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Abstract
Let Af(n) be the n-th normalized Fourier coefficient of the Fourier series associated
with a holomorphic cusp form f for the full modular group of even weight k and
let Af(z) == Z)\f(n). During the ELAZ 2014 conference in Hildesheim, Germany,
n<z
K.-L. Kong (University of Hong Kong) presented his result, proved in his Master
thesis, that
b's
/ A2(H)A(at)dt = C(a) X4 + 0, (X7/4—5) ,
2

for some explicit 6 > 0, C(«a), where a > 0 is fixed and A(x) is the error term in
the Dirichlet divisor problem. A problem posed by Professor Ivi¢ at this conference
was to obtain a formula analogous to the above formula for the sum A¢(z) and
especially to discuss the sign of C(«) in the new setting. In this paper, we will solve
Ivié’s problem and prove that for any € > 0, we have

X
/2 A?c(t)Af(at)dt = Cf(Oé)X7/4 + Oa,g (Xﬂ""a) ’

for some constant C'¢(«) depending on only f, o and defined by

al/4 ~— Ap(n)Ag (m)As (1)
Cyla) = 3 Z Z 3
/4 ’
28w (i0,i1)€{0,1}2 nmd=1 (nml)
Vi (=1)"0 /m4(—1)1Val=0

where o > 0 is a fixed constant. Our result is new and throws light on the behavior
of the classical function Af(x).

1. Introduction

Let k£ > 2 be an even integer and H; be the set of all primitive cusp forms of weight
k for the full modular group SLy(Z). If f € H}, then it has the following Fourier
expansion at the cusp oo :

“+o0
f(z) = Z Af(n)ntk=D/2 2minz (3(z) > 0).
n=1
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By the theory of Hecke operators, A¢(n) is real and satisfies the multiplicative
property:

M marm) = 3 ar (5 (1)

d| (n,m)
for all integers m > 1 and n > 1. Besides, it is also known that A;(n) satisfies the
deep inequality:
[Ar(n)] < d(n) (2)

for all n > 1, where d(n) denotes the number of positive divisors of n (this is the
Ramanujan-Petersson conjecture proved by Deligne (see [1], [2])).

The sum of normalized Fourier coeflicients over natural numbers occurs in the study
of many important problems in number theory, such as the number of Hecke eigen-
values of same signs (see [5]).

The sequence (Af(n)) is of great arithmetic interest. The generating series

“+o0
Ar(n)
L(f,s) = 2—21 T
has many analytic properties which offer tools to help achieve this goal. Moreover,
Hecke (see [3], [4]) proved that L(f, s) is an entire function that satisfies the following

functional equation, which is a special case of the Langlands functoriality:

L(f,1—s) = (=1)**y(s)L(f,s)  if R(s) > 1, (3)
where
2 S+ K, 1—s+r;\ "
— —(1-2s) J J
v(s)=m7 H r ( 5 > r ( 5 >
=1
and the parameters in the product are k1 = % and ko = %

One of the basic goals of number theory is the foundation of asymptotic formula, as
accurate as possible, for the sum Ay (z). Rankin (see [7]) showed that for any ¢ > 0
and z > 2,

Ap(w) <5 wb (loga) T,

where ¢ = 0.0652. Wu (see [8, Thereom 2.

—~

log )
got a better bound for Af(x), that is

~—

Ap(z) <5 25 (logz) 9,
where 6 = 0.1185.
In this paper, we shall evaluate the integral f2X Afc(z)A 7(azx)dz basing on the trun-

cated Voronoi formula for the sum Af(z) and we will investigate the sign of the
constant Cy(c). The main result of this paper is the following.
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Theorem 1. Let f € Hi and 0 < o € Q[v/'N|, where N > 1 is a square-free natural
number. If there exist integers t,r, s, ab, by, d1 and ds such that

t|N,t odd

r (odczl, %}9\[2 2)even, ged(r,s) =1

by| (tr* + s

ah|2rs (4)
ng(dl,dg) =1

a= ’zgé@ [(trg + %sQ) + 27“8\/N}

or
t|{N,N odd

r,s odd, ged(r,s)=1

by|L (tr? + & s?)

ab|rs (5)
ng(dl, d2> =1

o= % [% (tr2 + %sQ) :‘:’I"S\/N:| ,

then there exists a constant Cy(«) depending on only « and f and defined by

o'/t « M)A s (m)As (1)
Cila) = 9873 Z Z (1)1 (6)
(i0,41)€{0,1}2 n,m,l=1

Vit(=1)"0 ym+(—1)"t Val=0

such that for any € > 0, we have
X 41
/2 A2 Ap(at)dt = Cp(a) XT/* + O, (XWS) .

Our main tool in the proof of Theorem 1 is the Voronoi summation formula. Lau
and Wu (see [5, Lemma 3.1]) established the truncated Voronoi formula for Ay (z).
They obtained the following result.

Lemma 1. Let f € H}}. Then for any A > 0 and ¢ > 0, uniformly for 1 < M < x4
and x > 1, we have

x4 Afr(n) ™ z \1/2 1
_Jr 7 _ £ el 7/4

S M (- Do o i (5) o)),

(7)

Ap(x) =

where the implied O-constant depends on A, € and k only.

We will use (7) and write

Af(2) = Bar() + Oa e (0) + Oa e (224507 1/2) (8)
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where

By (z \[ Z COS (47r\/n_— —)

Now, we will study the sign of the coefficient Cf(«) in the following theorem.

Theorem 2. Let k > 2 be an even integer and let f € Hj. Set

At ={a e N"; A¢(a) 2 0},

400 Nr2s2]" 2
Sy = Z (Af( TSZ)Af(l)),and

1119/4
erls/;l"GA
= Ar (N728207) Ap (1)
e § ()
ers,;l:"EA_

so that both Sy and S_ are positive.

1. Suppose that « satisfies (4). If di = ahbhds = 1, then

Cila) >0 if Sy > S_
Cila) <0 if Sy < S_
Crla) =0 ifSy =5

2. Suppose that « satisfies (5). If di = 2 and abbhds = 1, then
>0 if S >8_
<0 if Sy <SS
Cila) =0 if Sy =5_

In particular, examples when C¢(a) = 0 are given in the following assertion.

3. Ifa € Q7 ora € VNQY, then Cy(a) =

2. Some Lemmas

The proof of Theorem 1 is based on the following lemmas.

Lemma 2. Let a be a positive number in Q[v N|, where N is a square-free positive
integer and let ig,i1 € {0,1}. We put

a1 = an(io,i1) 7= vn + (=1)°v/m + (1) Val, )
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o= B (10)

(i0,i1)€{0,1}2 n<y,m<y
1<y
()(1:0

and

“+o0
ale) =Y > As(n nml 3/jf(l). (11)

(i0,41)€{0,1}2 n,m,l=1
al—o

Then, we have the following assertions.
(a) The equation oy = 0 is solvable for n, m, I € N* if and only if there exist
integers t,r, s,dy, da, a and b}y such that

t|N,t odd

r odd, ¥(19v2 even, ged(r,s) =1
byl (tr* + 752)

ah|2rs

ng(dl, dg) =

or

(b) On the hypotheses of (4) and (5), the series ¢1(a) converges.
(C) |cl (Oé, y) -G (Oé)l La,e y_5/4+6-

Proof. (a) Let a = Z—; + bl\/_ where ay, by € Z, ag, by € N* and ged(ag,az) =
ged(by,b2) = 1 and let d; = ged(ag, b;). So, we have a; = d;a; and b; = d;b},
i € {1,2}. Note that at most one of the equations a;(0,1) =0 and a1(1,1) =0is
solvable in n, m and [ € N*.

If the equation a4(0,1) = 0 is solvable for n, m, I € N*, then by squaring both
sides, we obtain

agbg(n + m) — b2all = azbll\/ﬁ — 2&2[)2\/ nm. (12)
By using the same procedure, we get

4a3b1bol v/ Nrm = (azby1)2N + (2agbo)?nm — (azba(n + m) — baayl)? .



INTEGERS: 16 (2016) 6

This shows that v Nnm is necessarily an integer. Also, it is easy to show that /7
is an integer. Hence, Formula (12) leads to

agbg(n + m) — bgall = \/N ((lgbll — 2a2b2 T;L\;L) .

n

Since N is a square-free integer and |/“* is an integer, then we have v N is an

irrational and v N (CLlel — 2a9by %) is an irrational or zero. So, we get

as(n+m) = aql and byl :2b21/%. (13)

This implies that a; > 0 and b; > 0. Moreover, we know that as divides a1l and by
divides byl. Since ged(ay, ag) = ged(by, be) = 1, it follows that as and by divide .
Therefore, there exists a positive integer I’ such that I = asl’ and by divides asl’.
Then I’ = g—zl”, where I = —t— € N. Thus

7
ay b2

b
= aol = L2217 = aLblydol. (14)
2
By considering (13) and (14), we get

mn  biabl”  ahbidqil”

(n+m) = aibyl” = aydibyl”  and N 2~ 2
which is equivalent to
b/d /l// 2
(n+m) = arbyl” = ajdibhl” and mn = N%.

By solving the last two equations for n, we obtain

(a1 = v/(afby)” — N(agbi)?)
: .

n = dll//
Since ged(a), ab) = ged(b],b5) = 1, we get ged(a) by, abd)) = 1.

Notice that n is well-defined i.e the equation

V(@) — N(aybi)? = e €N

has solutions in N® provided we have the following cases:
If N is odd, there exist integers ¢,  and s such that

t|N,t odd

r odd,s even, ged(r,s)=1
aibly = tr? + %sz

ahby = 2rs

(15)
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or
tIN,t odd
r,s odd ged(r,s) =1 (16)
aybh = 1 (tr* + £s?)
ahby =rs.
However, if N is even, then
t|N,r odd ged(r,s) =1
ahbly = tr? + g2 (17)

ahbby = 2rs.
Now, if (15) is valid, then

(tr2 + %82 + (tr? — %82))

n = dll// B

So, we have n = dil"tr? and m = dﬂ”%sQ, orn = dll”%SQ and m = dql"tr?.

r24 N g2
Therefore by = d1b] = dy 2;’,: and a; = dya} = d1w. It follows that

by
tr2+ﬂ52) 2
a ) g o d N
o= bf + af VN = } - tr2 + —s% + 2rsV'N| .
daas dobf, doab by t

If (16) is valid, then

(0 ) &} 12— )

n = dllll B)
Assuming that [” and d; are not both odd, then this implies that n = #
dil" & s? dil" I s? dil"tr? rs
and that m = s, or n = ——5— and m = R Thus b, :dla_’ and
2
r24+ N2
a; = dl(t27b+,2t). This leads to
dy (tT2 + %82) dl% dq 1 N
= N = —(tr? + —s° N|.
“ Whdady, | dabl VN By, 2\ rsVN

If (17) is true, we will obtain the same values of n and m as in (15), and therefore

T dyabll

N
{trQ + 732 + 27‘5\/N] .

Subsequently, the numbers n, m and [ are well-defined so that the equation a4 (0,1) =
0 is solvable for n, m and [ € N*.
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Now, if the equation «4(1,1) = 0 is solvable then, by following the aforementioned
steps, we get

az(n+m) = al and 2054 — = —byl.

Let l~)1 = —b; > 0. We replace 51 by b1 and we will obtain

= dyabtl,
4|1 N
t —rsVN|.
~ g 3 (77 ) =]

(b) Now, assume that « satisfies (4); then

! [tr2 + ¥52 — QTS\/N]

or

n = dll”t’f'2 n = dll//%SQ
m=dl"%s* or ¢ m=dl"tr? (18)
I = ahbhdal” I = ahbhdol”.

This is valid provided that

d N
= L tr2 + —s® + 2rsvV'N
dgaébé t

or

dy 9 N,
= t —s° —=2rsVN|.
d2a,26,2[r+ts 7S

Formula (18) implies that

< i’o Mg (dal” 5 5*)I|Ap (dl"tr2) | A s (a5bdal”)|

c1(e) (42N s2r2alblydy1/73)3/4

=1
IXp(di 5 82)|[Ap(datr?)|| A s (ahbhyda)| < Z A (17))3
(d2N527"2a2b’ d2 3/4 1119/4

1"=1
From (2), we get |A\f(I")] <. 1"”¢ for any € > 0. Thus, we have ¢i(a) <. 1 and

therefore, the series ¢1(a) converges.

If « satisfies (5), then

n = (ditr*)l" n= %(dl Fs 2)[”
m=3(d Fs?)" or ¢ m=L(ditr})l” (19)
I = abbldyl” l= a’gb’gdzl”,
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this is valid provided that

or

—7rs N].

IAp (3(datr®)l”)| | As (3(diZEs?)7) | |Ap(abbhdal”)
(dstsza’ ! dgl“3)3/4

|
QL
[\v]
ISERSY
NS =
>
S
| — |
N
/N
~
=
[ V]
+
©
N~

Formula (19) implies that

c1 (@) < Z

I""=1

- Z |Ag (dutr®l") | | Ag (diZEs17)] | Ap (ahbhyda (207))]
= (d3Ns2r2alyblydy(21)73)3/4
IAp(di 5 s?)||Ap(datr?)||Xp(2a5bhds) | < Z ()2
(dQNS r a2b’d2)3/429/4 1119/4

< 1.

<

Hence, by Formula (2), the series ¢;(«) converges.

(c) Recall that (see (10))

Ae(m)As(m)A (1
ci(a,y) = Z Z f( ()71723)334 f( )

(40,i1)€{0,1}2 n<y,m<y
<y
(1120

Note that if o does not satisfy (4) and (5), then, based on the findings of (a), the
equation a = 0 is not solvable in n, m and [ € N*. Thus, we obtain

2R (1 M)A (m)A (1l
3 >y £ nml334f()_ 3 3 f(()nnig)334f():0’

(30,31)€{0,1}2 n,m,l=1 (i0,41)€{0,1}2 n<y,m<y
a1=0 1<y
Q1= =0

which is equivalent to c¢;(a) = ¢1 (e, y) = 0. Suppose now that « satisfies (4) or (5).
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10
For instance, if « satisfies (4); then we have
+oo
Ap(n)Ap(m)As(l
er(a) —a(ey) =] > S f@? f§;34f()
(i0,i1)€{0,1}2 n>y nm
or m>y
or l>y
a;=0
+oo
Al (m) A D)
< j{: j{: )]
(i0,i1)€{0,1}2 n>y (nml) /
or m>y
or [>y
a1=0
Ly D R el
- R (d2r2N s2alblydyl'73)3/4
or llill”¥s2y>y
or apbhdal'' >y
IAp(ditr?)[|Ap(di Zs?) || A (ahbyda)| > A
(312N s2ajblyds)3/4 e

A" tr? >y
or dil” L s?>y
or abbydal'' >y

By using (2) and since we have diI"tr?> > y or dll”%s2 >y or abbhdsel” > y, then
the last formula implies that

lex(a) = 1, )] ey~

The other case is similar. O

Lemma 3. Let o be a positive number in Q[\/N], where N > 1 is a square-free
integer. LetU; and V; fori = 1,2,3, be positive real numbers such that U; < V; < T?

and at least two of the U;’s are > T'* for some positive real numbers a and b with
a < b. Then we have

(a)

>y (A ()[[As (m)[[As (D]

(nml)3/4

2T
/ +3/4 cos (47ra1\/z — %) dt

T

Us <n<Vi,Us<m<Vs,
U3 <i<V3,a17#0

<<Oé,€ T5/4+b/4+5 + T7/47a/4+€

and
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(b)

3 s () [[Ag (m)[|As (D]

(nml)3/4

2T
/ +3/4 cos (47Ta1\/f — %) dt

T

n<Vy,m<V,,I<V3
011750

Lo TO/AH11D/44e

where «y is defined by (9).

Proof. (a) Note that a;(0,0) > (anml)~/6. Also, by using the fact that for any

t € [T, 27, we have t3/* < T%/* and that | [cos (4ma; vt — %)]/ | > &\/‘%ﬂ, we get

T5/4

2T
/ +3/4 cos (47ra1\/1_f — z) dt
T 4

Thus,

¥ [Ar ()[As (m)|[ A ()]

(nml)3/4

2T
/ 3/% cos (47roz1\/£ — %) dt

T

U1 <n<V1,U2<m<Va,
Us<I<V3,a17#0

— > A A ) 0)
foa (/3
Ui <n<V1,Us<m< Vo, Us<I<V3
[e5] 0
3 [As () [|As (m)|A; (D

(nml)11/12

<<O¢,€ T5/4

Ur<n<Vi,Uzs<m< Vo, Us<I<V3
(11?50

Now, since U; < V; < T? for all i = 1,2,3, it follows that n, m and | are < T°
and hence, by Formula (2), we obtain: |Af(n)|, [\f(m)| and [A;(I)] are <. Tb*<.
Therefore,

5/4 Z [Ap ()[[Ag (m) || Af (D] 5/4+b/4+
r (nml)1t/12 <T ®.
Uy <n<V1,U2<m< V3, U3<I<V3

[e5] 0

Suppose now that (ig, 1) = (0, 1) as the other case is similar. There exist integers N,
N'. M, M', L and L' such that Uy < N <n < N’ <min(V;,2N), Us < M <m <
M’ < min(V2,2M) and Us < L <1 < L’ < min(V5,2L). Let D = max(N, M, L)
and d = min(N, M, L). For § < v/D, we have

{(n,ml):n~N, m~M, I~L 0<]a|<d}
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I 1/4
Loe DV2ENML + | = D*VNML. 21
’ d

So, we obtain

A A (1 =
> AN | 1t o g - T
Ui <n<Vi,Us<m<Va,Us<I<V3 (nml) T
041?50
T IA M)A D] | [ 54 ™
< Z , (nml)3/4 . t>/ = cos (47ra1\/ffz> dt
N<n<N' ,M<m<M',

L<I<L,a1#0

< > + > + >

N<n<N' ,M<m<M’, N<n<N’' ,M<m<M’, N<n<N' ,M<m<M’,
LISL o |> 5 L<ISL T~ Y%<|ay|< 4 L<ISL',0<|ai|<T~1/2

Te[A s (R)[[Af (m)[[A (D)
(nml)3/4

2T
0
/ 3% cos (4#&1\/5 — Z) dt

T

< C1+ Cy + Cs.

Since a1(0,1) < 2v/aD and by using Formulas (20) and (21) with & < § < 2v/aD,
we get

Cy <, TO4H0/4%e,
Moreover, we have L < max(N,M) =< D and d =< min(N, M), in case a;1(0,1)

is between T2 and 1/10. By using the same equations with T2 <§ < Lin
Formula (21), we obtain

10
Oy <., TO/AHb/4+e | TT/4-a/d+e
Now, by trivial estimation and by Formula (21), we have

Cs <o e T5/4+b/4te | pT/4—a/dte

Consequently, we get

T A ()[As (m)[[As (D]

(nml)3/4

2T
3/4 _r
/ t°/% cos (471041\/5 4) dt

T

U1 <n<V1,Ua<m< V5, U3<I<V3
Ct1750

Coe T5/44b/4ke | pT/A—a/dte,
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(b) We use the same arguments as above for (ig,i1) = (0,0), and we get

2T
3/4 _r
/T t°/* cos (477041\/i 4) dt

> [As () [[Ag (m)[[ A (D]

2424e
(nml)3/4 La,e THTATE

n<Vi,m<Va,I<Vs
1(0,0)70

For (ig,i1) = (0,1), we have

> [Ar()[As (m)][As ()]

(nml)3/4

2T
/ 3/4 cos (471'@1\/5 — %) dt

T

n<Vy,m<V5,I<V3
[e5] 0

< > + >
N<n<N' M<m<M',L<I<L N<n<N' ,M<m<M’' L<I<L'
e |> 75 la1|< 15

T A () m)IA D] | 27 54 ™
(nml)3/ /T t°/* cos (47ra1\/i — Z) dt

< C1 + Cy.

By the same token, we get Cf <. T°/4T0/4*¢ Since a; >, D~3d~/? and by
using Formula (21) with D~3d~1/2 < § < 2, we obtain

Cl) Lo T5/4411b/4+<

Therefore, we have

> [Ar (m)[As (m)[[As ()]

(nml)3/4

2T
/ 3% cos (4#@1\/% - %) dt

T

<<a c T%"F%Jﬁf

n<Vi,m<V5,l<V3
aq

O

3. Proof of Theorem 1

In this section, we will use the results of the previous lemmas to prove Theorem 1.
Let M = T. From Formula (8), we have

2T 2T 2T
A2(t)Ag(at)dt = / (Bar(£)? Bas(at)dt + O e (Ts / |BM(t)||Af(at)dt>
T T T

2T 2T
+O04ack <T25 / |Af(at)|dt> +Oack (TE A}(t)dt)

T T

2T
- / (Bar(4)? Bag(at)dt + Oa i vk (T3/2+€).
T
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The last identity is due to Cauchy-Schwarz’s inequality and the well-known mean-
square results (see [6, Theorem 1.1])

2T 5
/ Aj(t)ydt < T,

T

where f(t) < ¢g(t) means that f(t) < g(t) and g(¢) < f(t). This can be established
also by using (8). Let

Biry(t) t1/4 Z cos (47r\/_——)

M<n<y
and let M, = T*/¢. We have
B (t) = By (t) + Bagg,m (1)

Thus, we get

2T 2T 2T
/ (Bar(t))? Bys(ot)dt = / (Ba, (1))* Bagy (o) dt + / (Bato (1)) Busy ar (at)dt
T T T

2T

+2 B]\/[O (t)BMO,M(t)BMO (at)dt
T

2T
+2/ B]\/[O(t)BMO7M(t)BMO,M(()ét)dt
T

[ B ) B s

2T
+ / (Basy ar(£))? Bagy (o)t
T

=51+ 52+ 53+ 54+ S5 + Se.

The formula cos(a) cos(b) cos(c) = f[cos(a+ b+ ¢) + cos(a+ b — ¢) + cos(a — b+ ¢)
+ cos(a — b — ¢)] implies that

cos (471'\/_— —) cos( Vmt — —) cos (47r\/_— —)
i Z cos <47roz1\/% — Z) , (22)

(10,7,1)6{0 1}2
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where oy is defined by (9). By using Formula (22), the sum S; is written as the
following:

al/t As A (m)As (D) [ 34 ™
S1 = E g / 2 cos (2 dt
87512 (i0,i1)€{0.1}2 n<Mo,m< Mo (nml)3/4 T (4)
1< My

al()

o/t A A () 2T 34 m
87T3f Z Z W/ t COs (47TCM1\/1_5 — Z) dt.
(ig,i1)€{0,1}2 n<1vllgx/[n<1\/10 T

0
041750

It follows that

S1 <

ot/ Ar ()N s (m)|[As (1
Z Z [Ag ()|[Af (m)[[ A (D]

(nml)3/4

2T s/
t dt
/T cos ( 1 ) ‘

2T
/ 3% cos (47ra1\/7? — E) ‘ dt.
T 4

3\[
ig,i1)€{0,1}2 n<Mqg,m<Mq
(i0,i1)€{0,1} Ry
al —0
al/4

>y ZP\f n)[|Ar(m)[[As ()]
871'3\/_ (nml)3/4

(i0,i1)€{0,1}2 n<Mo
m< Mo
1< Mg
a1#0

By using Lemma 3, we get

s ()15 (m) 1A (0
D e

(i0,i1)€{0,1}2 n<Mp
m< Mo
1Mo

a1 #0

2T
/ td/4 cos <47T041\/i _ %) dt‘ Lase T41/24+5.
T

Recall that based on the hypotheses of (4) and (5), the series ¢;(a) converges
absolutely. Then, we obtain

1/4 \ \ oy e
a3 Z Z f(n) f(l”;)4f()/ t3/4cos (%) gt
813v/2 (i0,i1)€{0,1}2 "SﬂfgﬁSMo (nml) T
0

a1=0

1/4
= ;8 361(a, Mo) ((2T)7/4 _ T7/4)

™

al/4

= sos le1(@) +en(a, Mo) = ex(@)] (21)74 = T7/4)

1/4
= %01(00 ((2T)7/4 _ T7/4) + Oac (T7/4 le1 () — e1 (v, M0)|) .

Lemma 2 (c) leads to
‘Cl(a) -G (Ck, M0)| <<a,s A]\4'()_5/4+E <<a,s T75/24+€.

Hence, we get

/4

Sea() (@)1= T7%) 4 O (T4 e1(@) = 1, Mo)))
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Ql/4
- 2873 €1 (a) ((2T)7/4 - T7/4) + Oa,s (T37/24+€)
and therefore,
al/4
S1 = geger(@) (1)1 = T74) 4 0, o (T97/244).

For the sum S5, we have

al/t Ar(m)Af(m)As(1)
Sz - (1v/2)3 Z Z Z ! (nnfd)gmf

n<Mo m< Mo Mo<I<M

2T
X / +3/4 cos (4W\/E — %) cos (477\/m — Z) cos (47r\/ alt — %) dt.
T

Formula (22) implies that

_ o't Ar ()X (m)As (1)
S T D D IND D ) 7

(i9,i1)€{0,1}2 n<Mo m< Mo Mo<I<M

2T
X / /% cos (47‘(&1\/% — E) dt
T 4

- Ar(n)A Ar(l 2T
<= Y 3 Mw / /% cos (4m1\/£_ g) dt’
8m34/2 (i0,i1)€{0,1}2 n<Mp (nml) Jr
m< M
MoEl{M
- I 2T
<2 T s AemArm () / t3/“cos(ﬁ)dt'
8m3+/2 (i0,i1)€{0,1}2 n<My (nml) . 1
Mo St
a1=0

1/4 , , o
+0637 E Z MW / 3% cos (47roz1\/z — g) dt‘ .
82 (i0,i1)€{0,1}2 n<Mp (nml) T
m< Mg
Mo<I<M

a1#0
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By virtue of Lemma 2 (c), we obtain

3 3 As(m)As (m)As (1)

/TZT 3/ cos (%) dt

nml)3/4
(i0,i1)€{0,1}2 n<Mo,m<M ( )
Moy<I<M
041:0
o0

Lo T 3 3 /\f(n()/\f(;n))\f(l)

nml)3/4
(i0,i1)€{0,1}2 n,m,l=1
Q1=

- > 3 Ar(n)Ap(m)Ag(1)
3/4
(i0,i1)€{0,1}2 n<Mo,m< Mo 1< M, (nml)3/
a1=
Lae T |er(@)] = |er(a, My)]|
<<a,6 T7/4 ‘Cl(a) — 01(04, M0)|

Lae T7/4M(;5/4+5 Lo T37/24+e

Therefore, we get

3 3 Ap(m)As(m)As (1)

Lo TT/24e,
(nml)3/4 \E

2T
/ t3/4 cos (E) dt
T 4

(i0,i1)€{0,1}2 n<Mo,m< Mo
Mo<I<M
a1:0

(23)

In addition, we have

1/4 oT
;‘37\/5 Z Z |)\f(n)(|lz)\nf1§;234|l|)\f(l)| / 374 o (47ra1\/17/7£> dt‘
T (i0,i1)€{0,1}2 n<My T
m< Mg
Mo<I<M
a1 #0
174 2T
s Xy ROl [T o (s vi - §)
8TV2 (ipi1)et0,1)? n<Mom<nty o T
Mo <I<(50Mg/c)
a1#0
1/4 A -
o f(")H)\f(m)H)\f(m/ 3/4 ( 7r)
873+/2 t 4 t— =) dt|.
+87r3\/§ Z Z (nml)3/t ; cos (4mai vt 1

(i0,i1)€{0,1}2 n<Mp,m< Mg
(50Mo /o) <I<M
a1 #0
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Now, by applying Lemma 3 (b), we obtain
A (m)[[As (m)[[Ar (D]

Z Z (nml)3/4

(i9,i1)€{0,1}2 n<My,m<My
My <1<(50Mq /)
a1#0

2T
/ 3% cos <47ra1\/17, — g) dt‘

T

Lo T41/24+5.

If (50My /) < I, then a1 > V/I. Hence, by Lemma 3 (a), we get

> > Blbmi |V 3/4cos(4wa1\f—_)dt'

(i0,i1)€{0,1}2 n<Mo,m<My
(50Mp/a)<I<M

a1#0
Loe T41/24+€.
It follows that
Sy oy o TAY/24e,
By using the same arguments as above, we obtain
Sy <oy o TAY/24e,
For the sum Sy, we have
/4 2T
As(m)As(m)As () / 8/4 o5 (T
Z Z (nml)/3 . t cos(4>dt

Sy << \[
(i0,i1)€{0,1}2 n<Mp,m< Mg
Mo<Ii<M

a1=0

e Dy Dy [Ar ()[|Ag (m)][Ar (D]
a rn rlm f 3/4
3\/_ (nml)3/4 ‘/ COS 47“11\/__ _) dt’ ’

(i0,i1)€{0,1}2 n<My
et } m< Mg

Mo <I<M
a1 #0

Lemma 3 (a) implies that
s (n)[[Ar (m)[[Ar (D)]

Z Z (nml)3/4

(ig,i1)€{0,1}2 n<Mp,m<Mg
Mo <I<M
a1 #0
3/2 7/4—1/24
Kae TYHE g r/am1/200e

A1/24+e

2T
/ 3% cos (47r041\/z — Z) dt‘

T

<<(1 €
Thus, by Formula (23) and the last bound, we get
54 Loe T41/24+€.
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By the same arguments applied on the sums S5 and Sg, we deduce that
S La,e T4/ 24+ and Se La,e T4/ 24+

By summing up S to Sg above, we obtain

T 2 ot/ 7/4 7/4 41/24+
B B = — 2T =T T “).
| Bu@) Bttt = et (1) ) + O (T017245°)
Therefore, we get the following formula
2T 1/4
2 _ @ 7/4 _ m7/4 41/24+¢
/T A0 A at)dt = S ser(a) (7))~ T4 4 0, (TH/244).

Put T = X/2, X/4, .... After summing up, we find

/x A2()Af(at)dt = a1/4c (@) X744+ 0 <X41/24+s).
g T 2873 " ae
Let s

Cy(a) = @61(00.

We finally get

X
/2 A3 (1) Ap(at)dt = CH@)XT* 4+ 0, (X41/24+5) '

Remark 1. If o = 1, then we find the cubic moment for Af(z) :

/X A3(t)dt = O. (X41/24+5) .

2

We just have to prove that Cr(1) = 0 or ¢;(1) = 0. A simple way to get it is the
use of the assertion 3 of Theorem 2 with o = 1 € Q. Generally, if « € Q7 or

a € VNQ?, we have the same upper bound which means

X
/2 A?c(t)Af(at)dt =Op.c <X41/24+5>

and this is also a consequence of the assertion 3 of Theorem 2.

4. Sign of the Constant Cy(a)

In this section, we are interested in the discussion of the sign of the constant Cf(a).

Since Cf(a) = %cl (c), it suffices then to discuss the sign of ¢; (). For that, we
shall prove Theorem 2.
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Proof. 1. If « satisfies (4), then by using the previous steps in the proof of Lemma
2, for all positive integers n, m and [ such that \/n + /m = Val, we get

n = dytr3l” n = d1¥821//
m=d; %" or ¢ m=ditr?l”
[ = abblydal” [ = abblydol.

In this case, we have

d N
= ! tr? + — +2rsv N
dgaébé
Suppose that d; = daabby, = 1. Then, « becomes
N
- (tr2 + 752> + 2rsv/N.
Therefore, we obtain

O A () Ap (B2 A (1)
c1(a@) = Z (N s272]/73)3/4
=1

t’I“QZH)/\f (N 2[//) )\f(l”)
Ns r2 3/4 Z 1119/4 :
I"=1
According to (1), we have

N 2 21//2
A1)\ (Jtvs%”) - 3 Af (TC;) . (24)

d| ged(tr21, & 5217)

But ged(r,s) = ged (¢, ') = 1, since N is a square-free integer. It follows that
ged (tr?, £s?) = 1 and this implies that ged (¢r21”, &%) = 1”. Thus, Formula

(24) leads to
A
A (21" ( 21”) pRY, <Nr > . (25)
dll//
By applying Formula (1), and since ged (N72s%1”,1") = 1", one can deduce that
//2
Py (Nr ) =Ap (NP2820") Ap (1)
d‘l//

Thus, Formula (1) joined on to (25) results in

N
Ap(tr2l") Ay (—

; 521”> Ap(I7) = Ap (NP2821") Ap (I)°. (26)
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By using Formula (26) and by the expression of ¢;(«) in our case, we have

Y Nr252l”) Af (l”)
ci(a) (N s2 7,2 (N <2,2)3/4 Z ( [119/4

""=1

3 1 = Ap (N72s21") Ap (1)
- (N$2T2)3/4 Z 1119/4

"

Nr2s2l7/€v4+
+o0 2271 2
)\f(NT 571 )/\f(l )
+ Z ( 1119/4
Nr2152l:”1€A,
1
= (Nazrzyea S+~ 5

It follows that, if S > S_, then ¢;(«) > 0, and therefore, C¢(a) > 0. Besides, if
Sy < S_, then ¢i(a) < 0, and therefore, Cf(a) < 0.

2. If « satisfies (5), then we have

. %l(dltrjfl/;) " "= %1 (dl %‘292/%//)
m:?/(dlis l ) or m:/§(,d1t1;/l )
[ = ahbhdsl [ = ahbhdol”.

Note that n and m are well-defined if I and d; are not both odd. Hence, we have

d[1(a N
+
=[5 (74 ) o],

Suppose that d; = 2 and daabdl, = 1. So, the expression of a becomes

N
— (w T 732> + 2rsv'N

and thus,
t?‘2l// )\f (N 21//) /\f(l//)

ci(a) = N32r2 3/4 Z 1119/4
=1

By following the same procedure as in the proof of 1., we get:

1

(o) = W(S+ -S).

We conclude also that, if Sy > S_, then Cy(a) > 0, and if not, then Cy(a) < 0.
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3. If « is a positive rational number and the equation
v+ (~1D)oym+ (=1)"Val =0,  (ig,i1) € {0,1}2

is solvable in n, m and I € N*| then by the result of Lemma 2 (a), we have

! {(trQ + ]Zsz) + ZTS\/N:|

T Db,
o d 1 N
o= ! 2+ =s%) +rsVN|.
dgalzbé 2 t

Since o = g—; + g—;\/ﬁ, then a = Z—;, with ged(ag,az) = 1 and by = 0. It follows
that ged(by,be) = ged(0,b3) = by = 1. Therefore, we obtain d; = a; > 0 and
al, = by = dy = 1. Thus, we get ay = abdy = 1. Hence, we find that o = ay. So, we

have
{ (tr2+¥52) =1 or { %(tr2+%32) =1
rs=20 rs =0.

Now, if « satisfies (4), then tr? + &s? = 1. This implies that tr? = 0 or &s? =0,
and r =0 or s = 0. But, we have

n = aytr3l” n = a; X2
or t

m=a %sQZ” m = aytr2l”.

Therefore, n = 0 or m = 0. This contradicts the fact that n,m € N*. If « satisfies
(5), then 1 (tr? + &Ls?) =1 and therefore, tr* = &5 = 1. This leads to

1
n=m=-ayl".

2

Set I"” = 2q to be even. Thus, we have n = m = a;q and [ = I”. The equation

v+ (~1D)vm+ (=1)"Val =0,  (ig,i1) € {0,1}2
leads to

Varg + (=1)°vaig + (=1)"v/2a19 =0, (io,i1) € {0,1}*.

This is equivalent to

Varg [1+ (=1 + (=1)*V2] =0, (ig,in) € {0,1}*
It is clear that for all (ig,i1) € {0,1}2, we have

1+ (=1) + (=1)"v2 #0.

Hence, the equation

Vit (=) ym+ (-1)"Val =0, (ig,i1) € {0,1}?
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is not solvable in the case of & = a; = ¢*, which is a positive rational number, and
therefore, ¢1 (o) = 0 = Cf(a). Note that, in this case, we can also consider the fact
that rs = 0 which implies that 7 = 0 or s = 0, and since tr? = &s? = 1, we then
get the contradiction.

Suppose now that o € vV NQ? and that the equation

V4 (=D)oym4+ (=1)"Val =0,  (ig,i1) € {0,1}2

is solvable in n, m and | € N*. Lemma 2 (a) yields

! KtrQ + ¥52> + 27"5\/N}

O B,
o d 1 N
1 2 2
= — |t — + N .
“ Dy [2( +t8> ”f]

Since a = Z—; + g—;\m, then o = Z—;\/]V. Thus, a; = 0, ged(aj,a2) = as = 1,
dy = b > 0 and do = af = by = 1. Since dy = ged(az,bz) = by = 1, then
a = byV/N. Hence, we obtain

b1 (tr2 + %52) =0 or %1 (tr2 + %52) =0
2b1rs = by birs = by.

In both cases, we have tr? + ¥s2 =0, and this is equivalent to tr? = %sQ =0.
If « satisfies (4), then

n = bitr2l” o= by %521”
m=by ¥s2l” m = bytr2l”
and if « satisfies (5), then

{ n = %blt’l"Ql” or { n= %b1ﬂ82l”

t
m = 1b & 21" m = $bitr3l”.

Therefore, in both cases, n = m = 0. Moreover, the equation
\/ﬁ_’_ (_1)Zom+ <_1)i1\/a20a (iOail) € {071}2

is solvable, which implies that n = m = [ = 0. This contradicts the fact that n, m
and | € N*. Hence, we get ¢i(a) =0 = Cy¢(a).

Note that we can show the contradiction when « satisfies (4) by using the equality
2birs = by, which is equivalent to 2rs = 1 and this can not happen for positive
integers r and s. O
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