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Abstract
It is well known that the harmonic sum Hn(1) =

Pn
k=1

1
k is never an integer for

n > 1. In 1946, Erdős and Niven proved that the nested multiple harmonic sum
Hn({1}r) =

P
1k1<···<krn

1
k1···kr

can take integer values only for a finite number
of positive integers n. In 2012, Chen and Tang refined this result by showing that
Hn({1}r) is an integer only for (n, r) = (1, 1) and (n, r) = (3, 2). In 2014, Hong
and Wang extended these results to the general arithmetic progression case. In
this paper, we consider the integrality problem for arbitrary multiple harmonic and
multiple harmonic star sums and show that none of these sums is an integer with
some natural exceptions like those mentioned above.

1. Introduction

A classic result of elementary number theory is that even though the partial sum of
the harmonic series

Pn
k=1 1/k increases to infinity, it is never an integer for n > 1.

Apparently the first published proof goes back to Theisinger [9] in 1915, and, since
then, it has been proposed as a challenging problem in several textbooks; among
all we mention [5, p.16, Problem 30], [7, p.33, Problem 37], [8, p.153, Problem 250].

In 1946, Erdős and Niven [3] proved a stronger statement: there is only a finite
number of integers n for which there is a positive integer r  n such that the r-th
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elementary symmetric function of 1, 1/2, . . . , 1/n, that is

X
1k1<···<krn

1
k1 · · · kr

,

is an integer. In 2012, Chen and Tang [1] refined this result and succeeded to
show that the above sum is not an integer with the only two exceptions: either
n = r = 1 or n = 3 and r = 2. Recently, this theme has been further developed
by investigating the case when the variables of the elementary symmetric functions
are 1/f(1), 1/f(2), . . . , 1/f(n) with f(x) being a polynomial of nonnegative integer
coe�cients: see [4] and [10] for f(x) = ax + b and see [6] for f of degree at least
two.

In this paper, we consider the integrality problem for sums which are not neces-
sarily symmetric with respect to their variables. For an r-tuple of positive integers
s = (s1, . . . , sr) and an integer n � r, we define two classes of multiple harmonic
sums: the ordinary multiple harmonic sum (MHS)

Hn(s1, . . . , sr) =
X

1k1<···<krn

1
ks1
1 · · · ksr

r
, (1)

and the star version (MHS-star also denoted by S in the literature)

H?
n(s1, . . . , sr) =

X
1k1···krn

1
ks1
1 · · · ksr

r
. (2)

The number l(s) := r is called the length and |s| :=
Pr

j=1 sj is the weight of the
multiple harmonic sum. Note that Hn({m}r) is the r-th elementary symmetric
function of 1/f(1), 1/f(2), . . . , 1/f(n) with f(x) = xm. The multiple sums (1) and
(2) are of a certain interest because by taking the limit as n goes to 1 when sr > 1
(otherwise the infinite sums diverge) we get the so-called multiple zeta value and
the multiple zeta star value,

lim
n!1

Hn(s1, . . . , sr) = ⇣(s1, . . . , sr) and lim
n!1

H?
n(s1, . . . , sr) = ⇣?(s1, . . . , sr),

respectively. Note that the integrality of the MHS-star is quite simple to study.

Theorem 1. Let n � r. Then H?
n(s1, . . . , sr) is never an integer with the exception

of H?
1 (s1) = 1.

Proof. If n > 1, then by Bertrand’s postulate, there is at least a prime p such that
n/2 < p  n. Then p  n < 2p and

H?(s) =
X

1k1···krn
9i : ki 6=p

1
ks1
1 · · · ksr

r
+

X
1k1···krn

8i , ki=p

1
ks1
1 · · · ksr

r
=

a

bpt
+

1
p|s|
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where gcd(b, p) = 1 and t < |s|. Assume that H?(s) = m 2 N+. Then bmp|s| =
ap|s|�t + b, which is a contradiction because p divides the left-hand side and p does
not divide the right-hand side.

On the other hand, the case of the ordinary MHS is much more intricate. Our
result is given below whereas the entire next section is dedicated to its proof.

Theorem 2. Let n � r. Then Hn(s1, . . . , sr) is never an integer with the exceptions
of H1(s1) = 1 and H3(1, 1) = 1.

Summarizing and generalizing the results of Theorem 1, Theorem 2 and papers
[1, 4, 6, 10], we propose the following problem.

Problem 1. Let n and r be positive integers such that r  n. Let s = (s1, . . . , sr)
be an r-tuple of positive integers and f(x) be a nonzero polynomial of nonnegative
integer coe�cients, f(x) 6= x. Let

Hn,f (s1, . . . , sr) =
X

1k1<···<krn

1
f(k1)s1 · · · f(kr)sr

and
H?

n,f (s1, . . . , sr) =
X

1k1···krn

1
f(k1)s1 · · · f(kr)sr

.

Find all values of n and s for which Hn,f (s1, . . . , sr) and H?
n,f (s1, . . . , sr) are inte-

gers.

Note that when f(x) = x, the multiple sums Hn,f (s1, . . . , sr) and H?
n,f (s1, . . . , sr)

coincide with multiple harmonic sums (1) and (2) and therefore, the integrality
problem in this case is addressed in Theorem 1 and Theorem 2, respectively.

Throughout the paper, all the numerical computations were performed by using
MapleTM.

2. Proof of Theorem 2

The main tool in the proof of Theorem 1 is Bertrand’s postulate. Unfortunately,
such result is not strong enough to imply Theorem 2. The statement described in
the following remark will replace it. Notice that the same argument had been used
by Erdős and Niven in [3] and successively taken up in [1, 4] and [10].

Remark 1. Let 1  r  n. If there is a prime p 2 ( n
r+1 , n

r ] and r < p, then Hn(s)
is not an integer when l(s) = r. Indeed, since 1 < p < 2p < · · · < rp  n < (r+1)p,
it follows that

Hn(s) =
X

1k1<···<krn
9i : p-ki

1
ks1
1 · · · ksr

r
+

X
1k1<···<krn

8i , p|ki

1
ks1
1 · · · ksr

r
=

a

bpt
+

1
cp|s|
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where gcd(b, p) = gcd(c, p) = 1 and t < |s|. Assume that Hn(s) = m 2 N+. Then
bcmp|s| = cap|s|�t + b, which is a contradiction because p divides the left-hand side
and p does not divide the right-hand side.

For any integer r � 1, let

Ar =
[
p2P

[rp, (r + 1)p)

where P is the set of primes. Note that by Bertrand’s postulate, A1 = [2,+1).
The crucial property of the set Ar is that n 2 Ar if and only if there exists a prime
p such that p 2 ( n

r+1 , n
r ]. The next lemma is a variation of [4, Lemma 2.4].

Lemma 1. For any positive integer r, Ar is cofinite, i.e., N \ Ar is finite. Let
mr = max(N \ Ar) + 1. Then the first few values of mr are as follows:

r 1 2-3 4-5 6-7 8 9-13 14-16
mr/r 2 11 29 37 53 127 149

r 17 18-20 21-22 23-29 30-39 40-69
mr/r 211 223 307 331 541 1361

and for any positive integer r � 24, mr  (r + 1) exp(
p

1.4 r).

Proof. Let r � 1 and let n be such that x := n/(r + 1) � max(exp(
p

1.4 r), 3275) .
Then ln2(x) � 1.4 r implies

n

r
= x +

x

r
� x +

1.4x

ln2(x)
� x +

x

2 ln2(x)
.

Moreover, by [2, Theorem 1], there is a prime p such that

p 2
✓

x, x +
x

2 ln2(x)

�
⇢

✓
n

r + 1
,
n

r

�

which implies that n 2 Ar. This proves that N \ Ar is finite.
Note that if r � 47, then exp(

p
1.4 r) � 3275. On the other hand, if 24  r  46

and n 2 [(r + 1) exp(
p

1.4 r), (r + 1)3275), one can verify directly that n 2 Ar.

In order to compare values of multiple harmonic sums of the same length, the
following definition and lemma will be useful.

Definition 1. Let s = (s1, . . . , sr) and t = (t1, . . . , tr) be two r-tuples of positive
integers. We say that s � t, if w(s) � w(t), i.e., if s1 + · · · + sr � t1 + · · · + tr, and
s1  t1, . . . , sl  tl, sl+1 � tl+1, . . . , sr � tr for some 0  l  r � 1. In particular,
s � t if si � ti for i = 1, . . . , r.
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Lemma 2. Let s = (s1, . . . , sr) and t = (t1, . . . , tr) be two r-tuples of positive
integers, and s � t. Then for any positive integer n,

Hn(s1, . . . , sr)  Hn(t1, . . . , tr).

Proof. Let 0  l  r � 1 be such that s1  t1, . . . , sl  tl and sl+1 � tl+1, . . . , sr �
tr. Now we compare corresponding terms

1
ks1
1 · · · ksr

r
and

1
kt1
1 · · · ktr

r
, where k1 < · · · < kr,

of multiple sums Hn(s) and Hn(t). Since s1 + · · · + sr � t1 + · · · + tr, we have

kt1�s1
1 kt2�s2

2 · · · ktl�sl
l  kt1+···+tl�(s1+···+sl)

l

= k
(sl+1�tl+1)+···+(sr�tr)
l · kt1+···+tr�(s1+···+sr)

l

 k
sl+1�tl+1
l+1 · · · ksr�tr

r

and therefore,
1

ks1
1 · · · ksr

r
 1

kt1
1 · · · ktr

r
,

which implies Hn(s)  Hn(t), as required.

Remark 2. Notice that

Hn(1) = 1 +
nX

k=2

1
k
 1 +

Z n

1

dx

x
= ln(n) + 1.

Hence, if 1  r  n then, by the previous lemma,

Hn(s1, . . . , sr)  Hn({1}r)  (Hn(1))r

r!
 (ln(n) + 1)r

r!

where the second inequality holds because each term of Hn({1}r) is contained r!
times in the expansion of (Hn(1))r.

Let p be a prime and let ⌫p(q) be the p-adic order of the rational number q, that
is, if a, b are coprime with p and n 2 Z, then ⌫p(apn/b) = n. It is known that the
p-adic order satisfies the inequality

⌫p(a + b) � min(⌫p(a), ⌫p(b))

where the equality holds if ⌫p(a) 6= ⌫p(b). The following lemma will be our basic
tool to find an upper bound for the index s1.

Lemma 3. Given 2  r  n and (s2, . . . , sr), there exists an integer M (which
depends on (s2, . . . , sr) and n) such that Hn(s1, s2, . . . , sr) is never an integer for
any positive integer s1 > M .
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Proof. If r = n, then Hn(s1, s2, . . . , sr) is trivially not an integer for all s1 > 0. If
r < n, then we have that

Hn(s1, . . . , sr) =
n�r+1X

k=1

ck

ks1
where ck :=

X
k<k2<···<krn

1
ks2
2 · · · ksr

r
> 0.

Let p be the largest prime in [2, n � r + 1]. Then 2p > n � r + 1 (otherwise by
Bertrand’s postulate there is a prime q such that p < q < 2p  n� r + 1). Let

M := max

0
B@⌫p(cp), ⌫p(cp)� min

1kn�r+1
k 6=p

(⌫p(ck))

1
CA .

We will show that ⌫p(Hn(s)) < 0, which implies that Hn(s) is not an integer.
Assume that s1 > M , then

i) s1 > ⌫p(cp) and ii) s1 > ⌫p(cp)� min
1kn�r+1

k 6=p

(⌫p(ck)).

Now
Hn(s) =

cp

ps1
+

X
1kn�r+1

k 6=p

ck

ks1
.

By ii), we have that

⌫p

0
BB@

X
1kn�r+1

k 6=p

ck

ks1

1
CCA � min

1kn�r+1
k 6=p

⌫p

⇣ ck

ks1

⌘
= min

1kn�r+1
k 6=p

⌫p (ck) > ⌫p(cp)�s1 = ⌫p

✓
cp

ps1

◆
,

and by i),

⌫p

✓
cp

ps1

◆
= ⌫p(cp)� s1 < 0.

Therefore

⌫p (Hn(s)) = min

0
BB@⌫p

0
BB@

X
1kn�r+1

k 6=p

ck

ks1

1
CCA , ⌫p

✓
cp

ps1

◆1
CCA = ⌫p

✓
cp

ps1

◆
< 0.

Remark 3. If, in addition to the inequalities 2  p  n�r+1, the prime p satisfies
n/2 < p, then

⌫p(ck) � min
k<k2<···<krn

⌫p

✓
1

ks2
2 · · · ksr

r

◆
=

(
�max2ir si, if 1  k < p,
0, if p  k  n� r + 1.
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Therefore
min

1kn�r+1
k 6=p

(⌫p(ck)) � � max
2ir

si.

This means that
M 0 := ⌫p(cp) + max

2ir
si �M.

When the assumption n/2 < p is met, we will prefer to use the bound M 0 to M
because the bound M 0 is computationally easier to determine.

Proof of Theorem 2. Since Hn(s1) = H?
n(s1), by Theorem 1, the statement holds

for r = 1. If e(ln(n) + 1)  r, then by Remark 2 and the fact that er > rr/r!, we
have

Hn(s)  (ln(n) + 1)r

r!
<

✓
ln(n) + 1

r/e

◆r

 1,

which implies that Hn(s) can not be an integer.
Assume that 2  r < e(ln(n) + 1). Then exp(r/e � 1) < n and, since it can be

verified that
(r + 1) exp(

p
1.4 r)  exp(r/e� 1) for r � 30,

it follows that n 2 Ar and we are done as soon as we use Remark 1.
Remark 1 can be applied successfully even when 2  r  29 and n � 9599

because
mr  331r  331 · 29 = 9599  n.

Hence the cases remained to consider are 2  r  29 and r  n < mr (with n 62 Ar).
For r = 25, 26, 27, 28, 29, by Remark 2,

Hn(s) < Hmr(s)  Hmr({1}r)  (ln(mr) + 1)r

r!
< 1

where the last inequality can be easily verified numerically.
For r = 19, 20, 21, 22, 23, 24, by Lemma 2,

Hn(s) < Hmr(s)  Hmr({1}r)

and the non-integrality of Hn(s) is implied by the following evaluations:

Hm24({1}24) < 0.025084028 < 1,
Hm23({1}23) < 0.068740285 < 1,
Hm22({1}22) < 0.145564965 < 1,
Hm21({1}21) < 0.369820580 < 1,
Hm20({1}20) < 0.379560254 < 1,
Hm19({1}19) < 0.916202538 < 1.
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The strategy to handle the cases where 2  r  18 is fairly more complicated
because Hmr({1}r) > 1. The analysis is based on the numerical values presented
in Tables 1, 2, and 3. Here we give a detailed explanation of how the data in such
tables are calculated and used for r = 5. The other cases can be treated in a similar
way. What turns out at the end is that the only exception for r � 2 is H3(1, 1) = 1.

We first determine the optimal set of length 5, that is, a set of 5-tuples such that
the multiple harmonic sums with n = m5 = 145 are the largest sums less than 1
with small weights (columns 2 and 3):

Hm5({1}4, 2) < 0.502399297 < 1,
Hm5(1, 2, 2, 1, 1) < 0.851108767 < 1,
Hm5(1, 4, {1}3) < 0.883176754 < 1.

Then, thanks to Lemma 2, the size of the set of multiple harmonic sums less than
1 (and therefore not integral) can be extended.

Let 5  n < m5. If s2 � 4, then

Hn(s1, s2, s3, s4, s5)  Hn(1, 4, {1}3) < Hm5(1, 4, {1}3) < 1.

If s2 2 {2, 3} and there is sj � 2 with 3  j  5, then

Hn(s1, s2, s3, s4, s5)  Hn(1, 2, s3, s4, s5)  Hn(1, 2, 2, 1, 1) < Hm5(1, 2, 2, 1, 1) < 1.

If s2 = 1 and s3 � 3, then

Hn(s1, 1, s3, s4, s5)  Hn(1, 1, 3, 1, 1)  Hn(1, 2, 2, 1, 1) < Hm5(1, 2, 2, 1, 1) < 1.

If s2 = 1, s3 = 2, and s4 � 2 or s5 � 2, then

Hn(s1, 1, 2, s4, s5)  Hn(1, 1, 2, s4, s5)  Hn(1, 1, 2, 2, 1)
 Hn(1, 2, 2, 1, 1) < Hm5(1, 2, 2, 1, 1) < 1.

If s2 = 1, s3 = 1, and s4 � 3, then

Hn(s1, 1, 1, s4, s5)  Hn({1}3, 3, 1)  Hn(1, 2, 2, 1, 1) < Hm5(1, 2, 2, 1, 1) < 1.

If s2 = 1, s3 = 1, s4 = 2, and s5 � 2, then

Hn(s1, 1, 1, 2, s5)  Hn({1}3, 2, s5)  Hn({1}3, 2, 2)
 Hn(1, 2, 2, {1}2) < Hm5(1, 2, 2, {1}2) < 1.

If s2 = s3 = s4 = 1 and s5 � 2, then

Hn(s1, {1}3, s5)  Hn({1}4, s5)  Hn({1}4, 2) < Hm5({1}4, 2) < 1.
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The set of 5-tuples of positive integers which are excluded by the analysis above is
what we call the exclusion set (column 4):

(s1, 3, {1}3), (s1, 2, {1}3), (s1, 1, 2, 1, 1), (s1, 1, 1, 2, 1), (s1, {1}4)

with s1 � 1. By using Lemma 3 and Remark 3, we are able to give an upper bound
for s1 (column 5) and therefore to reduce the size of the exclusion set to a finite
number. Finally, it su�ces to compute the rational number Hn(s) for 5  n < m5

and for s in the exclusion set with the upper bound for s1 established in the last
column. For r = 5, none of them is an integer.

Acknowledgement. Kh. Hessami Pilehrood and T. Hessami Pilehrood gratefully
acknowledge support from the Fields Institute Research Immersion Fellowships.
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[2] P. Dusart, Inégalités explicites pour  (x), ✓(x), ⇡(x) et les nombres premiers, C. R. Math.
Acad. Sci. Soc. R. Can. 21 (1999), 53-59.
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Table 1: Optimal sets, exclusion sets and upper bounds for 2  r  8.

Length Optimal set of Upper bound for Exclusion set Upper bound
r (s1, s2, . . . , sr) Hmr(s1, s2, . . . , sr) with s1 � 1 for s1

2 (1, 2) < 0.994099321 (s1, 1)  3
3 (1, 1, 2) < 0.706260681 (s1, 2, 1)  3

(1, 3, 1) < 0.589038111 (s1, 1, 1)  3
(1, 1, 1, 2) < 0.684621751 (s1, 3, 1, 1)  4

4 (1, 2, 2, 1) < 0.537884954 (s1, 2, 1, 1)  3
(1, 4, 1, 1) < 0.627965284 (s1, 1, 2, 1)  3

(s1, 1, 1, 1)  3
(s1, 3, {1}3)  4

({1}4, 2) < 0.502399297 (s1, 2, {1}3)  3
5 (1, 2, 2, 1, 1) < 0.851108767 (s1, 1, 2, 1, 1)  3

(1, 4, {1}3) < 0.883176754 (s1, 1, 1, 2, 1)  3
(s1, {1}4)  3

(s1, 4, {1}4)  5
({1}4, 2, 1) < 0.861061229 (s1, 3, {1}4)  4

(1, 1, 3, {1}3) < 0.675761881 (s1, 2, 2, {1}3)  3
6 (1, 2, 1, 2, 1, 1) < 0.571129690 (s1, 2, {1}4)  3

(1, 3, 2, {1}3) < 0.506341468 (s1, 1, 2, {1}3)  3
(1, 5, {1}4) < 0.561379826 (s1, 1, 1, 2, 1, 1)  3

(s1, {1}5)  2
(s1, 4, {1}5)  5

({1}4, 2, 1, 1) < 0.998935309 (s1, 3, {1}5)  4
(1, 1, 3, {1}4) < 0.712465109 (s1, 2, 2, {1}4)  3

7 (1, 2, 1, 2, {1}3) < 0.637523826 (s1, 2, {1}5)  3
(1, 3, 2, {1}4) < 0.531072055 (s1, 1, 2, {1}4)  3
(1, 5, {1}5) < 0.553285019 (s1, 1, 1, 2, {1}3)  4

(s1, {1}6)  2
(s1, 4, {1}6)  5

({1}5, 2, 1, 1) < 0.756114380 (s1, 3, {1}6)  4
(1, 1, 3, {1}5) < 0.985465806 (s1, 2, 2, {1}5)  5

8 (1, 2, 1, 2, {1}4) < 0.896426675 (s1, 2, {1}6)  3
(1, 3, 2, {1}5) < 0.733626794 (s1, 1, 2, {1}5)  4
(1, 5, {1}6) < 0.750552945 (s1, 1, 1, 2, {1}4)  4

(s1, {1}3, 2, {1}3)  2
(s1, {1}6)  2
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Table 2: Optimal sets, exclusion sets and upper bounds for 9  r  11.

Length Optimal set of Upper bound for Exclusion set Upper bound
r (s1, s2, . . . , sr) Hmr(s1, s2, . . . , sr) with s1 � 1 for s1

(s1, 5, {1}7)  7
(s1, 4, {1}7)  5

(s1, 3, 2, {1}6)  6
({1}6, 2, 1, 1) < 0.925976971 (s1, 3, {1}7)  4

(1, 2, {1}3, 2, {1}3) < 0.570757133 (s1, 2, 2, {1}6)  3
(1, 1, 2, 1, 2, {1}4) < 0.591649570 (s1, 2, 1, 2, {1}5)  4

9 (1, 1, 1, 3, {1}5) < 0.707900100 (s1, 2, 1, 1, 2, {1}4)  3
(1, 3, 1, 2, {1}5) < 0.884650814 (s1, 2, {1}7)  4
(1, 2, 3, {1}6) < 0.979701671 (s1, 1, 3, {1}6)  4
(1, 4, 2, {1}6) < 0.814983421 (s1, 1, 2, 2, {1}5)  3
(1, 6, {1}7) < 0.897735179 (s1, 1, 2, {1}6)  3

(s1, 1, 1, 2, {1}5)  3
(s1, {1}3, 2, {1}4)  3
(s1, {1}4, 2, {1}3)  3

(s1, {1}8)  2
(s1, 5, {1}8)  6
(s1, 4, {1}8)  6

(s1, 3, 2, {1}7)  4
({1}6, 2, {1}3) < 0.938457721 (s1, 3, {1}8)  4

(1, 2, {1}3, 2, {1}4) < 0.561773422 (s1, 2, 2, {1}7)  4
(1, 1, 2, 1, 2, {1}5) < 0.558322794 (s1, 2, 1, 2, {1}6)  4

10 (1, 1, 1, 3, {1}6) < 0.644468502 (s1, 2, 1, 1, 2, {1}5)  3
(1, 3, 1, 2, {1}6) < 0.787882830 (s1, 2, {1}8)  3
(1, 2, 3, {1}7) < 0.847077826 (s1, 1, 3, {1}7)  4
(1, 4, 2, {1}7) < 0.697660582 (s1, 1, 2, 2, {1}6)  3
(1, 6, {1}8) < 0.739316195 (s1, 1, 2, {1}7)  4

(s1, 1, 1, 2, {1}6)  3
(s1, {1}3, 2, {1}5)  4
(s1, {1}4, 2, {1}4)  3

(s1, {1}9)  3
(s1, 5, {1}9)  8
(s1, 4, {1}9)  5

(s1, 3, 2, {1}8)  6
({1}6, 2, {1}4) < 0.814836649 (s1, 3, 1, {1}8)  5

(1, 2, 1, 1, 2, {1}6) < 0.841877884 (s1, 2, 2, {1}8)  4
(1, 1, 2, 2, {1}7) < 0.836565448 (s1, 2, 1, 2, {1}7)  3

11 (1, 3, 1, 2, {1}7) < 0.621949675 (s1, 2, 1, 1, {1}7)  3
(1, 2, 3, {1}8) < 0.653475111 (s1, 1, 3, {1}8)  5
(1, 4, 2, {1}8) < 0.533753072 (s1, 1, 2, {1}8)  3
(1, 6, {1}9) < 0.548020075 (s1, 1, 1, 2, {1}7)  3

(s1, {1}3, 2, {1}6)  3
(s1, {1}4, 2, {1}5)  3

(s1, {1}10)  3
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Table 3: Optimal sets, exclusion sets and upper bounds for 12  r  18.

Length Optimal set of Upper bound for Exclusion set Upper bound
r (s1, s2, . . . , sr) Hmr(s1, s2, . . . , sr) with s1 � 1 for s1

(s1, 4, {1}10)  5
(s1, 3, {1}10)  4

({1}6, 2, {1}5) < 0.622525355 (s1, 2, 2, {1}9)  3
(1, 2, 1, 1, 2, {1}7) < 0.611346842 (s1, 2, 1, 2, {1}8)  4

12 (1, 1, 2, 2, {1}8) < 0.595133583 (s1, 2, {1}10)  3
(1, 3, 2, {1}9) < 0.816806820 (s1, 1, 3, {1}9)  4
(1, 5, {1}10) < 0.779899998 (s1, 1, 2, {1}9)  4

(s1, 1, 1, 2, {1}8)  3
(s1, {1}3, 2, {1}7)  3
(s1, {1}4, 2, {1}6)  3

(s1, {1}11)  3
(s1, 4, {1}11)  5

({1}5, 2, {1}7) < 0.684109082 (s1, 3, {1}11)  4
(1, 2, 1, 2, {1}9) < 0.678679596 (s1, 2, 2, {1}10)  4

13 (1, 1, 3, {1}10) < 0.694738378 (s1, 2, {1}11)  3
(1, 3, 2, {1}10) < 0.514442958 (s1, 1, 2, {1}10)  3
(1, 5, {1}11) < 0.481478855 (s1, 1, 1, 2, {1}9)  3

(s1, {1}3, 2, {1}8)  3
(s1, {1}12)  2

(s1, 3, {1}12)  4
({1}4, 2, {1}9) < 0.887408969 (s1, 2, {1}12)  3

14 (1, 2, 2, {1}11) < 0.951784321 (s1, 1, 2, {1}11)  3
(1, 4, {1}12) < 0.818231535 (s1, 1, 1, 2, {1}10)  3

(s1, {1}13)  3
({1}3, 2, {1}11) < 0.799176532 (s1, 3, {1}13)  4

15 (1, 2, 2, {1}12) < 0.521690836 (s1, 2, {1}13)  3
(1, 4, {1}13) < 0.443394022 (s1, 1, 2, {1}12)  3

(s1, {1}14)  2
16 (1, 1, 2, {1}13) < 0.683053316 (s1, 2, {1}14)  3

(1, 3, {1}14) < 0.509572431 (s1, {1}15)  3
17 (1, 1, 2, {1}14) < 0.732770497 (s1, 2, {1}15)  3

(1, 3, {1}15) < 0.546742691 (s1, {1}16)  3
18 (1, 2, {1}16) < 0.722868056 (s1, {1}17)  3


