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Abstract
We show that the number of distinct solutions of a Diophantine equation over a
finite field is represented by the order and rank of a certain matrix derived from the
coe�cients.

1. Introduction

Let p be a prime, r be a positive integer, and Fq be a finite field with q = pr

elements. For f(x) = a0xp�2 + a1xp�3 + · · · + ap�2 2 Fp[x], define

A =

0
BB@

a0 a1 . . . ap�2

a1 a2 . . . a0

. . . . . . . . . . . . . . . . . . . .
ap�2 a0 . . . ap�3

1
CCA .

Kronecker (cf. [3, Chapter VIII, page 226]) showed that the number of nonzero
solutions to f(x) = 0 equals p � 1 � rank A. In this paper we extend Kronecker’s
result to Diophantine equations in several variables over Fq.

First we give some notation and definitions. We denote by In the ideal (x1
q �

x1, . . . , xn
q � xn) of Fq[x1, . . . , xn]. For f 2 Fq[x1, . . . , xn], we define f as the

right-hand side of the congruence

f ⌘
X

0r1,...,rnq�1

ar1···rnx1
r1 · · ·xn

rn (mod In).

Then it holds that f(b1, . . . , bn) = f(b1, . . . , bn) for any b1, . . . , bn 2 Fq. Here
we denote by mi = mi(x1, . . . , xn) the i-th monomial in the following chain of
monomials, ordered in the graded lexicographic order

1 � x1 � · · · � xn � x1x2 � x1x3 � · · · � xn�1xn � · · · � x1
q�1 · · ·xn

q�1
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and ci(f) by the coe�cient of the monomial mi in f . Note that ci(f) = 0 if f does
not contain the monomial mi. Then we define K(f) =

�
K(f)ij

�
as the qn ⇥ qn

matrix whose (i, j) entry is cj(mif), namely,

K(f)ij = cj(mif) =
X

t2{1,...,qn}
s.t. mimt⌘mj (mod In)

ct(f).

2. The Result

We shall introduce the basis to diagonalize K(f) and show the spectrum of K(f)
coincides with the value set of f in the similar way as [4]. For our purpose, we
need the following three lemmas. Although the first lemma is well-known, we give
a proof for the sake of completeness.

Lemma 1. The following statements are equivalent:

(i) f(b1, . . . , bn) = 0 for all (b1, . . . , bn) 2 Fq
n.

(ii) f = 0.

Proof. (ii) ) (i) is obvious. For (i) ) (ii), the proof given here is an adaptation of
the proof of Lemma 2.1 in [1]. We use induction on n. It is obvious for n = 1.

Suppose that it is true for n = k and that f(b1, . . . , bk+1) = 0 for all (b1, . . . , bk+1) 2
Fq

k+1. Write
f(xk+1) = aq�1xk+1

q�1 + · · · + a1xk+1 + a0,

where a0, . . . , aq�1 2 Fq[x1, . . . , xk]. For each fixed (b1, . . . , bk) 2 Fq
k, it holds that

f(bk+1) = 0 for all bk+1 2 Fq. Hence a0(b1, . . . , bk) = · · · = aq�1(b1, . . . , bk) = 0 for
all (b1, . . . , bk) 2 Fq

k. By the assumption, we have a0 = · · · = aq�1 = 0. Thus it is
also true for n = k + 1.

Lemma 2. Let � be a generator of Fq
⇤ = Fq \ {0} and let

wi = (di1, . . . , diqn)

=

8>>>>>>>>><
>>>>>>>>>:

(1, . . . , 1) if i = 1,
(0, . . . , 0| {z }

qi�2

,�, . . . ,�| {z }
qi�2

, . . . ,�q�1, . . . ,�q�1| {z }
qi�2

, 0, . . . , 0| {z }
qi�2

,�, . . . ,�| {z }
qi�2

, . . .)

if 2  i  n,
(0, . . . , 0| {z }

qn�1

,�, . . . ,�| {z }
qn�1

, . . . ,�q�1, . . . ,�q�1| {z }
qn�1

) if i = n + 1,

(mi(d2 1, . . . , dn+11), . . . ,mi(d2 qn , . . . , dn+1 qn)) if n + 2  i  qn.

Denote by vj the j-th column vector of the matrix whose rows are w1, . . . , wqn . Then
v1, . . . , vqn are linearly independent over Fq.
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Proof. Suppose that in Fq
n, we have a1w1+· · ·+aqnwqn = 0, where a1, . . . , aqn 2 Fq.

In other words,

a1 + a2d2j + · · · + aqndqnj = 0, for all 1  j  qn.

By definition,

dij = mi(d2 j , . . . , dn+1 j), for all 1  i, j  qn,

so that the polynomial function defined by

g(x1, . . . , xn) =
qnX
i=1

aimi(x1, . . . , xn)

satisfies
g(d2 j , . . . , dn+1 j) = 0, for all 1  j  qn.

Since, by construction, we have {(d2 j , . . . , dn+1 j) : 1  j  qn} = Fq
n, it follows

from Lemma 1 that a1 = · · · = aqn = 0. Hence w1, . . . , wqn are linearly independent
over Fq and so are v1, . . . , vqn .

Lemma 3. K(f)vj = f(d2 j , . . . , dn+1 j)vj.

Proof. Since

f(d2 j , . . . , dn+1 j)dij = f(d2 j , . . . , dn+1 j)mi(d2 j , . . . , dn+1 j)

= mif(d2 j , . . . , dn+1 j) =
qnX

k=1

ck(mif)dkj ,

we have

(K(f)i1, . . . ,K(f)iqn)vj = (c1(mif), . . . , cqn(mif))vj

=
qnX

k=1

ck(mif)dkj = f(d2 j , . . . , dn+1 j)dij .

Hence the lemma follows.

The formula for the number of solutions is derived immediately from these lem-
mas.

Theorem 4. Let n(f) be the number of distinct solutions of f 2 Fq[x1, . . . , xn].
Then n(f) = qn � rank K(f).

Proof. Let F : Fq
qn

! Fq
qn

be the linear map defined by K(f). From Lemmas
2 and 3, we see that dim(kerF ) = n(f). By the rank-nullity theorem (e.g., [2,
Chapter II, page 298]), it follows that qn = rank K(f) + n(f).
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