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Abstract
We consider the problem of characterizing solutions in (x, y) to the equation

�x
y

�
=�x�a

y+b

�
in terms of a and b. We obtain one simple result which allows the deter-

mination of a ratio in terms of a and b which the ratio x
y must approximate. We

then use a version of Siegel’s theorem on integral points to prove that in the case
a 6= b, solutions to

�x
y

�
=
�x�a

y+b

�
are finite. Finally, we make some observations about

the potential utility of equations of the form
�x

y

�
=
�x�a

y+b

�
in proving Singmaster’s

conjecture, which is the main unsolved problem in the area of repeated binomial
coe�cient study. We remark that this approach to the conjecture is markedly di↵er-
ent from previous approaches, which have only established logarithmic bounds on a
function which counts the number of representations of t as a binomial coe�cient.

1. Introduction

The sequence of binomial coe�cients is one of the most well-studied, frequently-
used, and generally significant sequences in all of mathematics. It is interesting,
therefore, that the analysis of repeated binomial coe�cients (coe�cients which occur
more often than the trivial two times which every number occurs) has only received
sustained attention in the past 50 years. Clearly, many numbers occur three and
four times; these are what fill up the inside of Pascal’s triangle. However, the only
other high multiplicities known to occur—6 and 8—are rare, and the patterns in
which they appear are not yet well understood.

That said, progress has been made on various fronts. There are many results
about solutions to equations of the form

�x
a

�
=
�y

b

�
, where a and b are fixed. All

solutions to
�x
2

�
=
�y
3

�
were found by Avanesov [2, referenced in 23]. Pintér solved�x

2

�
=
�y
4

�
[15], and it is known by a result of Brindza [5] that all solutions to�x

a

�
=
�y
2

�
can be e↵ectively determined for arbitrary a. The equations

�x
2

�
=�y

6

�
,
�x
2

�
=
�y
8

�
,
�x
3

�
=
�y
4

�
,
�x
3

�
=
�y
6

�
,
�x
4

�
=
�y
6

�
, and

�x
4

�
=
�y
8

�
have also been
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completely solved by de Weger et al. [25][23] by reduction to elliptic equations.
More recently, Bugeaud et al. [6] have found all solutions to

�x
2

�
=
�y
5

�
using

an improvement of the Mordell-Weil sieve, which is applicable to finding integral
points on all hyperelliptic curves. Finiteness of solutions to

�x
a

�
=
�y

b

�
for all (a, b)

was established (ine↵ectively) by Beukers, Shorey and Tijdeman [4].
Perhaps the most striking result was found by Lind [13], who showed that if

n = F2i+2F2i+3 � 1 and k = F2iF2i+3 � 1 (where Fi is the i-th Fibonacci number),
then

�x+1
y+1

�
=
� x
y+2

�
. David Singmaster [22] also provided a proof of this, and noted

that his result gives an infinite family of numbers with multiplicity at least 6. The
first member of this family—3003—is also the only known number with multiplicity
8. Singmaster [21] also made the following conjecture, the study of which has been
an important feature of subsequent work on repeated binomial coe�cients: If N(t)
denotes the number of times t occurs in Pascal’s triangle, then N(t) = O(1).

There has been no direct attempt at proving the existence of such a finite up-
per bound on the number of ways t may be represented as a binomial coe�cient.
Bounds on N(t) in terms of t were obtained first by Singmaster [21], then by Ab-
bott et al. [1], and then by Kane [10]. Currently the best unconditional bound is
N(t) = O( (log t)(log log log t)

(log log t)3 ), obtained by Kane [11] via an argument relating integer
solutions of

�x
y

�
= m to derivatives of a function implicitly defined in terms of the

�-function. Conditional on Cramér’s conjecture about small gaps between prime
numbers, Abbott et al. [1] obtained N(t) = O((log t) 2

3 ).
The purpose here will be to provide information about generalizations of the

equation solved by Lind [13] and Singmaster [22]:
�x+1

y+1

�
=
� x
y+2

�
. This is equivalent

to
�x

y

�
=
�x�1

y+1

�
. However, to our knowledge, no investigations of equations of the

general form
�x

y

�
=
�x�a

y+b

�
have been made, and it does not appear that this case can

be reduced to the well-studied case of
�x

a

�
=
�y

b

�
(see the remark below). We will

present two independent results about the solutions to such equations; one result
describes where solutions may occur, and the other asserts the finiteness of solutions
(in most cases). We will also provide a rationale for why considering such equations
may provide a powerful framework for proving the Singmaster conjecture itself.

2. Results

First, we make the following basic proposition about the location of repeats.

Proposition 1. Let x, y, a, and b be natural numbers such that a < y and y < x
2 ;

let ⇣ be the positive number defined by ⇣a+b� (⇣ + 1)a = 0. If
�x

y

�
=
�x�a

y+b

�
, then we

have x�a�y�b+1
y+b < ⇣ < x�y

y�a+1 .

Proof. First, note the elementary fact that any entry in Pascal’s triangle may be
written as the sum of the two entries above it:

�x
y

�
=
�x�1

y

�
+
�x�1

y�1

�
. This process
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may be iterated to obtain a representation of
�x

y

�
as a sum of binomial coe�cients

of any row number less than x. For example, with two and three iterations, we
obtain, respectively, ✓

x

y

◆
=
✓

x� 2
y � 2

◆
+ 2
✓

x� 2
y � 1

◆
+
✓

x� 2
y

◆
,

✓
x

y

◆
=
✓

x� 3
y � 3

◆
+ 3
✓

x� 3
y � 2

◆
+ 3
✓

x� 3
y � 1

◆
+
✓

x� 3
y

◆
.

That the coe�cients appearing in the r-th such iterate correspond to the binomial
coe�cients of row r follows from the observation that when generating the coe�cient
for the next term with y� s, one adds together the coe�cients of the current terms
with y� s and y� s + 1. This is exactly the process which ordinarily generates the
binomial coe�cients in Pascal’s triangle.

We therefore may always write the equation
�x

y

�
=
�x�a

y+b

�
as✓

x� a

y � a

◆
+ a

✓
x� a

y � a + 1

◆
+
✓

a

2

◆✓
x� a

y � a + 2

◆
· · · +

✓
x� a

y

◆
=
✓

x� a

y + b

◆
. (1)

Next, we note that if y < x
2 and x and y are large, then the ratios of successive

binomial coe�cients
� x
y+1

�
:
�x

y

�
,
� x
y+2

�
:
� x
y+1

�
, and so on, are strictly decreasing,

and are close to being constant. Specifically,
� x
y+1

�
/
�x

y

�
= x�y

y+1 . Suppose we call the
ratios

� x�a
y�a+1

�
/
�x�a

y�a

�
,
� x�a
y�a+2

�
/
� x�a
y�a+1

�
,
� x�a
y�a+3

�
/
� x�a
y�a+2

�
. . . r1, r2, r3 and so on.

Then we may rewrite (1) as

1 + ar1 +
✓

a

2

◆
r1r2 +

✓
a

3

◆
r1r2r3 · · · + r1r2r3 . . . ra�1 = r1r2r3 . . . ra+b. (2)

When x and y are very large in comparison to a and b, all the ri are approximately
the same (because of the expression for the ratio of successive binomial coe�cients),
and hence by the binomial theorem they are all approximately the (positive) solution
of (⇣ + 1)a = ⇣a+b.

Equation (2) would be true if we had ⇣ = r1 = r2 = r3 · · · = ra+b. However,
because of the strict decrease mentioned above, we have r1 > r2 > r3 · · · > ra+b.
Suppose, then, that r1 < ⇣. Then all the ri are less than ⇣, and the right side
of (2) has experienced a proportional decrease from ⇣a+b which is the product of
all the proportional decreases in the individual ri. However, the left side cannot
have experienced so great a decrease from (⇣ + 1)a, since no term has decreased
proportionally more than the right side, and there is one term (the constant, 1)
which has not decreased at all. Thus Equation (2) can no longer be true. We apply
the same argument to find that ra+b cannot be greater than ⇣.

Writing out r1 =
� x�a
y�a+1

�
/
�x�a

y�a

�
= x�y

y�a+1 and ra+b =
�x�a

y+b

�
/
� x�a
y+b�1

�
= x�a�y�b+1

y+b

yields the inequality in the proposition. We must impose the condition a < y, be-
cause in reformulating Equation (1) as Equation (2), we have assumed that we may
divide through by the leftmost term

�x�a
y�a

�
, which is nonzero if and only if a < y.
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Theorem 1. If b 6= a, then the equation
�x

y

�
=
�x�a

y+b

�
has finitely many solutions

in natural numbers x, y.

Any such equation can be written as the equation of an algebraic curve
 

a+b�1Y
r=0

(x� y � r)

!
�
 

a�1Y
r=0

(x� r)

! 
bY

r=1

(y + r)

!
= 0 (3)

in x and y. For example, the equation
�x

y

�
=
�x�1

y+1

�
, which Singmaster [22] solved,

corresponds to the curve (x � y)(x � y � 1) � x(y + 1) = 0. This means that the
proof of the theorem is reduced to the well-studied problem of determining whether
an algebraic curve has an infinity of lattice points.

Remark 1. One approach to such a problem is to determine that the curve is
irreducible and has genus greater than 0. If so, then by Siegel’s theorem [9, p. 353]
the set of lattice points on the curve is finite. This is applied in proving one of the
most general results of [4], concerning the solutions in integers x, y to

m�1Y
r=0

(x + rd1)� �
n�1Y
r=0

(y + rd2) = 0 (4)

for integers m and n and rationals d1, d2, and �. It is shown that but for a few
exceptional cases there are only finitely many solutions (x, y); in particular the
result implies that there are finitely many solutions to

�x
a

�
=
�y

b

�
for all (a, b). (See

[17] for a generalization to equations containing a polynomial in
�x

a

�
.) The argument

in this case depends critically on theorems about the irreducibility of multivariate
polynomials of the form f(x)� g(y), where f and g are univariate polynomials; see
[19, referenced in 4]. It does not appear to be possible to transform the polynomial
in Equation (3) to this form; in other words, the cases

�x
a

�
=
�y

b

�
and

�x
y

�
=
�x�a

y+b

�
appear to be essentially di↵erent. It is true that the e↵ective methods of [23] and
[24] are also able to solve two equations of our type, namely

�x
y

�
=
�x�1

y+2

�
and�x

y

�
=
�x�2

y+1

�
, in addition to equations of type

�x
a

�
=
�y

b

�
; but that is because those

particular equations represent elliptic-type curves.

Since we know little about the irreducibility of general polynomials f(x, y), we
will not attempt to prove that the standard form of Siegel’s theorem is applicable
to our curves of interest. Instead we will make use of the following form, stated
in Nagell [14, p. 264], which we shall be able to apply separately to each partic-
ular irreducible component of our curves. (We note that Schinzel used this form
somewhat similarly in his improvement of Runge’s theorem on integral points [18].)
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A unicursal [genus 0; implicitly assumed to be irreducible] curve
passes through an infinity of lattice points if and only if there exists
a parametric representation of the form

x =
f(t)

(h(t))n
, y =

g(t)
(h(t))n

where n is a natural number, and where f(t), g(t), and h(t) are
integral polynomials in t satisfying one of the following conditions:
1. Either h(t) = at + b with gcd a, b = 1 or h(t) = 1; f(t) and g(t)
are both of degree n;
2. h(t) = at2 + bt + c is irreducible, and a > 0, b2 � 4ac > 0;
f(t) and g(t) are both of degree 2n; the form au2 + buv + cv2 can
represent for integral values of u and v a certain integer k 6= 0 such
that kn divides all the coe�cients of both f(t) and g(t).

Nagell goes on to state that shortly after Maillet gave this criterion, Siegel re-
moved the assumption of unicursality.

We consider the possible values of limy!1
x
y on an arbitrary irreducible compo-

nent, leading to a demonstration that it is not parametrizable in the above form.
We may assume the component has points of arbitrarily large y; if it did not, then
it could not have arbitrarily large x either (since clearly limy!1

x
y 6= 1) and so

could only pass through finitely many points with natural x, y, and hence would
not be of interest.

Qualitatively, it is clear that limy!1
x
y must be such that the highest total degree

terms in Equation (3) almost cancel each other out as y ! 1. Formally if Tn is
the n-th term with total degree a + b, then

lim
y!1

P
Tn

ya+b
= 0, (5)

because otherwise, for large y, the value of
P

Tn would be the only O(ya+b) term
in (3). There would be other terms O(ya+b�1), O(ya+b�2), and so on, but even a
direct sum of these is not O(ya+b), and they clearly are not all summed together.

What is the sum of the highest total degree terms in (3)? The degree a+ b terms
from the first product,

Qa+b�1
r=0 (x�y�r), are simply the terms of (x�y)a+b. There

is only one degree a + b term in the second product; it is xayb. Equation (5) then
becomes

lim
y!1

(x� y)a+b � xayb

ya+b
= 0;

lim
y!1

✓
xa+b

ya+b
�
✓

a + b

1

◆
xa+b�1

ya+b�1
+
✓

a + b

2

◆
xa+b�2

ya+b�2
· · ·� xa

ya

◆
= 0.

Therefore, if we take c = limy!1
x
y , then we must have (c� 1)a+b � ca = 0.
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Now, consider the form of limy!1
x
y if there exists a parametric representation

as described in Nagell’s [14, p. 264] criterion. If h(t) = 1, then y = g(t), and y goes
to 1 as t does. This means that limy!1

x
y = limt!1

f(t)
g(t) , which has a constant,

rational value, because f(x) and g(x) are integral polynomials of the same degree in
t. This cannot be the case, because the rational root test shows that c is irrational.

By Nagell’s criterion, it must then be that x and y are given by rational functions
of t with numerator and denominator polynomials of the same degree. Then y can
approach infinity only when t approaches one of the roots of the denominator, h(t),
i.e. when t approaches either a rational or quadratic irrational number ↵. We thus
have that c = limy!1

x
y = limt!↵

f(t)
g(t) . Clearly, limt!↵

f(t)
g(t) is the quotient of two

quadratic irrationals. Because f and g have the same input ↵, the number under
the radical in both quadratic irrationals is the same. This means that the quotient
is itself a quadratic irrational, by rationalization of denominators. We will now show
that if a 6= b, then c cannot be a quadratic irrational, and hence no parametrization
of the type described can exist. For convenience, we will work with the equation
ca+b� (c + 1)a = 0, instead of the original (c� 1)a+b� ca = 0; the former is shifted
1 unit to the left, and obviously has quadratic zeros if and only if the original does.

Lemma 1. If n and r are such that n > r and n
r 6= 2, then the polynomial P (x) =

xn � (x + 1)r has no real roots of degree 2.

Proof. We will attack this by showing that it is impossible for P to have a quadratic
factor with positive discriminant. We begin by noting that since P (x) is primitive,
by Gauss’s lemma [16, p. 49], it su�ces to consider quadratic factors with integral
coe�cients. Since the first and last terms of P (x) have magnitude 1, any such factor
must be of the form ±x2 + bx ± 1 or ±x2 + bx⌥ 1, with b 2 Z.

Also note that by Descartes’ sign test, P (x) has exactly 1 positive root. Make
the substitution x 7! x� 1, generating the new polynomial G(x) = (x� 1)n � xr,
which has been shifted 1 unit to the right. Substituting �x for x in G, we see
that regardless of the parity of n and r, there are no sign changes. Thus, G has no
negative roots. We conclude that P (x) has no negative roots smaller than �1.

We have P (0) = �1, and P (�1) = ±1, depending on whether n is even or odd.
This means that any quadratic factor Q must take the values ±1 at x = 0 and
x = �1. If Q(�1) = 1, then we have the following four cases:

Q(�1) = 1 = (�1)2 + b⇥ (�1) + 1

Q(�1) = 1 = �(�1)2 + b⇥ (�1)� 1

Q(�1) = 1 = (�1)2 + b⇥ (�1)� 1

Q(�1) = 1 = �(�1)2 + b⇥ (�1) + 1

which yield, respectively, b = 1, b = �3, b = �1, and b = �1. The values obtained
by the same process for Q(�1) = �1 are, in order, b = 3, b = �1, b = 1, and b = 1.
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The four cases where the first and last terms of Q have the same sign generate only
two polynomials with distinct roots, as do the cases where they have opposite signs.
The complete list of quadratic factors of xn � (x + 1)r to be considered is thus

x2 + x + 1 x2 + 3x + 1 x2 � x� 1 x2 + x� 1

The first has no real roots. The second has a root �3
2 �

p
5

2 , which is less than �1;
therefore it cannot be a factor, by the sign test performed earlier. Neither can the
last because of the root �1

2 �
p

5
2 .

The only possible quadratic factor is thus x2 � x� 1. We observe that if n
r = 2,

then this is a factor, as can be seen from writing x2r � (x + 1)r = 0, adding
one term to the other side, and taking roots. It is then easily seen that no other
polynomials xn � (x + 1)r can share this factor, for if they did, then the di↵erence
x2r � (x + 1)r � (xn � (x + 1)r) = x2r � xn must also share the factor, which it
clearly does not. This proves the lemma, and by extension the theorem.

3. Analysis of Methods and Intuitive Explanation

The results obtained here describe instances where the numbers in a particular
“configuration” in the triangle are the same. The most basic instance of this, the
configuration

A B X

X

was shown by Singmaster [22] and Lind [13] to occur infinitely many times; in fact,
precisely when n and k are certain expressions given by Fibonacci numbers. We
have shown that configurations such as

A B C X

A B C X D E

X and X

can occur only finitely many times, if at all. But we have not shown, for example,
that

A B C D X

A B X E F

X and X
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occur finitely many times, because in those cases the di↵erence in k-values is equal
to the di↵erence in n-values, and the associated polynomial x2r � (x + 1)r has the
quadratic irrational roots ' and � 1

' . However, the assertion that solutions are fi-
nite is still nothing more than a claim that a certain subclass of the curves studied
are irreducible and have fewer than the maximum allowable number of singular-
ities ( (d�1)(d�2)

2 [9, p. 72], barring the possibility of non-ordinary singularities),
something which seems very likely.

We will now analyze one of the higher-degree analogues to the curve (x� y)(x�
y � 1) � x(y + 1) = 0 in order to illustrate the validity of this idea. As we will
see, the reason this is di�cult in general is because of the necessity of computing
a Gröbner basis to determine that the polynomial and its two partial derivatives
share no common zeros.

In the case of the next curve with possibly infinite lattice points (the curve with
a = 2, b = 2; defined by F (x, y) = (x � y)(x � y � 1)(x � y � 2)(x � y � 3) �
x(x� 1)(y + 1)(y + 2) = 0), we may mechanically compute the Gröbner basis [16,
pp. 221, 237] for the system F = @F

@x = @F
@y = 0 [7, p. 19] to see that there are

no a�ne singularities. If we then homogenize coordinates, and consider the system
@F
@x = @F

@y = @F
@z = 0 [7, p. 19] at z = 0, we see that the only solution must be

[x : y : z] = [0 : 0 : 0], which is not a valid point [9, p. 12]. This is because @F
@x ,

@F
@y , and @F

@z are all homogeneous polynomials in x and y when z = 0. By the same
argument we have used to determine limy!1

x
y , any homogeneous polynomial in

two variables represents the union of some (possibly complex) lines through the
origin. None of these lines are the same, and thus the only solution to this system
is (0, 0). We conclude that F has no singularities.

We may therefore apply the genus-degree formula without subtraction of addi-
tional terms: g = (d�1)(d�2)

2 = 3⇥2
2 = 3 [9, p. 72]. That F is irreducible follows

immediately from its being nonsingular, for, by Bézout’s theorem [9, p. 84], any
hypothetical components of F must intersect somewhere in the complex projective
plane, and thus create a singularity in F . By Siegel’s theorem [9, p. 353], therefore,
the set of lattice points is finite.

In the proposition, we have shown that if a certain configuration occurs entirely
within the triangle, then the smooth function giving the ratio of one binomial co-
e�cient to the preceding one must take a value ⇣ (1 plus the root of the associated
polynomial) between the beginning of the configuration and the end.

This is essentially a precise way of stating that all the occurrences of a particular
configuration have approximately the same ratio n

k . The restrictions y > a and
y < x

2 , which were algebraically necessary to avoid dividing by zero, correspond to
requiring that the configuration is not “cut o↵” by the edge of the triangle. All
currently known nontrivial repetitions (excluding Singmaster’s [22]) occur so close
to the side of the triangle that the proposition does not apply; however, it is still
satisfied, because the ratios on the edge are very large and change very rapidly. It
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is easily seen that there cannot be more than a of the cut-o↵ cases, because for each
y, there is clearly at most one x where

�x
y

�
=
�x�a

y+b

�
.

In the case of Singmaster’s infinite family, the ratio ' is always less than�n�1
k+1

�
/
�n�1

k

�
, and greater than

�n�1
k

�
/
�n�1

k�1

�
. This can also be seen as a direct

result of working out ratios of the given expressions involving Fibonacci numbers
(n = F2i+2F2i+3�1 and k = F2iF2i+3�1). It works out that the ratios

�n�1
k+1

�
/
�n�1

k

�
and

�n�1
k

�
/
�n�1

k�1

�
are ratios of successive pairs of Fibonacci numbers—successive

continued fraction convergents to '. In this sense, the coe�cient repetition occurs
at all the best possible approximations to '. It is tempting to think that this is
somehow necessary for repetitions to occur, and then to try and disprove the exis-
tence of any other repeats deep in the triangle by proving that convergents to the
other, non-quadratic ratios cannot occur sequentially in this way. This seems plau-
sible because, even without invoking the more rapid continued fraction convergence
properties of higher degree algebraic numbers, we have that the maximum di↵erence
between consecutive continued fraction convergents with first denominator q is less
than 3

2q2 [8, p. 152], which is very often less than the di↵erence n+1
(k+1)(k+2) between

consecutive coe�cient ratios. However, there is no such obvious argument for the
necessity of continued fraction convergents.

4. Possible Extensions

The most straightforward extension of our work would be to show that the curve
defined by (x�y)(x�y�1)�x(y+1) = 0 is the only one of this family of curves which
passes through infinitely many lattice points, i.e., to extend the theorem to the case
when a = b 6= 1. To do that, an entirely di↵erent argument from the one used in this
paper would be necessary, since we have relied on the fact that the limiting ratio of
x to y in most cases is not quadratic. If a = b, then it is quadratic, and there is no
apparent way to prove that Nagell’s [14, p. 264] criterion cannot be satisfied. It is
possible that the symmetry of the polynomial defining the curve when a = b allows a
simple algebraic manipulation of the system where it and its two partial derivatives
are set equal to 0, such that an inconsistency is derived. As we have seen from the
previous consideration of (x�y)(x�y�1)(x�y�2)(x�y�3)�x(x�1)(y+1)(y+2) =
0, we may work with this system, instead of @F

@x = @F
@y = @F

@z = 0, because the
absence of singular points at infinity follows easily for all these curves.

* * *

The conclusions we have reached here are significant in their own right: they are,
to our knowledge, the first fundamental results established concerning equations of
the general form

�x
y

�
=
�x�a

y+b

�
, where x and y vary.
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However, it is hardly debatable that the most ambitious and important goal in
the examination of repeated coe�cients is the proof of Singmaster’s [21] conjecture.
So far, the most pointed attacks on the conjecture have resulted only in an increas-
ingly tight series of logarithmic bounds—an approach which a priori seems unlikely
to yield the desired O(1) result. Kane [10] has stated that his method—which
initially yielded O( log t log log log t

(log log t)2 ), and then was improved by a factor of log log t
[11]—probably cannot be further extended. It may be more fruitful, therefore, to
cease considering N(t) as a function to be bounded, and instead only try to analyze
when particularly high multiplicities of t occur. We have not done this; our concern
has simply been with a certain type of nontrivial repetition. However, a large part
of the value of our exploration lies in the fact that the algebraic curves we have
used would seem to provide a good basis for focusing on high multiplicities.

Notice, for instance, that a coe�cient occurring six times simply corresponds to
an integral intersection between two of our curves beyond a certain x-value (the
degree of the higher degree curve). A multiplicity of eight corresponds to three
curves intersecting at the same point, and so on. Furthermore, any set of the curves
has at least some easily calculable number of these common intersections, because
of the trivial integral points near the origin which they all share. These correspond
to repetitions in the negative triangle. Each large-multiplicity integral intersection
between these curves also corresponds to a large integral point on a curve of much
lower degree; specifically, if m curves with highest degree n intersect at (a, b), then
there is an integral point on a curve of degree at most m

n with greater x and y
coordinates than (a� n, b).

The Singmaster [21] conjecture would be proved by bounding the number of these
curves which can share a common intersection beyond a given x-value (although
this statement is stronger than is necessary; the conjecture only considers integral
intersections).

The naive way to do this would be to take a general set of some number of
these curves, shift them left su�ciently far, and try to show via Nullstellensatz
manipulations [16, p. 22] (generating other polynomials in the same ideal) that there
could not be a common intersection in the first quadrant. The di�culty, of course,
lies in working generally with curves of arbitrary complexity. It should be noted,
however, that because of the fact that the Nullstellensatz deals with all intersections,
not just integral ones, this strategy is not equivalent to simply manipulating general
binomial coe�cients themselves. Even if the task is still seemingly di�cult, we are
able to use a more powerful tool on the problem.
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Figs. 1-3. Several of the curves we have considered. The first nontrivial

intersection occurs between a = 104, b = 1, and a = 110, b = 2. It

corresponds to
�
120
1

�
=

�
16
2

�
=

�
10
3

�
.

Fig. 1. Singmaster’s curve: a = 1, b = 1

Fig. 2. a = 1, b = 2



INTEGERS: 16 (2016) 12

Fig. 3. a = 5, b = 3

Advanced tools of algebraic geometry are also potentially applicable to this reformu-
lation of the conjecture, although a major strengthening of current knowledge would
certainly be necessary first. If a general e↵ective form of Siegel’s theorem [9, p. 353]
were known, it would be possible to bound the height of integral points on these
curves (their coordinate size, essentially). However, the currently known e↵ective
methods for genus 1 curves, such as Baker’s [3, p. 45] method, generate bounds too
large (triple exponential) to be useful, even if they were generalized. More desirable
would be an e↵ective Schmidt subspace theorem, as this would result in an e↵ective
form of a corollary [20] on simultaneous approximation of algebraic numbers:

Let ↵1, . . .↵n be algebraic numbers such that 1, ↵1, . . .↵n are
linearly independent over the rationals. Then for any ✏ > 0 there
are only finitely many integers p1, . . . pn, q with q > 0 such that

|↵1 �
p1

q
| < q�1�1/n�✏, . . . |↵n �

pn

q
| < q�1�1/n�✏.

If we could find the ratios pi

q where the various algebraic numbers ⇣ associated
with a set of our curves are simultaneously approximated, then we could find the
intersection point. Unfortunately, we have not yet provided a requirement that the
approximations to ⇣ be as close as is dictated in the corollary.

The Singmaster conjecture remains as Paul Erdős once described it [cited in 21,
p. 385]: a “very hard” problem. The intent here has been only to introduce a novel
form for viewing repeated binomial coe�cient problems. Whether this method can
yield a truly new understanding of such an antique, basic part of mathematics
remains to be seen.
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