j=1

p—1 p—1

= ij+pk2k71 Z gkt (modpz)
J=1 j=(p+1)/2
p—1 (p—1)/2

= Y F4pk2t Y (i)' (mod p?)
j=1 j=1
p—1 (p—1)/2

= > Fapk2 =D YT 5 (mod p?).
Jj=1 J=1

The last of the preceding congruences can be rewritten as

p—1 (p—1)/2
(28 —1)) g =pk2P (=D Y R (mod p?), (11)
j=1 j=1

which we shall now simplify for k = p—3. Since k = p—3iseven and (p—1) {p—3,
congruence (3) for Bernoulli numbers implies that

p—1

S0 = pB, s (mod 1)

j=1

On the other hand, for an integer a prime to p, a?~'~* can be considered an inverse
of a¥ modulo p. An easy calculation then shows that

3
273 1= 1 (mod p).
Similarly, the right-hand side of congruence (11), for k = p — 3, can be shown to

equal
(p—1)/2

3 1 9
P Z 7 (mod p*).
J=1
Thus, congruence (11) reduces, for k = p — 3, to

(p—1)/2 1
—2pB,_3=p Z 7 (mod p?),
j=1

which is the first congruence of the lemma.



INTEGERS: 16 (2016) )

Next, for any j € S with 2j = pg; + r;, where ¢; and r; are as in the beginning
of the proof, simple calculations show that

! - 1
(2/)%  (pg; +73)* 134 2pgr;

1

—(1—2qu/rj) (mod p?).

Since r; runs through the set S as j does, it follows, from the preceding relation
and the definition of g;, that

1841 4 Lo
_ 2
J=1 J=1 j=(p+1)/2
This implies that
- (p—1)/2
381 _p 1 9
j=1 j=1
Therefore, by congruence (7), we obtain
— 1 2
Z — = ngp,g, (mod p?),
=17
which is congruence (8) of the lemma.
Next, we observe that
p—1 1 (p—1)/2 1 (p—1)/2 1 (mod 1)
= = = ——————~ (mod p
2 — 2 2(1 —
=t H ) = r-2/)
(p—1)/2 1
= Z ]—2(1 +2p/j) (mod p?).  (12)
j=1
Since
p-1l (p—1)/2 1 . p—1 1
2= 2 w2
= =TT e

whose left-hand side is congruent to %po,g modulo p? by congruence (8), it follows
from (12) that

9 (r=1)/2 1 (r—1)/2 1
=1 7 =
(r-1)/2 4
= 2 7 4pB,_3 (mod p?).
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It is clear that the preceding congruence implies congruence (9) of the lemma.
To prove the last congruence (10) of the lemma, we begin by noting that

p—1 1 p—1 1
)y B B Cxryry

i=1J

-SSRl (mod )

p—1 1 p—1 1 p—1
= =Y ) 5P ) 5 (modpd)
= =Y =
Thus ) ) . .
p— p— p— p—
1 1 1 1
Lo Y Y Y (mod ) (13)
=t = = =17
Since
p—1 1
— =0 (mod p),
=17
we obtain the required congruence from (13) by using congruence (8). U
We shall also need the following result.
Lemma 3. For any prime p > 3, we have
p—1
Hy_
Z ;;2 L= B,_3 (mod p) (14)
k=1
and
p—1
Hy1 3
Z 2 = ng_g, (mod p). (15)
Foda

one obtains
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which readily yields the following:

LS {HER

| =

D

k=1 =1
It then follows, by Lemma 1, that
—1 p—1 1

1
k

bS]

(1 —pHy—1) (mod p*).

=

=1 k=1
Therefore, by congruences (8) and (10) of Lemma 2, we obtain
1, 2 2 Hi_4 3
_ngp 3—3po 3—D ; (mod p°),

which implies the first congruence of this lemma.

Next, as
"o gl
Hy (41 = Hp-1 — Z — = Z — = Hj, (mod p),
=P =
one obtains easily the following congruence:
p—1 p—1 p—1 p—1 p—1
Hy Hy 1 Hy Hy_y 1
N TRPIL ED WL R S
k=1 k =1 (b= k) k=1 k k=1 k k=1 k
k even k odd k odd k odd k odd
The preceding can be rewritten as
p—1 p—1 p—1
Hk-—l Hk_1 1
Z 2 = 2 12 + 5] (mod p). (16)
k=1 =1 k=1
E odd E odd
However
p—1 1 B p—1 1
k=1 k=1
k odd k even
1 (p—1)/2
= -3 Z 13 (mod p)
k=1
1
= ;B3 (mod p)

by congruence (7) of Lemma 2. It then follows from (16) that

p—1 p—1
Hy Hy

Z 2 =2 2
=1

k

BP 3 (mOd p)v

k=1
k odd

which implies the second congruence of the lemma.
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3. Proof of the Main Result

We are now ready to prove the main result.

Theorem 1. For a prime p > 3 and the Fermat quotient g,(2),

)

7 3
= +2¢,(2) = —Ep B (mod p°).

S}
|
>

=~
Il

1

Proof. Putting x = —1 and n = p in the identity

" (1—x)k "L /n\ (—1)k
k

=1 k=1

and then rearranging the terms, one obtains

S - E (o=
- S (e

k=1

The preceding relation, with the help of Lemma 1, can be expressed as the
following congruence:

2 24,(2) = 1—pH (-1F -1 d p?
> () = p 3 (1) S (o)
_QpZﬁ—Q QZ k2 (mod p*). (17)
k:odd Ifodld

We next evaluate the sum in the first term on the right-hand side of (17).

p—1 1 p—1 p—1 1
— 2
=T L G T ) el
aid k:e;en k even
p—1 p—1
1 1
= ﬁ+2p 5] (mod p?)
k=1 k=1
k even k even
1 p—1)/2 1 (p—1)/2
= - — += — d p?
4 ; kQ + 4 ; k3 (mO p )7

which, because of congruences (7) and (9) of Lemma 2, implies that
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p—1
1 7 1
72 Epo—S - ipo—B (mod Pz)

1
PBys (mod p2).

Therefore congruence (17) simplifies to

pl 1 N Hyy
T H2(2) = By 2" Y — 5 (mod p)
k=1 k=1
kodd
It then follows, by the congruence in (15), that
p—1 Jp
2 1 3
Z & +2¢,(2) = EPQB;D—B - Zp2Bp—3 (mod pg)
k=1
_ 7 9 3
= P B,_3 (mod p°).
The proof of the theorem is complete. O

It is worth noting that Glaisher’s century-old congruence modulo p for the Fermat
quotient g,(2) actually holds modulo p?.
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